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Abstract— Multi-Chip Module (MCM) designs have emerged
as a key technique to scale up a GPU’s compute capabilities
in the face of slowing transistor technology. However, the dis-
aggregated nature of MCM GPUs with many chiplets connected
via in-package interconnects leads to non-uniformity.

We explore the implications of MCM’s non-uniformity on the
GPU’s virtual memory. We quantitatively demonstrate that an
MCM-aware virtual memory system should aim to 1 leverage
aggregate TLB capacity across chiplets while limiting accesses
to L2 TLB on remote chiplets, 2 reduce accesses to page table
entries resident on a remote chiplet’s memory during page
walks. We propose MCM-aware GPU virtual memory (MGvm)
that leverages static analysis techniques, previously used for
thread and data placement, to map virtual addresses to chiplets
and to place the page tables. At runtime, MGvm balances its
objective of limiting the number of remote L2 TLB lookups
with that of reducing the number of remote page table accesses
to achieve good speedups (52%, on average) across diverse
application behaviors.

Keywords-Graphics Processing Units, Multi-Chip Module,
Chiplet, Virtual Memory, Address Translation, Page Table
Walkers, Translation Look-aside Buffers

I. INTRODUCTION

The slowing of transistor scaling makes it hard to build
larger monolithic single-chip processors [29], [37]. At the
same time, the need to increase compute capabilities of
processors has never been higher. The industry is increasingly
adopting multi-chip-module (MCM) designs to cope with
these twin challenges [2], [5], [6], [22], [25], [56], [58].

MCM designs embrace a disintegrated design where a pro-
cessor package contains multiple smaller chiplets, with each
chiplet housing only a fraction of the resources compared to
a traditional monolithic SoC. Fabricating individual chiplets
is easier and cheaper since it needs only a fraction of the
transistors that a larger monolithic design would otherwise
contain. These chiplets are then connected through a fast,
high-bandwidth in-package interconnect to scale up to the
computational needs of modern software. MCM designs are
thus also called chiplet-based processor designs.

AMD’s Epyc and Ryzen CPU families were the first com-
mercial products to adopt an MCM design [2]. MCM designs
are now making their way to commercial GPUs (Graphics
Processing Units). For example, NVIDIA’s upcoming Grace,
AMD’s Aldebaran MI200, and Intel’s Ponte Vecchio GPUs,
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all embrace the MCM design to meet ever-growing compute
needs in the era of slowing transistor scaling [22], [43], [56].
Further, broader industry support toward a common chiplet
interconnect (UCIe) will likely make MCM-based processors
commonplace in the near future [6], [25], [57].

MCM designs, however, present new design challenges due
to the non-uniformity in accessing resources across chiplets.
To an application, an MCM GPU may appear as a logically
unified monolithic GPU. However, its physical resources are
distributed across the chiplets. For example, each chiplet
has its own memory hierarchy, including a slice of High-
Bandwidth Memory or GDDR (HBM). Threads executing on
a chiplet may need to access data residing on another chiplet’s
HBM. The remote memory access is slower than accessing
data residing on the memory of its own chiplet. The remote
accesses need to cross the inter-chiplet interconnect twice.
While inter-chiplet bandwidth is often adequate, traveling to
another chiplet can add ∼ 32 ns, one-way [7].

Several recent works have researched ways to limit the
overheads of remote data access in MCM GPUs [7], [31],
[32], [51]. These works explored the scheduling of GPU
threads and placement of data for co-locating threads, and the
data those threads access, onto the same chiplet. For example,
a recent work by Khairy et al. showed that static analysis
of GPU kernel yields a handful of patterns that capture the
relation between the groups of threads (called Cooperative
Thread Array or CTA) and the data they access [31].
The authors then propose Locality-Aware Scheduling and
Placement (LASP) that leverages these patterns to schedule
CTAs and place data pages on the same chiplet [31].

However, no prior work has explored the impact of MCM’s
non-uniformity on the GPU’s virtual memory. We find that
even when the data accesses are local, address translations
may need to access resources on a remote chiplet, limiting
the benefits of local data access.

We start by exploring the obvious design choices for the
virtual memory in an MCM GPU. In one design, the L2
TLB and the page table walkers (PTWs) could be private to
a chiplet. The L2 TLB and the PTWs serve requests only
from their own chiplet. Alternatively, in a shared design,
the L2 TLBs and PTWs of all chiplets are logically shared.
On an L1 TLB miss, the virtual address of the missing
translation is hashed to one of the chiplet’s L2 TLB (also



called ‘home’ L2 TLB ‘slice’) that should serve the L1 miss.
On a miss in the L2 TLB slice, chiplet’s local PTWs service
the request by walking the in-memory page table.

We find that MCM’s inherent non-uniformity affects the
virtual memory in two ways. First, a hit in the L2 TLB slice
of another chiplet (i.e., remote L2 TLB hit) is slower than
a hit in the chiplet’s local L2 TLB slice. This affects only
the shared TLB design since all hits are local in a private
TLB. However, a shared TLB can leverage the aggregate L2
capacity across chiplets, unlike a private TLB.

Interestingly, MCM designs can significantly affect the
page walk subsystem. When a PTW walks the in-memory
page tables on an L2 TLB miss, it may have to access page
table entries (PTEs) residing on the memory of another chiplet
(i.e., remote memory access). A page walk may require up
to four memory accesses for typical four-level radix-tree
page tables. Each of those can be a remote memory access,
incurring the additional latency of crossing the inter-chiplet
interconnect twice. Thus, page table walks can significantly
slow down due to remote accesses to PTEs.

We quantitatively analyze how these factors affect the
design choices in an MCM GPU’s virtual memory. We find
that no single design point works well for all applications.
Some applications perform better with private TLB thanks
to faster local L2 TLB hits. Others prefer shared TLB due
to lower L2 TLB miss rates, thanks to larger aggregate TLB
capacity. We quantitatively find that several applications could
speed up if remote L2 TLB hits were instead local hits.

We also notice that if an application does not speed up with
shared TLB design over private TLB, it does not necessarily
mean that the application has no use of the aggregate TLB
capacity. In regular GPU applications, it is common for
CTAs to compute on mutually exclusive portions of the
dataset. If the CTAs and the data they access are mapped
onto the same chiplet, then the aggregate L2 TLB capacity
of the chiplets is well-utilized even with private TLB since
there is no duplication of entries across the L2 TLB slices.
Therefore, CTA scheduling and data placement are important
considerations for L2 TLB utilization.

We find that the slower walks due to remote accesses to
PTEs cause significant performance degradation under both
private and shared TLB for several applications. Slower walks
make servicing each L2 TLB miss significantly costlier and
keep the walkers occupied for longer. This, in turn, increases
the queuing at the PTWs and TLBs.

Driven by the analysis, we propose MCM-aware GPU
virtual memory (MGvm) with the following goals. 1
Leverage the aggregate L2 TLB capacity across the chiplets,
2 Render remote L2 TLB hits to local hits, and 3 Reduce
remote memory accesses to PTEs during page table walks.

MGvm proposes three enhancements for the purpose.
First, it extends LASP [31]’s static analysis used for CTA
scheduling and data page placement for better aggregate
use of L2 TLB capacity while limiting remote L2 TLB

accesses. If data access is local, then MGvm aims to ensure
the corresponding address translation request is local too.

In a conventional design, the virtual address (VA) of an
L1 TLB miss is hashed to determine the chiplet’s L2 TLB
slice (and thus, PTWs) should service the request. We call
the hash function the home slice selection function (HSL).
For private TLB, the HSL maps all VAs to the local L2
TLB slice, while in shared TLB, typically, an XOR or MOD
of the VA determines its ‘home’ L2 TLB slice. In contrast,
MGvm employs a dynamic HSL (dHSL) where the function
is determined for each kernel. During a kernel’s launch, the
static analysis in LASP that determines its CTA scheduling
and data placement to reduce remote memory access also
determines the dHSL in MGvm. Thus, if a data access is
local, the corresponding L2 TLB access is also local. Since
dHSL maps a given VA to only one L2 TLB slice, it does not
waste aggregate L2 TLB capacity due to duplication either.

Next, we observe that remote accesses to PTEs are avoided
if a page containing PTEs is placed on the same chiplet whose
L2 TLB slice (and thus, PTWs) are responsible for servicing
the VA range mapped by PTEs residing on that page. The
GPU driver, therefore, uses the dHSL to decide where to
place a page with leaf-level PTEs. We focus on placing
leaf-level PTEs as upper-level PTEs are often well-cached
in page walk caches. A challenge, however, is that a page
(4KB) typically holds 512 8-byte long PTEs, mapping 2MB
of contiguous VA region. Thus, to avoid remote accesses to
leaf-level PTE, the dHSL must map (multiples of) a 2MB
VA region to a chiplet.

We also observe that in a few applications, a relatively
small VA range (< 2MB) is concurrently accessed from
several chiplets. The coarse grain mapping of VAs by dHSL
can lead to flooding of one of the L2 TLB slices with requests
while others remain lightly loaded. We extend the GPU
hardware to detect such imbalance at runtime and switch to
finer-grain (4KB) mapping of VA amongst the chiplets to
distribute L2 TLB traffic better.

In an evaluation with 15 workloads on a GPU with four
chiplets, MGvm improves performance over private and
shared TLB designs by 52% and 30%, on average, respec-
tively. In summary, we make the following contributions.
• We, for the first time, quantitatively analyze and explore
design choices for the virtual memory in MCM GPUs.
• We propose MCM-aware GPU virtual memory that
achieves a balance between using aggregate L2 TLB capacity,
local L2 TLB accesses, and local PTE accesses on page walk.

II. BACKGROUND AND RELATED WORK

Processor vendors have been building ever-larger GPUs to
cater to the growing computing needs of today’s data-driven
world. However, with a GPU’s die area already reaching
800mm2 [41] and the decreasing yield due to shrinking
transistor sizes, it is economically unviable to continue to
build larger dies [63].



Chiplet

1

Chiplet

3

Chiplet

2


Chiplet

4

In
te

rc
on

ne
ct

R
TU

R
M

A

R
TU

R
M

A
R

TU
R

M
A

R
TU

R
M

A

R
TU

R
M

A

L1 TLB

L1 cache

Scheduler

SIMDSIMDSIMD

L2 TLB Page
Walkers

Compute Unit

L2
 C

ac
he

D
R

A
M

Figure 1: Architecture of an MCM GPU

Processor vendors are thus increasingly adopting MCM
designs for both CPUs and GPUs [2], [22], [44], [56]. An
MCM-based processor comprises multiple smaller dies or
chiplets glued together with fast in-package interconnects.
Each chiplet houses only a fraction of the resources of a
large monolithic die. Thus, each chiplet has a much smaller
die size, with a higher likelihood of getting a working chiplet.
The aggregate computing capability of all chiplets is typically
similar to or more than a large monolithic chip. Chiplets
are connected with each other with high bandwidth, low
latency (e.g., 768 GB/sec, 32ns [8]) in-package interconnects.
The chiplets work together as a single logical unit and may
present themselves as a single GPU to the programmer.

However, MCM designs introduce non-uniformity. Access-
ing resources on a remote chiplet is slower than accessing
resources on a local chiplet. Thus, the key challenge is to
leverage this non-uniformity. We, for the first time, explore
the impact of non-uniformity on a GPU’s virtual memory.
GPU architecture: Figure 1 shows a typical 4-chiplet MCM
GPU, with the components of a single chiplet shown in detail.
Each chiplet in an MCM GPU houses the typical compute
and memory of a monolithic GPU, but in smaller portions.
A chiplet contains several Compute Units (CUs), a.k.a, SMs
in NVIDIA’s terminology. Each CU is composed of several
SIMD units. SIMD units in a CU share an L1 cache and an
L1 TLB. The SIMD units of a CU typically execute a group
of 32-64 threads in lockstep. A hardware coalescer combines
memory accesses that fall on the same cache line before
looking up the L1 cache. A programmer is required to divide
the grid of threads executing their kernel (GPU program)
into Cooperative Thread Arrays (CTAs), a.k.a, workgroups
or threadblocks. A CTA can contain up to 1024 threads, and
a given CTA executes entirely on a single CU. A GPU kernel
(program) is launched for execution with many such CTAs.

Each chiplet has a highly banked L2 cache shared by all
the CUs in the chiplet. Each chiplet also hosts a stack of
HBM or GDDR [3]. It is typical for MCM GPUs to logically
share the L2 cache and HBM across chiplets to aggregate
the on-board cache and memory capacity [7], [31]. Thus,
threads executing on a CU have access to the L2 cache and
memory on all chiplets. However, accesses to L2 caches or
HBMs on a remote chiplet are slower than accesses to the
local L2 cache or HBM.

Each CU has a private L1 TLB. A larger L2 TLB is
shared across all the CUs of the chiplet. The L2 TLB is

followed by a set of parallel page table walkers (PTWs), also
shared among the CUs. Typical 4-level radix-tree page tables
resident on HBM(s), hold the virtual-to-physical address
translation [42]. On a load/store, the associated L1 TLB of
the CU is looked up. On a miss, the L2 TLB is looked up.

On an L2 TLB miss, a PTW walks the page tables to obtain
the desired translation. A page walk cache (PWC) helps speed
up page table walks by caching the higher levels (levels 1-3)
of the page tables [11]. It performs a longest-prefix match
on the virtual page number (VPN) to be translated. Based
on the length of a prefix match, 1-4 memory accesses are
required for a walk. In our design, page table entries are also
cached in the L2 cache along with data.

While L1 TLBs are private to each CU, the L2 TLBs,
PTWs, and PWCs of chiplets can either be logically shared
or remain private to their chiplet. In the next section, we
will quantitatively discuss the implications of these designs.

In our design, address translation requests that need to
travel to another chiplet are routed through per-chiplet
Remote Translation Units (RTUs). Data accesses to other
chiplets are similarly routed through Remote Memory Access
(RMA) Units (Figure 1). RTUs and RMAs are connected
to each other via a high-speed in-package interconnect that
provides 32ns latency from any chiplet to any other [7].

The GPU driver decides the allocation of CTAs to chiplets.
It is also responsible for placing the pages containing data
or PTEs across chiplets’ memory.
CTA scheduling and data placement in MCM GPUs:
Remote memory accesses, from a CTA executing on one
chiplet, to memory on another chiplet, incurs additional
latency compared to local memory accesses (to the same
chiplet). Prior works have explored ways to reduce the
number of slower remote memory accesses by coordinating
CTA scheduling amongst chiplets with the placement of data
pages across chiplets [7], [31].

Arunkumnar et al. pioneered the work on optimizing
data locality for CTAs in MCMs GPUs [7]. They distribute
contiguous groups of CTA to chiplets with the assumption
that neighboring CTAs are likely to access similar regions
of data. They propose a first-touch policy for data placement
whereby a page is placed on the chiplet from where it is first
accessed. Unfortunately, the first touch policy relies on GPU
page faults, which are at least an order of magnitude slower
than CPU page faults at 20-50 microseconds [62], [68].

Researchers also enabled software to explicitly express data
locality to be exploited by the hardware [59], [65]. While a
promising approach, it is not always possible for programmers
to capture data locality in their program correctly and modify
their program to communicate the same.

Recent works propose to use compile-time static analysis of
kernels to infer data access patterns and their relation to CTAs
for coordinating CTA scheduling and data placement [31],
[32]. Inferring data access patterns through static analysis is
plausible for GPU kernels as all memory is allocated before
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Figure 2: TLB lookup and page table walk under various configurations. Dotted lines show less common paths

a kernel starts execution, and threads are often arranged in
CTAs to facilitate parallel access to data.

Khairy et al. [31] use static index-analysis of GPU kernels
to minimize remote memory accesses. In their work, LASP
(Locality Aware Scheduling and Placement), GPU kernels are
classified according to their data access patterns. LASP then
schedules CTAs to chiplets and tries to place the data pages
those CTAs will access on the same chiplet, to maximize
local memory accesses.

LASP classifies kernels into four classes using static
analysis. In kernels such as Jacobi-1D, CTAs access over-
whelmingly mutually exclusive data regions. LASP partitions
the data across different chiplets’ memory, and the CTAs that
exclusively access them are scheduled on the same chiplets.
Thus, data accesses remain local. Such kernels are classified
‘no locality’ (NL) since there is no locality (sharing) across
CTAs. The kernels where a set of neighboring CTAs access
contiguous sets of rows (columns) of a matrix are classified
‘RCL’ (row-column locality). Here, LASP stripes CTAs and
data across rows (columns) amongst the chiplets to limit
remote memory accesses. For example, in SYRK, CTAs
along the y-axis of the kernel grid access consecutive rows
of the input matrix. Thus, CTAs are divided along the y-axis
of the grid, and the data is distributed row-wise.

The kernels in ITL (intra-thread locality) category demon-
strate access locality within each thread, but there is a little
discernible pattern across CTAs. Finally, kernels whose access
patterns do not fit any of the patterns are termed ‘unclassified’.
The set of CTAs and data pages are divided equally, and
contiguous blocks of CTAs and data pages are distributed
evenly across chiplets.

Our baseline design uses LASP’s CTA scheduling and data
placement. We independently found LASP to be effective
in reducing remote data accesses – it reduced remote data
accesses from 67% to 18%, on average, over round-robin
CTA scheduling and data placement. Khairy et al. further
proposed controlled caching of data from remote chiplets in
the L2 cache. However, it complicates cache coherence. We
do not incorporate it in our baseline as it does not directly
impact the virtual memory.

III. MCM’S IMPACT ON GPU VIRTUAL MEMORY

We study the impact of MCM’s non-uniformity on the
GPU’s virtual memory subsystem. First, the non-uniformity
can affect the L2 TLB lookups in an MCM GPU. Each

chiplet has an L2 TLB, which may be configured primarily
in two ways. The L2 TLB on a chiplet may cache only the
address translations requested by CUs on the same chiplet
(private TLB). Alternatively, the L2 TLBs can be part of a
logically shared TLB across the entire GPU (shared TLB).
We refer to the L2 TLB on a chiplet as an L2 TLB slice.
Figures 2a and 2b pictorially illustrate the private TLB and
shared TLB designs.

In a private TLB design (Figure 2a), all L2 TLB accesses
occur locally at the L2 TLB slice of the CU where the request
originated 1 . On an L2 TLB miss, page table walkers (PTWs)
on the same chiplet service the walk request 2 . In the shared
TLB design (Figure 2b), on an L1 TLB miss, an address
translation request is routed to one of the L2 TLB slices
(‘home’) based on the hash of the missing virtual address 1 .
We call this hash function the Home Slice Selection function
(HSL). Under shared TLB, translations in the L2 TLB are
cached only in the home slice. On an L2 TLB miss, the
PTWs of the home slice perform the page walk 2 . We
refer to the L2 TLB requests that travel to another chiplet
as remote requests. Remote requests are slower than local
requests, as they incur additional interconnect latency. While
the private TLB does not incur remote requests, it may not
necessarily leverage the aggregate capacity of the L2 TLB
slices of all chiplets.

The non-uniformity of MCM design uniquely affects page
table walks. A PTW can perform up to four memory accesses
(assuming a four-level page table) based on hits/misses in the
page walk caches. The GPU driver populates the PTEs and
can place the pages containing PTEs in any chiplet’s memory.
A page walk may access PTEs residing on a remote chiplet’s
memory, incurring extra latency. Page walks can incur remote
memory access in both private TLB and shared TLB ( 3b in
Figures Figures 2a and 2b). Walks that access local memory
are faster ( 3a ). The fraction of remote memory accesses to
PTEs is a key factor in determining the latency experienced
on page walks in an MCM design. Further, slower walks
can stall the L2 TLB by occupying MSHR entries at the L2
TLB for longer. On an MSHR stall, no new TLB misses
can be served, ultimately putting back pressure on the entire
address translation system.

We quantitatively analyze these effects on an MCM GPU’s
virtual memory. We first detail the baseline design. We follow
Khairy et al.’s LASP for CTA scheduling and data placement
[31]. However, their proposal is silent on how the pages



containing PTEs are placed. A naive policy would be to
spread the pages with PTEs uniformly across chiplets in a
round-robin fashion. However, this leads to many remote
memory accesses on page walks. Instead, in our baseline, the
PTE placement follows the data placement policy. Memory
can be allocated amongst chiplets by the driver at the
granularity of a page (default, 4KB) or its multiples. A
single 4KB page contains 512 8-byte PTEs [42]. Thus, a
single page with leaf-level PTEs contains translations for
2MB of contiguous virtual address region. We place a page
containing leaf-level PTEs on the chiplet where any data
page from the corresponding 2MB VA region is first placed.

The above-mentioned policy for PTE placement is also the
same strategy used by Linux in placing pages with PTEs in
multi-socket NUMA machines [1]. Pages containing upper-
level PTEs follow the same principle, although each higher
level covers 512 times more contiguous VA region. We
empirically found that this policy reduced the fraction of
remote memory accesses on page walks by 64%, on average,
over the naive approach of uniformly distributing PTEs.
Private versus shared TLB design: We start our quantitative
analysis by exploring whether the private TLB or shared TLB
design is preferable. For the analysis, we choose applications
that can utilize at least four chiplets. Section VI-A details
the methodology, including the applications evaluated. The
applications cover diverse behavior, including those that stress
the virtual memory and those that do not.

Figure 3 shows the throughput of applications under the
private TLB and shared TLB designs (normalized to private
TLB for each application). We notice that neither private
TLB nor shared TLB always performs better than the other.

The advantage of shared TLB is its use of aggregate
L2 TLB capacity. Several applications, e.g., MIS, SPMV,
and SYRK, benefit from larger TLB capacity. Table III
confirms the same. It reports the number of L2 TLB misses
per thousand SIMD instructions (MPKI). We observe that
kernels of applications such as SPMV (sparse matrix-vector
multiplication) suffer very high MPKI. The larger aggregate
capacity of shared TLB significantly lowers the MPKI.

In contrast, applications like page rank (PR) have signifi-
cant MPKI but shared TLB does not reduce L2 TLB misses
significantly. The irregular memory access pattern of the
graph application, coupled with its larger memory footprint
that overflows even the aggregate L2 TLB capacity, is to
blame. While PR is unable to leverage aggregate capacity,
it suffers from increased remote TLB accesses in the shared
TLB design. Applications such as Stencil2D (S2D) also
fail to benefit from the aggregate capacity. The CTAs in
the kernel access data that can be well-partitioned. LASP’s
data placement and CTA scheduling policy leverage this to
ensure that CTAs access data placed on their local chiplet.
Consequently, an L2 TLB entry is typically looked up only
by the CTAs executing on the same chiplet. Thus, private
TLB does not lose capacity relative to a shared TLB as
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there is little duplication of entries across L2 TLB slices of
individual chiplets.
Effects of non-uniformity on virtual memory: We now
take a deeper look at the effect of the non-uniformity of
MCM on a GPU’s virtual memory. The address translation
requests that hit the L1 TLB are not affected by MCM’s
non-uniformity since L1 TLBs are private to each CU. In
shared TLB, an L1 TLB miss may require a remote L2 TLB
lookup if the HSL maps the virtual address onto a remote
chiplet. In the case of private TLB, though, only the local
L2 TLB slice is accessed. However, a page walk may need
to access PTEs resident on a remote chiplet’s memory. Thus,
page table walks in both the designs can suffer from the
non-uniformity of the MCM design.

To quantify the contributions of these factors on both the
private TLB and shared TLB designs, we break down the
total L1 TLB miss latency cycles into four parts. 1 L2 TLB
local hit cycles (Local hit). These cycles account for L1
TLB misses that hit in the L2 TLB of the same chiplet. 2
L2 TLB remote hit cycles (Remote hit). These account
for L2 TLB hits on a remote chiplet. These cycles are absent
in private TLB. 3 Local page walk cycles (PW local).
These are L2 TLB miss cycles spent by a walker to access
PTEs resident on the same chiplet as the walker. 4 Remote
page walk cycles (PW remote). These are the L2 TLB
miss cycles a walker spends accessing PTEs that reside on
a different chiplet from the walker. Figure 4 shows stacked
(vertical) bars of the above breakdown of the L1 TLB miss
latency for each application under the private TLB and shared
TLB designs. Consequently, each application has two stacked
bars. The height of each stack is normalized to the L2 TLB
miss cycles under private TLB for a given application.

Several applications, e.g., C2D, J2D, and SC, spend
a significant amount of cycles in ‘L2 TLB remote hit’
under shared TLB. The address translation overhead of
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Figure 5: Split of page walk accesses into remote and local

these applications would reduce if these remote hits could
be converted to local hits. This also explains why these
applications perform better with private TLB, particularly
since the aggregate L2 capacity with shared TLB does not
reduce MPKIs (Table III). Next, we observe that applications
such as J1D, J2D, PR, and S2D suffer under shared TLB
due to remote memory accesses during page walks.

For a deeper analysis, we report the fraction of memory
accesses due to page walks that are local versus those that
are remote in Figure 5. We observe that under shared TLB,
often a more significant fraction of memory accesses due to
page walks end up on a remote chiplet compared to private
TLB. This is expected in hindsight. LASP is often able to
schedule CTAs and place the data pages those CTAs access
on the same chiplet. LASP, coupled with our baseline’s PTE
placement policy, ensures that PTEs corresponding to the
data are also likely to be placed on the same chiplet.

For example, suppose that CTAs executing on chiplet 1
mostly access data on the same chiplet. The corresponding
PTEs are also likely to be placed on chiplet 1. Under private
TLB, the L2 TLB slice on the same chiplet (chiplet 1)
services address translation requests from the CTAs, and
thus, the PTWs on chiplet 1 will perform page walks on L2
TLB misses. Since most PTEs corresponding to the virtual
addresses of that data would also reside on the chiplet 1,
page walks will mostly look up the local memory. In contrast,
under shared TLB, the virtual addresses can map onto the
L2 TLB slice of any of the chiplets (say, chiplet 2) as per
the HSL. If there is a miss on the remote L2 TLB slice,
that chiplet’s walkers would have to access PTEs resident
on chiplet 1, inducing remote accesses.

We also observe that a few applications incur many remote
PTE accesses (a.k.a., remote page walk) even under private
TLB. For example, in MT, the input matrix is accessed
row-wise, while the output matrix is accessed column-wise.
Accesses to the output matrix are largely remote. Since
the baseline places page tables along with the data, the
corresponding page table accesses also tend to be remote.
Similarly, for SPMV, all the elements of a vector are accessed
by all the CTAs. Thus, some amount of remote data accesses
and thus, corresponding remote page walks are unavoidable.
Summary: 1 Neither private TLB nor shared TLB suits
all applications. 2 For several applications, e.g., SPMV,
harnessing the aggregate L2 TLB capacity across chiplets, as

in shared TLB, is important. 3 However, applications such
as J2D slow down due to remote L2 TLB lookups in shared
TLB design. 4 Importantly, remote memory accesses on
page walks significantly affect both private TLB and shared
TLB designs; more so in the latter.

IV. GOALS AND KEY DESIGN IDEAS

Driven by the quantitative analysis, we set out to design a
virtual memory system for MCM GPUs with the following
three goals. 1 Leverage the aggregate capacity of the L2
TLB slices across chiplets when needed, 2 Limit accesses to
remote L2 TLB slices, and 3 Limit remote memory accesses
due to page table walks.

Toward these, we enhance GPU’s virtual memory in three
ways. First, we dynamically change the HSL at the time of
each kernel launch, guided by LASP’s placement of data
pages. We call this optimization dynamic HSL (dHSL). Recall
that the HSL decides the home L2 TLB slice responsible
for serving a given virtual address. For example, suppose
LASP finds that the CTAs of a kernel mostly access non-
overlapping address regions (data), i.e., classified as NL. In
that case, LASP schedules the CTAs and the data pages it
would access on the same chiplet. We leverage the same
insight gathered by LASP to ensure that the HSL maps the
corresponding virtual address regions onto the same chiplet.
Consequently, kernels enjoy local L2 TLB accesses (hits) as
in a private TLB. In contrast, if the LASP decides to stripe
data across chiplets, for example, when it encounters a kernel
with ITL or is unclassified (Section II), the HSL would also
accordingly map the virtual address ranges across chiplets.

This approach of LASP-guided HSL addresses the first
two goals leveraging the aggregate capacity of the TLB slices
and limiting remote TLB accesses. Notice that private TLB
sacrifices capacity vis-a-vis shared TLB as it allows duplicate
entries across L2 TLB slices of chiplets. However, dHSL
maps a given virtual address onto a single L2 TLB slice only.
When LASP decides to spread the data across chiplets, dHSL
will also leverage the aggregate capacity of all chiplets’ L2
TLB slices. At the same time, by ensuring L2 TLB slices
are responsible for servicing translation requests from CTAs
on the same chiplet wherever possible, LASP-guided HSL
minimizes remote L2 TLB accesses.

Next, we focus on limiting remote memory accesses during
page walks (a.k.a. remote page walks). Recall that the HSL
maps a virtual address to a home chiplet. The PTWs on the
home chiplet are responsible for translating virtual address
regions mapped onto it by the HSL. The pages containing
the PTEs corresponding to those address regions are placed
on the home chiplet’s memory to limit remote page walks.
We focus on placing PTEs from the leaf level of the page
table since PWCs often filter out the accesses to the upper
levels of the page table.

It is evident from the above discussion that the HSL and the
PTE placement strategy must work together to limit remote



page walks. However, notice that HSL can map VA ranges
at the minimum granularity of a page, here, 4KB. Further, a
single 4KB page with PTEs contains 512 PTEs. Thus, a page
containing leaf-level PTEs covers the address translation for
a 2MB of the contiguous virtual address range. Therefore,
to ensure synergy between HSL and PTE placement, we
enhance the dHSL to map virtual addresses at a coarser
granularity of 2MB across L2 TLB slices of chiplets (named
dHSL-coarse). At a kernel launch, the GPU driver consults
dHSL-coarse to find the home chiplet for a given 2MB VA
range. It then places the 4KB page containing the leaf-level
PTEs for that 2MB region on that home chiplet’s memory.

The enhancements mentioned above work well for most
applications but not for all. There are kernels where nearly
every CTAs from all chiplets concurrently access a relatively
small VA range (< 2MB). Since dHSL-coarse maps at
least 2MB of VA range onto one L2 TLB slice, address
translation requests for those small but frequently accessed
data structures, queue up at a single TLB slice. This queuing
overwhelms the L2 TLB slice’s resources, including the ports
and MSHRs on one chiplet, while the other L2 TLB slices
remain unloaded. Unfortunately, such behavior of a kernel
is not necessarily discernible at the time of compilation.
Thus, we extend the GPU hardware to monitor the system
for imbalance in the L2 TLB traffic amongst the chiplets at
runtime and switch to finer grain (4KB) mapping to ensure
that one TLB slice does not become a choke point.

Note that giving up coarser granularity mapping (dHSL-
coarse) sacrifices the benefits of local memory accesses
on page walks. However, if the L2 TLB hit rate is high,
then ensuring balance in L2 TLB utilization across chiplets
could be more important than reducing remote page walks.
Therefore, this enhancement, acronym-ed dHSL-balance,
switches to finer grain mapping of virtual addresses across
the L2 TLB slices if it encounters an imbalance in traffic
among the L2 TLBs and finds the L2 TLB hit rate is high.
Summary: We achieve the three goals by: 1 LASP-directed
per-kernel configuration of the HSL to leverage the aggregate
L2 capacity when needed, while benefiting from local L2
TLB lookup where possible (dHSL). 2 Placing pages
containing PTE on chiplets in coordination with the dHSL
and the coarser grain (default at 2MB) mapping of virtual
addresses to L2 TLB slices to limit remote memory accesses
on page walks (dHSL-coarse). 3 Switching to finer-grain
(default, 4KB) HSL at runtime to avoid congestion in one
of the L2 TLB slices (dHSL-balance). We name the overall
solution MCM-aware GPU virtual memory (MGvm).

V. DESIGN AND IMPLEMENTATION

We elaborate on how MGvm realizes the ideas discussed in
the previous section. There are three major components in the
design and implementation. 1 At a kernel launch, the HSL is
decided based on the static analysis for data page placement
as in LASP. This information is conveyed to the GPU to

configure the HSL in the hardware that determines which
chiplet’s L2 TLB (and, thus, page walkers) are responsible
for translating a given virtual address. The static analysis is
performed once per kernel, exactly as in LASP [31]. While
LASP uses it for data page placement, MGvm uses it for
deciding the HSL. 2 At a kernel launch, the pages with
page tables are placed as per the HSL chosen in the previous
step. The CTAs are scheduled on the chiplet where their data
resides, as in LASP. 3 During the execution of a kernel, the
enhanced GPU hardware monitors possible imbalance in the
L2 traffic. On encountering severe imbalance, the hardware
employs dHSL-balance whereby the HSL falls back to fine-
grain interleaving of virtual addresses across L2 TLB slices.
Figure 2c depicts the operation of dHSL and dHSL-coarse,
and figure 6 shows the switching logic for dHSL-balance.

Now, we describe the actions that happen upon a kernel
launch and during the kernel’s execution.
Upon a kernel launch: MGvm’s first task is to decide
the HSL function guided by LASP’s data placement. An
application may have multiple kernels, and MGvm can set
a different HSL function for each kernel. LASP performs
static analysis of a GPU kernel’s code at compile time to
infer its memory access pattern. Based on the analysis, LASP
classifies the kernel into different categories (Section II). It
interleaves data structures across the chiplets based on the
expected access pattern and schedules the CTAs on the same
chiplet where its data is placed.

MGvm leverages LASP’s analysis to determine the most
suitable HSL for a kernel to limit remote L2 TLB accesses
and remote page table accesses. A page containing PTEs
maps (at least) 2MB of contiguous virtual address (VA)
region 1. Thus, MGvm sets the HSL to map a VA region in
multiples of 2MB onto a single chiplet while following the
interleaving pattern selected by LASP. The need for HSL to
interleave across a coarser granularity (2MB vs. 4KB) stems
from its goal to reduce remote memory accesses on page
walks. If LASP had selected an interleaving granularity for
the data pages that is not a multiple of 2MB, then MGvm
rounds it up to the closest multiple of 2MB for HSL (a.k.a,
dHSL-coarse). If LASP’s data interleaving granularity is a
multiple of 2 MB, then MGvm guarantees that if a data
access is local, the corresponding address translation request
would be local too. However, if MGvm rounds up LASP’s
data interleaving granularity to a multiple of 2MB, then some
of the accesses to L2 TLB can be remote while the data
accesses are local.

Pseudo-code in Listing 1 shows the high-level algorithm
used by MGvm to determine the HSL and place page
tables (discussed later). Upon a kernel launch, the driver
first queries the available LASP information about different
memory allocations (line 1). Then it picks up the largest

1We assume 4KB default page size. Later in this section, we discuss how
MGvm handles larger page sizes.



memory allocation of the kernel and queries LASP for the
data placement policy used for the particular allocation (lines
2-3). Notice that MGvm focuses on ensuring local L2 TLB
accesses for the largest data structure only, as it is likely to
have the most significant effect on the performance of the
kernel [31]. LASP decides the interleaving for each memory
allocation independently. However, MGvm cannot similarly
decide the HSL for each allocation independently without
significantly complicating the HSL in the hardware. When an
L1 TLB miss occurs, the HSL should quickly find which L2
TLB slice (thus, chiplet) the VA of that translation request
maps to. To avoid hardware complexity and yet be effective
in practice, MGvm employs a common HSL for the entire
VA space of a kernel.

Notice that while LASP can distribute each memory
allocation at a different granularity across chiplets, it focuses
primarily on avoiding remote data accesses for the largest
data structure. This is because data page placement alone
is insufficient to ensure local accesses. LASP schedules
the CTAs on chiplets to minimize remote data access to
the largest data structure. We follow the same rationale to
optimize for the largest data structure.

In listing 1, we define LASPBlockSize as the block size
used by LASP for interleaving data across chiplets, for the
largest memory allocation. If LASPBlockSize is a multiple of
2MB, then MGvm also uses the same as the HSL. Otherwise,
MGvm chooses the closest multiple of 2MB as the HSL (lines
4-7). The output of this algorithm is the selected interleaving
granularity (dHSL-coarse) used by the hardware to set its
HSL before the given kernel starts executing (line 22).

The alignment of the virtual address ranges allocated
to different data structures can impact the effectiveness of
MGvm in reducing remote TLB lookups, and remote page
walks. Suppose there are two data structures of sizes 4MB
and 8MB for a given kernel. Say LASP chooses to use block
sizes of 1MB and 2MB, respectively, for the two allocations.
Since the latter allocation is the larger, MGvm decides to
use 2MB granularity in HSL. Now say the allocation starts
at VA 0 (zero). The first memory allocation (4MB) starts
at VA 0, and the second memory allocation (8MB) gets the
VA from 4MB to 12MB. In this case, the HSL would map
the first 2MB chunk of the 8MB data structure onto the
third chiplet’s L2 TLB. However, the corresponding data
pages will be placed on the first chiplet by LASP. Assuming
LASP’s static analysis correctly finds CTAs that will access
that VA region and schedules them on the first chiplet, it will
ensure local data accesses. However, the L2 TLB lookups
for the given VA region will travel from the first chiplet
(where the execution occurs) to the third chiplet. Thus, if
the allocated VA ranges are improperly aligned, HSL may
be ineffective in reducing remote L2 TLB accesses.

MGvm’s driver takes care of the alignment needs as
follows. 1 The starting virtual address for the memory
allocations in the program is aligned to the nearest power-of-

1 listOfAllocs = QueryLASP (LIST_OF_ALLOCS)
2 largestAlloc = max(listOfAllocs)
3 LASPBlkSize = QueryLASP(BLOCKSIZE, largestAlloc)
4 if LASPBlkSize % 2M == 0
5 dHSLcoarse = LASPBlkSize
6 else
7 dHSLcoarse = closestMultiple(LASPBlkSize, 2M)
8

9 # Allocate virtual and physical memory
10 alignTo = closestPow2(largestAlloc)
11 StartingVPN = newAlignedVAddr(alignTo)
12 sort(listOfAllocs)
13 for alloc in listOfAllocs
14 vAddr = allocateVAddr(alloc)
15 allocatePhyMemLASP(vAddr, alloc)
16

17 # Each page table page covers 2MB VA
18 foreach 2MB region
19 VPN = startAddr(region)
20 block = VPN / dHSLcoarse
21 homeNode = block % numChiplets
22 allocatePTEPageOnChiplet(VPN, homeNode)
23

24 GPU.SetdHSL(dSHLcoarse)

Listing 1: Pre-kernel launch steps

2, larger than the largest memory allocation in the program.
This is easy since the virtual address space is abundant.
2 MGvm rearranges the VA assignments for each memory
allocation request such that the largest allocation request is
assigned VA first (lines 9-12). These ensure that the selected
HSL will produce local L2 TLB lookups for the largest
allocation, even with multiple allocations of varying sizes,
as long as LASP analysis is accurate.

Next, the driver allocates the virtual addresses and physical
memory to the different allocations (lines 13-15). Finally, the
driver places the pages with PTEs such that remote memory
accesses to the leaf-level PTEs are avoided during page walks
(step 1 in Figure 2c). Lines 17-22 show the pseudo-code
for the same. The allocation for the PTEs is made simple
by the fact that dHSL-coarse always allocates contiguous
VA regions of multiples of 2MB on the same chiplet. For
every allocated 2MB VA region, the driver finds the chiplet
whose L2 TLB slice would be responsible for its address
translation as per the chosen HSL function (lines 19-21). It
then allocates the corresponding PTEs such that the page
containing the leaf-level PTEs resides on the chosen chiplet.
The upper-level PTEs may reside on any chiplet as their
placement is not critical to the performance.
Operation during kernel execution: The command proces-
sor (CP) in a GPU schedules CTAs to different chiplets as
per LASP to reduce remote data accesses. MGvm does not
make any modifications to this. The chosen HSL and PTE
page placement limits remote L2 TLB accesses and remote
page walks, utilizing LASP’s CTA scheduling.

Before the kernel starts executing, the CP broadcasts the
HSL’s granularity to all the L1 TLBs and the RTUs. The L1
TLBs and the RTUs use the same to find any given VA’s
home TLB slice (chiplet). Under MGvm, L1 TLB misses are
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Figure 6: Switching logic

typically directed to the local L2 TLB slice in the common
case, thanks to dHSL (step 2 in Figure 2c). Further, dHSL-
coarse ensures that leaf-level PTE accesses remain local ( 4
in Figure 2c).
Mitigating L2 TLB imbalance: The primary task of MGvm
during the execution of a kernel is to monitor for potential
imbalance in the L2 TLB traffic that can hurt performance.
As noted in Section IV, coarse granularity mapping in dHSL-
coarse is to blame in such cases. Kernels that typically enjoy
higher L2 hit rates are often most affected by imbalance. If
the L2 MPKI is high, then the address translation overhead
is dominated by the long latency page walks, and thus,
imbalance at L2 TLBs matters less.

MGvm extends the GPU hardware to monitor the signs of
imbalance in the presence of high L2 TLB hit rates. Upon
detecting such a scenario, MGvm abandons dHSL-coarse
and switches to fine-grain (here, 4KB) interleaving (dHSL-
balance) to distribute the L2 traffic evenly across all chiplets.
MGvm defines imbalance at a chiplet as follows.

imbalance :=
IncomingRequests

TotalRemoteRequests
> threshold

We assume the number of chiplets in the GPU to be 4 in
the following discussion without loss of generality. Figure 6a
shows the per-chiplet monitoring logic. MGvm monitors the
number of incoming and outgoing translation requests with a
pair of counters at each RTU ( 1 in Figure 6a). Recall that all
translation requests that travel to another chiplet pass through
the RTU (Section II). Another counter maintains the total
number of requests (incoming and outgoing) serviced. At the
end of an epoch (default, 5000 requests), each RTU saves
the values of the counters and resets them to 0. Then, based
on the saved values of these counters, each RTU determines
if there is any possibility of imbalance across the system.

Possible := IncomingReqs > 2∗OutgoingReqs

If the RTU detects a possible imbalance for two consecutive
epochs, the RTU sends a trigger message to the CP ( 2 in

1 global bool prevImbalance;
2

3 let numIncoming[4] be num. incoming reqs at each
chiplet

4 let hitRate = totalNumHits / totalNumAccesses
5 let imbalance = False
6

7 total = sum(numIncoming)
8

9 for nI in numIncoming
10 if (nI/total) > 0.8
11 imbalance = True
12

13 if imbalance == True and hitRate > 0.9
14 if prevImbalance == True
15 send SwitchMsg(TLBs, RTUs)
16 else prevImbalance = true
17 else prevImbalance = false

Listing 2: Decision flow at the CP

Figure 6a). Upon receiving the message, the CP requests all
the RTUs to share their counter values of incoming requests.
Further, the CP requests all L2 TLB slices to send the number
of hits and misses over the last epoch ( 4 in Figure 6a).
The RTUs and the L2 TLB slices reply with the requested
information ( 3 , 5 in Figure 6a). Once the CP receives the
data from all the RTUs and TLBs, it combines the information
to infer the existence of imbalance (if any) across chiplets.
Listing 2 shows the algorithm used by the CP to decide on
switching. If the imbalance amongst the chiplets is higher
than a threshold (default, > 0.8), and the L2 TLB hit rate
is high (default, > 0.9), for two consecutive epochs, the CP
decides to switch to fine-grain dHSL-balance.

When the CP decides to switch to dHSL-balance, it
broadcasts an HSL switch message to all the L1 TLBs, RTUs
and L2 TLBs. Once the RTUs and L1 TLBs receive it, they
asynchronously switch to the fine-grain HSL.
Mechanism to switch to dHSL-balance: Switching to a dif-
ferent HSL is not instantaneous. Translation requests already
in the network must be rerouted appropriately according to
the latest HSL. Figure 6b illustrates the additional paths that a
translation request can traverse in MGvm (in red) in addition
to the baseline (in green). Due to asynchronous switching,
an RTU may receive requests from other chiplets that should
not have been routed to it as per the updated HSL. The RTU
assumes that its currently effective HSL (e.g., dHSL-coarse)
is the HSL currently used by all components and reroutes
the request according to its current HSL ( 1 in Figure 6b).
Since all chiplets eventually receive the switching message
from the CP, rerouting happens only a bounded number of
times (typically, once). Further, delays within a chiplet may
lead to a request being (incorrectly, as per the latest HSL)
routed to the RTU instead of the local L2 TLB. The RTU
assumes its HSL to be the latest and routes the request back
to the local L2 TLB slice ( 2 in Figure 6b).

The L2 TLB slice on each chiplet also maintains the latest
HSL. The L2 TLB looks up all the requests it receives. If
the lookup is a hit, no additional action is needed. On a miss,



the L2 TLB slice sends the request to the local page walk
system only if its copy of the HSL determines that it should
serve that request. Otherwise, it redirects it to the RTU ( 3 ),
which, in turn, sends it to the request’s home L2 TLB slice.

As Figure 6b shows, the asynchronicity of components
(even within the same chiplet) can cause translation requests
to reroute. Suppose the RTU and the L2 TLB slice on a
chiplet temporarily disagree on the HSL. Then a translation
request may be rerouted between the RTU and L2 TLB slice.
A similar situation may arise when RTUs on different chiplets
disagree about the HSL in use. However, this is a transitory
phase without the possibility of deadlock since the RTUs,
and L2 TLB slices of each chiplet will eventually receive the
switching message from the CP. We empirically found that
switching messages constitute a minuscule fraction (< 0.1%)
of the network traffic due to address translation.
Switching back to dHSL-coarse: MGvm can switch back
from fine-grain dHSL-balance to the original driver-selected
dHSL-coarse if the imbalance disappears. Every L2 TLB
entry is tagged with the chiplet ID that the corresponding
VPN would have hashed under dHSL-coarse during the
TLB fill operation. Additionally, we keep four counters, one
representing each chiplet on the GPU. Whenever an L2 TLB
entry is accessed, the counter corresponding to the chiplet
ID stored in that L2 TLB entry is incremented. At the end
of every epoch, these counters are checked to see if the
imbalance has disappeared (i.e., no chiplet has an imbalance
greater than a threshold, default 0.5). If two consecutive
epochs show that the imbalance has disappeared, we switch
back to dHSL-coarse. We do not observe the need to switch
back in our evaluated applications.

Notice that since TLBs are read-only caches, there can be
no correctness issue even when different slices use different
HSL during switching. Switching also does not require a
TLB shootdown since the page tables remain unaltered. We
empirically found that it has little performance impact as it is
a transitory phase. We evaluated a hypothetical configuration
that magically avoids all costs of switching. We found
a minuscule performance difference (< 1%) between this
magical configuration and MGvm.
Hardware overheads: MGvm requires one additional
register (to store the HSL parameter) per each CU, RTU,
and L2 TLB to compute the HSL. Each RTU requires five
32-bit counters, one for maintaining the epoch, two for
maintaining the number of incoming and outgoing requests,
and two more for maintaining the number of incoming and
outgoing requests in the previous epoch. Each L2 TLB entry
is augmented with log(numChiplets) bits. Each L2 TLB also
maintains numChiplets counters. In an MCM GPU with four
chiplets, MGvm needs an additional 32 bits per CU (4096
across the entire GPU), 1152 bits across the RTUs and L2
TLB counters, and 4096 bits for the L2 TLB entries. In
aggregate, the total state overhead is 9344 bits.
MGvm with larger page sizes: Hitherto, we assumed 4KB

Table I: Simulation Parameters

Chiplets 4 chiplets, 32 CUs per chiplet
16 memory controllers per chiplet

CU 4 exec. units per CU, 64 threads per wavefront

Cache (per CU)
64KB vector cache, 5 cycle lookup
32KB Inst. cache shared b/w 4 CUs
16KB Scalar cache shared b/w 4 CUs

TLB (per CU) 32 entry fully assoc., 1 cycle lookup

L2 TLB 512 entry TLB per chiplet, 8 way, 10 cycle lookup
64 entry MSHR per chiplet

L2 Cache 4MB per chiplet, 16 banks, 16 way, 12 cycle lookup
DRAM 1 TBps, 100 ns latency

Page walking 16 page walkers per chiplet (default)
32 entry fully assoc. page cache, 10 cycle lookup

Interconnect 768 GBps, bi-directional, ∼32 ns latency

pages. However, MGvm’s design is not tied to the page size.
The page table’s radix tree structure remains the same when
using large pages (say 64 KB pages) for data. The page
tables pages continue to use base 4KB pages [42]. Thus,
the basic algorithms remain the same. The most significant
changes are: 1 The dHSL-coarse would now have to be the
multiples of 32MB instead of 2MB, since each page with
PTEs would now cover 32MB of contiguous virtual address
space. 2 The thresholds for switching the HSL may change
due to higher expected TLB hit rates. In Section VI, we
evaluate MGvm with 64KB pages.

VI. EVALUATION

A. Methodology

We use the MGPUSim [59] simulator to model the
MCM GPU. MGPUSim is designed to model multiple
interconnected GPUs. We simulate a GPU with characteristics
similar to AMD’s GCN architecture. Our simulated GPU has
4 chiplets connected to each other via a fast, high-bandwidth
interconnect. Each chiplet has 768 GBps of bi-directional
bandwidth to every other. The latency to cross from one
chiplet to another is 32ns (default). We follow the numbers
published by NVIDIA for these parameters [7]. Table I details
the simulation parameters. We follow the strategy detailed
in LASP [31] for data placement and CTA scheduling.

We use a mix of workloads from various suites, e.g.,
Polybench [48], AMD App SKD [4], Heteromark [60], SHOC
[23], Pannotia [20]. Table II shows the workloads, their
classification according to LASP, and their memory footprints.
To present a holistic evaluation, we include workloads that
stress the virtual memory and those that do not.

B. Results and analysis

Figure 7 shows the normalized throughput (higher is better)
for four different configurations – private TLB, shared TLB,
MGvm-no-balance, and MGvm. MGvm-no-balance is our
proposed solution, but without balancing, i.e., dHSL-balance
is disabled and only dHSL and dHSL-coarse enabled. The
throughput is measured as the total number of instructions
executed divided by the total time. The height of each bar is
normalized to the private TLB configuration.



Table II: Workloads

Abbr. Benchmark Size
(MB)

Locality
Type

C2D 2-D convolution [48] 512 NL
FW fast Warshall transform [4] 32 RCL
GUPS multi-threaded, random access 16 unclassified
J1D 1-D Jacobi solver [48] 512 NL
J2D 2-D Jacobi solver [48] 128 NL
KM kmeans clustering with 20 clusters [60] 128 ITL
MIS max. independent set [20] 16 NL+ITL
MT matrix transpose [4] 32 NL
PR Page Rank algorithm [60] 256 ITL
SC simple convolution on a matrix [4] 512 NL
RED reduction kernel [23] 256 NL
SPMV sparse matrix vector multiplication [23] 360 ITL
S2D stencil operation on 2-D matrix [23] 32 NL
SYRK rank of a symmetric matrix [48] 32 RCL
SYR2 rank-2k of a symmetric matrix [48] 16 RCL
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Figure 7: Throughput of private TLB, shared TLB, MGvm-
no-balance and MGvm, normalized to private TLB

We first observe that MGvm outperforms private TLB
by 52% and shared TLB by 30%, on average (geometric
mean). Even if we compare MGvm to the better-performing
configuration among private TLB and shared TLB for indi-
vidual applications, MGvm outperforms the better alternative
by 12%, on average. In short, MGvm not only matches the
better among private and shared TLB for each application
but also performs better than any of them. While comparing
MGvm-no-balance and MGvm, we observe the need to detect
and correct imbalance in three of the applications – MIS,
SYRK, and SYR2.

Next, we dive into the sources of these improvements.
Note that MGvm aims to achieve a balance between three
objectives: 1 lower L2 TLB miss rate by leveraging
aggregate L2 TLB capacity, 2 increase local L2 TLB hit
fraction to limit remote TLB lookups, and 3 limit remote
memory accesses due to page walks to make walks faster.
We will analyze MGvm against each of these objectives.

Table III shows the L2 TLB misses per kilo SIMD
instructions (MPKI). As expected, the best aggregate capacity,
and thus, the lowest MPKI, is achieved under shared TLB.
We observe that, in most cases, MGvm achieves MPKI close
to that of the shared TLB design. For example, applications
such as MIS, SPMV, SYRK, and SYR2, which suffer many
L2 misses in private TLB, leverage the aggregate L2 capacity
under MGvm. Surprisingly, the MPKI of KM is higher with
MGvm than private TLB. On further investigation, we find

Table III: L2 TLB MPKI with different configurations

Workload Private TLB Shared TLB MGvm
C2D 1.07 1.07 1.07
FW 2.28 2.28 2.28
GUPS 698.32 480.82 513.27
J1D 3.21 3.21 3.21
J2D 2.16 2.15 2.15
KM 11.04 10.25 21.70
MT 69.31 62.00 68.5
MIS 260.52 2.11 8.50
PR 91.33 90.38 90.83
SC 0.40 0.40 0.40
RED 6.01 5.93 5.93
SPMV 1531.47 422.73 451.94
S2D 12.32 10.24 12.18
SYRK 201.46 53.03 53.17
SYR2 178.35 54.72 54.95
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Figure 8: Reduction in remote TLB hits with MGvm
compared to shared TLB

that MGvm reduces the page walk latency of KM by a large
fraction (Figure 10). This leads to frequent L2 TLB fill as
each completed page walk brings a new entry into the TLB.
This, in turn, leads to frequent eviction of useful TLB entries,
i.e., thrashing of the L2 TLB. We further confirm that the
MPKI of KM increases with a hypothetical configuration
where all remote page walks are made local (and hence
faster). The phenomenon of thrashing due to faster page
walks has been observed before [49].

Figure 8 shows the breakup of local versus remote L2
hits for shared TLB and MGvm. Note that all L2 hits are
local for private TLB and thus are not shown. The figure
shows that applications that benefit from a high local L2
TLB hit rate in private TLB also experience good local L2
hit rate under MGvm relative to shared TLB. This is evident
in applications such as C2D, J1D, J2D, S2D, SC, and MT.
In short, MGvm can leverage the benefits of private TLB
where it suits the application.

Finally, we evaluate if MGvm is able to reduce remote
memory accesses during page walks. Figure 9 shows the
breakdown of local versus remote accesses to PTEs for private
TLB, shared TLB, and MGvm. Across all applications, except
SYRK and SYR2, MGvm provides the lowest fraction of
remote accesses to PTEs, establishing its success in achieving
the third goal. For SYRK and SYR2, the remote access
fraction with MGvm is similar to shared TLB. This is because
these applications switch to using finer grain (4KB) to avoid
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Figure 10: Page walk latency with various configurations

imbalance in L2 TLB traffic early in their executions. Giving
up coarser grain (2MB) mapping to L2 TLB slices sacrifices
the ability to keep accesses to leaf-level PTEs local. However,
MGvm finds this necessary to limit imbalance for maintaining
good overall performance.

In Figure 10, we further show how reducing remote PTE
accesses speeds up page walks across configurations. This
confirms the benefits of limiting remote accesses to PTEs.

In summary, MGvm matches or betters the best of both
worlds – private TLB and shared TLB, even when the baseline
contains state-of-the-art optimizations for CTA scheduling
and data placement, as well as smart page table placement
that follows data placement.

C. Sensitivity studies and generality

Large pages: We study the impact of MGvm with 64KB and
2MB large page sizes that NVIDIA GPUs support [42]. We
increased the memory footprints of workloads to generate
enough TLB misses to stress the virtual memory subsystem.
Unfortunately, these large-footprint simulations run for many
days. Figure 11 shows a subset of applications running private
TLB, shared TLB, and MGvm with 64KB pages. These
applications finished simulation within a reasonable time.
Even with larger 64KB pages, MGvm remains effective,
outperforming the better alternative for each application by
26%, on average. The speedup is as high as 82% for matrix-
transpose (MT). We also experimented with 2MB pages
(not shown). As expected, the headroom for improvement
reduces with a larger page size. However, MGvm remains
useful by consistently providing more than 15% performance
improvement over private TLB or shared TLB for applications
with high address translation overheads.
Sensitivity to TLB sizes, number of walkers, and inter-
connect latency: We studied the impact of larger L2 TLB
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Figure 11: Throughput with large pages
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Figure 12: Throughput of MGvm normalized to private TLB

sizes, more page table walkers, lower and higher interconnect
latencies. Specifically, we studied the impact of doubling the
size of each L2 TLB slice to 1024 entries (a total of 4096
entries). We studied the impact of doubling the number of
page table walkers to 32 per chiplet (a total of 128). We also
studied the impact of halving (16 ns) and doubling (64 ns)
the inter-chiplet interconnect latencies.

Figure 12 shows the throughput of applications with
MGvm under these varying configurations, with the height
of each bar, normalized to the throughput under private TLB
(higher is better). Figure 13 shows the same with the heights
of the bars normalized to shared TLB. As expected, with
more virtual memory resources (TLBs, page walkers), the
relative improvement with MGvm moderates but remains
significant. For example, even after doubling the TLB size,
MGvm outperforms private and shared TLB by 12% and
20%, respectively, on average (geomean). After doubling the
number of walkers, the improvements are 38%, and 21%.

As expected, when the interconnect latency is halved,
the effect of non-uniformity in the MCM design reduces.
Thus, improvements with MGvm moderate at 43% and 17%,
on average, over the private and shared TLB designs. The
opposite trend is observed when the interconnect latency
doubles. We see 68% and 54% improvements over private
TLB and shared TLB with higher interconnect latency.
The generality of MGvm: Thus far, we assumed LASP [31]
for the CTA scheduling and data page placement policy in
the baseline design. While MGvm leverages LASP’s static
analysis, it can provide benefits even if the static analysis is
unavailable.

We simulate an alternative baseline design where CTAs
and the data pages are distributed in a round-robin fashion
across the CUs and the memory banks in the absence of
LASP. We call this the naive baseline. The optimization in
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Figure 13: Throughput of MGvm normalized to shared TLB
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Figure 14: Application of our techniques to naive baseline
with round-robin scheduling

MGvm that leveraged LASP’s analysis to dynamically select
HSL to avoid remote TLB lookups is inapplicable. However,
the other optimization to place PTEs for reducing remote page
walks remains relevant. We name this constrained version of
MGvm, MGvm-RR (round-robin).

Figure 14 shows the performance of MGvm-RR over
private TLB and shared TLB with the naive baseline. First,
we observe that without LASP, private TLB is not a good
design choice since it suffers from high L2 TLB miss but
fails to fully harness local TLB lookup due to its inability to
exploit locality. MGvm-RR outshines private TLB by 113%,
on average. The shared TLB performs relatively better as it
leverages the aggregate capacity of L2 TLB slices. However,
it also suffers from a high percentage of remote memory
accesses to PTEs. MGvm-RR improves throughout over the
shared TLB by 26%, on average, as it limits remote page
walks by smartly placing the PTEs.

In general, we find that when the data access locality is
improved through smart data placement and CTA scheduling,
the average data access latency reduces. This brings forth
the address translation as a more significant performance
bottleneck. However, even in the absence of smart data
placement and CTA scheduling, and even without dynamic
HSL optimization, MGvm can provide significant speedups.

VII. DISCUSSIONS

Why not replicate page tables? A key goal of MGvm is to
avoid remote memory accesses while walking the page table.
An alternate way to achieve the same is by replicating the
entire page table onto each chiplet’s memory. We simulated
replication of the page table by making all accesses to the
page table local (i.e., zero remote accesses to PTE). We
evaluated this for both private TLB and shared TLB designs.
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Figure 15: Comparison with Page Table Replication (PTR).
Throughput normalized to private TLB with PTR.
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Figure 16: Impact of local caching of remote L2 TLB entries

Page table replication can improve performance by 23% and
20%, over private and shared designs. Importantly, MGvm
outperforms private and shared TLB designs with page table
replication by 24% and 8%.

Figure 15 shows three bars for each application – represent-
ing throughput with page table replication with private TLB
and shared TLB (Private PW-All-Local and Shared PW-All-
Local in the figure), and with MGvm. Recall that MGvm also
limits remote L2 TLB lookups and leverages aggregate L2
TLB capacity of the chiplets, besides limiting remote accesses
to PTEs during page walks. MGvm outperforms private TLB
with page table replication due to better L2 TLB hit rate. It
outperforms shared TLB with page table replication thanks to
fewer remote L2 TLB lookups. Importantly, MGvm achieves
this without the complexity of keeping all the replicas of
the page table consistent. Today’s MCM processors already
have 4 chiplets [2], and this number will only increase [57].
Keeping many replicas of a page table coherent, especially
with unified virtual memory, would be challenging.
Caching remote TLB entries: Another design alternative is
to cache remote L2 TLB entries in the local L2 TLB slice of
the requesting chiplet. Caching remote TLB entries locally
can reduce remote L2 TLB lookups. We studied whether
caching remote TLB entries in the requesting chiplet’s L2
TLB slice can improve performance.

Figure 16 reports our findings and compares page table
replication with MGvm. We observe that caching remote
TLB entries hurts performance compared to MGvm by 24%,
on average. We find that the duplication of entries across
L2 TLB slices due to caching of remote entries is to blame.
Duplication decreases the effective aggregate capacity of the
L2 TLB, thus, increasing the L2 TLB MPKI by 60% over
MGvm. In particular, applications that benefited from larger



TLB capacity (MT, MIS, SPMV, SYRK, and SYR2) show
significant performance loss with caching of remote TLB
entries. In contrast, MGvm, by design, ensures that there is
no duplication of entries, since an L2 TLB entry is mapped
only onto one L2 TLB slice.
Applicability to unified virtual memory (UVM): MGvm’s
two key optimizations – dynamically selecting HSL to
ensure local TLB lookups for local data accesses and
page table placement to ensure local accesses to PTEs,
are equally applicable under UVM, albeit with a slightly
different implementation. The static analysis that determines
the data placement, CTA scheduling (as in LASP [31]),
and the dHSL in MGvm, remain unchanged under UVM.
At a kernel launch, the driver sets up dHSL as before.
Unlike typical pinned memory allocation in GPU (e.g., using
cudaMalloc), the data pages may be allocated during a
kernel’s execution on encountering page faults. Thus, UVM’s
page fault handler should be extended for MGvm to allocate
the pages containing PTEs following MGvm’s principle,
i.e., on the chiplets whose L2 TLB slice is responsible for
translating the VA region mapped by those PTEs. In summary,
MGvm’s principles are equally applicable under UVM, but
its implementation should extend to the page fault handler.

VIII. RELATED WORK

The background section describes the most closely related
prior works. We discuss several more here.

HMG [51] tackles the problem of coherence across a
multi-(MCM)GPU system. Vijaraghavan et al. [64] discuss
an AMD APU which uses MCM for scaling. Loh et al. [37]
discuss the benefits and drawbacks of various approaches
to building chiplet-based processors. Simba is a prototype
MCM deep learning accelerator [53]. These prior works did
not study the impact of the MCM design on virtual memory.

Researchers have proposed various techniques to reduce
address translation overheads in GPUs, such as the coa-
lescing of TLB requests [38], warp scheduling [47], direct
mapping [27], and virtual caches [66]. Vesely et al. studied
the effect of memory access divergence on a GPU’s virtual
memory [62]. Mosaic explored the overheads of demand
paging and issues with huge pages [9]. Ducati used last-
level caches to store address translations [28]. Shin et al.
studied the re-ordering [54] and coalescing [55] of page walks.
Tang et al. leverage the compressibility of TLB entries to
improve hit rates [61]. Valkyrie proposed probing and pre-
fetching into L1 TLBs [14]. Kotra et al.leverage under-utilized
resources in CUs to cache address translations [34] . Li et. al
study the TLB hierarchy of a multi-GPU system and suggest
methods for effectively utilizing multiple levels of TLBs
under multi-tenancy [35]. MASK used L2 TLB tokens and
selective bypassing of the L2 TLB to avoid thrashing under
multi-tenancy [10]. DWS studied the impact of multi-tenancy
on page walkers [10]. ETC studied pre-fetching and eviction
policies under unified memory over-subscription [36]. Kim et

al. proposed batching page faults for reducing unified memory
overheads [33]. ActivePointers is a software mechanism for
mapping files onto GPU address space [52]. None studied
the virtual memory in MCM GPUs, though.

CARVE caches remote data for multi-GPU systems in the
local DRAM for lowering memory access latency [67]. Milic
et al. modify caching and interconnect policies according to
application phase behaviour [40]. Griffin balances memory
distribution by migrating pages across GPUs [13]. These
works explore multi-GPUs, not MCMs.

Mitosis replicates page tables across all sockets in a multi-
socket CPU system [1], while vMitosis extends it to work
under virtualization and enables PTE migration [45]. In
contrast, we avoid the complexity of replicating page tables
but still achieve mostly local page walks. MIXTLB explored
mechanisms to support multiple page sizes on a single
TLB [21]. CoLT exploited virtual address space contiguity
to map multiple address translations to a single TLB
entry [46]. SpecTLB uses address translation speculation to
hide page walk latency [12]. Reactive NUCA and Cooperative
Caching [19], [26] carefully place and spill cache lines in
NUCA caches to improve cache hit rates and performance.
Bhattacharjee et al. suggested exploiting commonality in TLB
miss patterns across CPU cores to pre-fetch TLB entries [18],
while Mazumdar et al. proposed predicting dead entries in
TLBs to reduce TLB misses [39]. Previous works have also
explored using segments to avoid page table lookups or
use very large page sizes [15], [16], [17], [24], [30], [50].
However, none of these works explore the effect of MCM’s
non-uniformity on the virtual memory system.

IX. CONCLUSION

We quantitatively analyzed the impact of MCM designs
on a GPU’s virtual memory system. We demonstrated that
remote TLB lookups and remote memory accesses to PTEs
during page walks can limit performance on MCM GPUs.
We proposed MGvm to reduce such remote L2 TLB lookups
and remote memory accesses to PTEs. We then extended it
with dynamic switching for applications to switch back to
fine-grained interleaving if needed. Our solution speeds up
15 applications by 52%, on average, over the private TLB
baseline and by 30% over the shared TLB baseline.
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APPENDIX

A. Abstract

Our artifact provides a Docker image with simulator code,
required compilation tools (Go language), and scripts to
compile, run and parse the metrics. We have included the
code and scripts for reproducing figures 7,8,9, and 10 from
the paper, corresponding to throughput, the ratio of remote
to local TLB access, the ratio of remote to local page walk
accesses, and page walk latencies, respectively.

B. Artifact check-list (meta-information)
• Compilation: golang
• Run-time environment: Tested on Linux
• Hardware: Tested on x86
• Metrics: Throughput, Page walk latency, Ratio of local to

remote accesses.
• How much disk space required (approximately)?: 20 GB
• How much time is needed to prepare workflow (approxi-

mately)?: One (1) hour
• How much time is needed to complete experiments

(approximately)?: Forty Eight (48) hours
• Publicly available?: yes

C. Description

We evaluated different virtual memory configurations for
MCM GPUs using a modified version of MGPUSim. We
have 15 benchmarks in our evaluation. We have containerized
our entire setup to allow easy evaluation.
Configurations

• Private TLB.
• Shared TLB.
• MGvm (our proposal).
• MGvm-nobalance (variant of our proposal).

Evaluation
Our primary results are in figures 7, 8, 9, and 10.
• Figure 7 shows the throughput of different configura-

tions, normalized to private.
• Figure 8 shows the ratio of remote vs local TLB hits.
• Figure 9 shows the ratio of remote vs local page walk

accesses.
• Figure 10 shows the average page walk latency, normal-

ized to private.
1) How to access: Please download the Dockerfile and

the code archive (tar-gz) from the following URL.
https://doi.org/10.5281/zenodo.6937470.
2) Hardware dependencies:
• A single run (configuration) requires around 300-400

GB of RAM. Running all the configurations in parallel
requires 1.2 TB to 1.5 TB.

• Each run requires 15 cores (for 15 workloads).
We ran our simulations on x86-64 machines (both Intel

and AMD). We expect our simulations to behave identically
if compiled and run on other architectures.

3) Software dependencies: We have containerized our
setup and provided a Docker image for ease of evaluation.
Therefore, we only have a software dependency on Docker.
To install Docker on an Ubuntu machine, use the following
command.
sudo apt install docker.io

D. Installation

Please download the Docker file and code archive (tag-gz).
Ensure the Dockerfile and code archive (tar-gz) are in the
same directory. Build the Docker image from the Docker file
with the following command. Note: please run the command
from the same directory as the Dockerfile and code archive.

docker build -f mgvm.Dockerfile . -t mgvm

The above command also copies the code archive inside
Docker and extracts it to mgvm directory.

Run the Docker container in interactive mode using the
following command. This command opens up a bash shell
in the Docker image.

docker run -it mgvm

Change directory to the mgvm directory. Then again to
scripts sub-directory.

cd mgvm
cd scripts

The scripts directory contains several scripts for
compiling and running the workloads.

Run the following scripts in order to setup the workloads.

./0_clean.sh

./1_compile_benchmarks.py

./2_copy_benchmarks.sh

./3_gen_runners.py

The above commands create four new sub-directories
inside scripts folder, namely private, shared, mgvm,
mgvm-nobalance. These correspond to the various config-
urations under evaluation. Each of these sub-directories will
contain a samples folder, which contains the benchmark
binaries, and scripts for running each benchmark. For e.g., a
file called convolution2d.sh is responsible for running
the benchmark convolution2D with the right parameters.

We have provided more scripts to run these workloads in
batches. Please see the next section.

E. Experiment workflow

To run the experiments, we provide the following scripts :
• 4 run benchmarks private.sh
• 4 run benchmarks shared.sh
• 4 run benchmarks mgvm-nobalance.sh
• 4 run benchmarks mgvm.sh

https://doi.org/10.5281/zenodo.6937470


For different configurations, please run the appropriate
scripts. The outputs would be stored in the corresponding
sub-directories in the scripts directory. If the machine
has sufficient RAM and cores, one may run more than one
configuration at a time. Each configuration requires around
300-400 GB RAM at peak, and 15 cores to run.

For e.g., to run the private configuration, please run,

./4_run_benchmarks_private.sh

The scripts launch the jobs as background processes. Most
jobs finish within 12 hours. A few (SPMV in particular) may
take up to 24 hours. We track the progress of our jobs using
ps or top.

After all the configurations have finished running, please
use the parsing scripts to generate a csv with the results. The
output will be stored in the file results.csv. Please use
the same order of arguments to the parsing script.

./5_collect_stats.py private shared \
mgvm-nobalance mgvm

Finally, running the normalization script over
results.csv as follows, will produce the normalized
numbers as in the paper. The output will be stored in
normalized.csv.
./6_normalize_results.py results.csv \

normalized.csv

F. Evaluation and expected results

The contents of normalized.csv match the corre-
sponding figures in the paper.

G. Notes

Please ensure that the scripts have executable permisssion
set. If not, please use chmod to set the executable bit.

chmod u+x root <scriptname.ext>

Please use TMUX when running Docker using interactive
mode. If the Docker container dies while in interactive mode,
then the entire runs launched from the Docker image will
be lost. Alternatively, please start the Docker container in
detached mode.
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