
iGUARD: In-GPU Advanced Race Detection
Aditya K Kamath

Indian Institute of Science
Bengaluru, India

adityakamath@iisc.ac.in

Arkaprava Basu
Indian Institute of Science

Bengaluru, India
arkapravab@iisc.ac.in

Abstract
Newer use cases of GPU (Graphics Processing Unit) com-
puting, e.g., graph analytics, look less like traditional bulk-
synchronous GPU programs. To cater to the needs of emerg-
ing applications with semantically richer and finer grain shar-
ing patterns, GPU vendors have been introducing advanced
programming features, e.g., scoped synchronization and inde-
pendent thread scheduling. While these features can speed up
many applications and enable newer use cases, they can also
introduce subtle synchronization errors if used incorrectly.

We present iGUARD, a runtime software tool to detect races
in GPU programs due to incorrect use of such advanced fea-
tures. A key need for a race detector to be practical is to accu-
rately detect races at reasonable overheads. We thus perform
the race detection on the GPU itself without relying on the
CPU. The GPU’s parallelism helps speed up race detection by
15× over a closely related prior work. Importantly, iGUARD
detects newer types of races that were hitherto not possible
for any known tool. It detected previously unknown subtle
bugs in popular GPU programs, including three in NVIDIA
supported commercial libraries. In total, iGUARD detected 57
races in 21 GPU programs, without false positives.

CCS Concepts: • Software and its engineering → Parallel
programming languages; Correctness.

Keywords: Data races; GPU program correctness; Debugging

1 Introduction
A large and growing swath of software today relies on GPUs
for their computation. Thus, the correctness of GPU programs
(kernels) is critical to the reliability of a significant portion
of the software ecosystem. Decades of research in multi-
threaded CPU software have shown that subtle data races due
to improper synchronization can introduce unpredictable fail-
ures [5, 8, 14–16, 18, 20, 31, 32, 43, 44, 56]. GPU programs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOSP ’21, October 26–29, 2021, Virtual Event, Germany
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8709-5/21/10. . . $15.00
https://doi.org/10.1145/3477132.3483545

with hundreds of thousands of threads and advanced synchro-
nization mechanisms are even more vulnerable to obscure
races [17, 52]. In this work, we build a runtime tool to detect
races in GPU programs due to improper use of advanced
synchronization and programming features of modern GPUs.

Traditionally, GPU’s massive data-level parallelism was
leveraged by bulk-synchronous programs where interactions
among threads were infrequent and happened at coarse grain.
GPU programming languages require programmers to di-
vide a GPU kernel’s hundreds of thousands of threads into
equal-sized threadblocks of up to 1024 threads to keep the
parallelism tractable. Threads within a threadblock share a
scratchpad memory and could synchronize via threadblock
barrier (syncthreads in CUDA). This, along with the implicit
barriers across all threads at the end of a kernel’s execution,
fulfilled most synchronization needs of bulk-synchronous
GPU programs. However, they fall short for programs with
semantically richer and fine-grain sharing patterns.
Advanced GPU features: To better support emerging use
cases such as graph processing, GPU vendors have progres-
sively introduced advanced synchronization operations and
more expressive execution paradigms. To balance the need
for advanced synchronization operations with the require-
ment to scale-up performance on ever-larger modern GPUs,
vendors have introduced scoped atomic and fence operations
(e.g., threadfence in CUDA). The scope qualifier guarantees
the effect of an atomic or fence to be visible only within a
specified subset of threads (i.e., the scope of the operation),
eschewing global visibility. This makes operations with nar-
rower scope faster. For example, on a recent NVIDIA Titan RTX
GPU, the block-scope threadfence that guarantees its effects
to be visible only within a threadblock is 21× faster than the
device scope fence that ensures global visibility across all
threads on a GPU. However, the use of inadequate scope in
synchronization, which does not include both the producer
and consumer of a data item, leads to a race.

GPUs schedule threads in a threadblock in groups of 32
to 64 threads called a warp. Traditionally, threads in a warp
would execute in lockstep. However, the lockstep execution
could deadlock if threads within a warp use distinct locks
– a situation not possible in multi-threaded CPU programs.
To broaden the set of applications that can leverage GPUs,
NVIDIA introduced Independent Thread Scheduling (ITS) that
allowed threads in a warp to make independent progress

https://doi.org/10.1145/3477132.3483545

SOSP ’21, October 26–29, 2021, Virtual Event, Germany Aditya K Kamath and Arkaprava Basu

(Volta architecture, circa 2017, onward). However, applica-
tions that implicitly relied on lockstep execution would now
require adding warp-level barriers (syncwarp) for correctness.

Finally, NVIDIA introduced the software abstraction of Co-
operative Groups (CG) that enables programmers to synchro-
nize across an (almost) arbitrary set of threads (unlike scopes,
that are fixed in the hardware). While semantically rich, im-
proper use of CG leads to a race. We refer to scoped synchro-
nization, ITS, and CG together as the advanced synchroniza-
tion and programming features of modern GPUs.
Limitations of current GPU race detectors: We are not the
first to notice that GPU programs have races. Several works
focused on detecting races that occur among threads of a
single threadblock via the scratchpad memory (in KBs) [9,
54, 55]. NVIDIA’s Racecheck is one such commercial tool [37].
However, they ignore the harder class of races that can happen
among any pair of hundreds of thousands of GPU threads
through GPU’s global memory (tens of GBs in size).

Even proposals that focus on global memory races fall
short in the presence of races induced by the incorrect use of
advanced GPU features. For example, Barracuda and CURD
do not support scoped atomic operations [17, 39]. Barracuda
also does not detect races due to missing syncwarp under ITS.
Notably, Barracuda incurs performance overheads of over
50×, on average. Its extension, CURD, reduces overheads
for applications that use only traditional threadblock barrier
(syncthreads), but falls back to Barracuda for everything else
(e.g., for fences and atomics). We noticed that a key reason
behind the high overheads is their reliance on the CPU for race
detection and the consequent serialization. Furthermore, these
tools require recompilation of the code, which is a significant
detriment given the wide use of closed-source GPU libraries.

To limit performance overheads, researchers have proposed
hardware-based GPU race detectors, e.g., HaccRG [25] and
our previous work ScoRD [28]. However, these need redesign
of GPU architectures and are inapplicable to current GPUs.
Further, HaccRG is oblivious to scopes/ITS. ScoRD detects
races due to improper scopes but does not support ITS [28].
None detect races due to CG, since one needs to fully support
atomics, fences, and ITS for it. § 4 details more shortcomings.
Our contributions: As a growing class of applications lever-
age GPUs, a tool to detect races due to improper use of ad-
vanced GPU features is desirable. To be useful in practice, it
should limit performance overheads incurred during race de-
tection. Toward this, we propose iGUARD – in-GPU Advanced
Race Detector. It extends ScoRD’s logic for detecting scoped
races to also detect races due to ITS and CG. Importantly, it
alleviates the need for modifying the GPU hardware.

iGUARD is a runtime tool that executes on NVIDIA GPUs.
It uses NVIDIA’s NVBit binary instrumentation tool [47] to
instrument GPU memory and synchronization operations for
race detection. iGUARD performs the entire race detection
on the GPU, without CPU involvement. The race detection
happens along with application execution and leverages GPU

parallelism, unlike prior software-based detectors. This re-
duces iGUARD’s overheads and helps it scale to larger GPUs.

iGUARD instruments synchronization operations to track
the active synchronization status (including scopes) of each
warp. Under ITS, if threads within a warp diverge, the de-
tector automatically tracks the same for each thread. This
information is later used for race detection to infer if adequate
synchronization separates two conflicting accesses to a mem-
ory location. Since a GPU can run hundreds of thousands
of threads concurrently, it is impractical to track pairwise
interactions across so many threads to detect races. There-
fore, iGUARD keeps metadata for each unit of global memory
(e.g., 4 bytes) to identify of the last read or write accessor
to that location, along with the synchronization status of the
accessor/writer at the time of its accessing the given location.

iGUARD instruments every load, store, and atomic opera-
tion and looks up the corresponding metadata that contains a
summary of previous accesses to an address and synchroniza-
tion. It compares the information in the metadata with that of
the load (store/atomic) and its active synchronization status
for inferring happens-before ordering between the accesses
to a given address. iGUARD reports a race when no happens-
before order could be inferred. This is akin to ScoRD’s detec-
tion logic for scoped races. While ScoRD implements these in
new hardware, iGUARD relies on binary instrumentation.

While CUDA does not intrinsically support locks/unlocks,
atomics and threadfences can be combined to create them [1,
41, 42]. Further, under ITS, applications can use either coarse-
grain locking (e.g., one lock per warp) or fine-grain per-thread
locks. iGUARD dynamically infers locks and whether per-
thread locking is employed by tracking thread divergences. It
then uses the well-known lockset algorithm [43, 56] to detect
the possibility of a race due to improper locking.

A unique challenge for an in-GPU software-based race
detector is the serialization of metadata accesses. In GPU
programs, thousands of threads can concurrently access a
shared variable. Accesses to the corresponding metadata need
to be serialized for correct race detection. However, this se-
rialization surrenders the benefits of in-GPU race detection
for kernels with many shared variables. Toward this, we in-
troduce two optimizations. 1 We opportunistically coalesce
metadata accesses by observing that loads and atomics to
a shared variable by active threads of the same warp can-
not race. 2 We employ dynamically adjusted backoff based
on the number of concurrent threads to limit contention for
the metadata. These play key roles in reducing performance
overheads for many kernels.
Impact: iGUARD detected several previously unreported races
in popular GPU libraries and applications. It caught 12 races
across a popular graph analytics library, Gunrock [50], and
a GPU-based irregular application suite, LonestarGPU [11].
Developers of these software already acknowledged eight
of them. It caught races in NVIDIA-supported commercial

iGUARD: In-GPU Advanced Race Detection SOSP ’21, October 26–29, 2021, Virtual Event, Germany

libraries, e.g., CG, CUB, cuML. The developers acknowl-
edged all of these. In total, iGUARD correctly reported 57
races across 21 applications without any false positives. It not
only catches the most comprehensive list of global memory
races but also keeps performance overheads limited to 5.1×,
on average. Thanks to iGUARD’s ability to leverage the GPU’s
parallelism in race detection, overheads reduced by 15×, on
average, over a prior work called Barracuda [17].

2 Background
GPUs organize their hardware resources into a hierarchy to
scale to hundreds of thousands of concurrent threads. The
basic execution block of a GPU is a Streaming Multipro-
cessor (SM). Modern GPUs contain up to around 108 SMs.
These SMs contain multiple Single-Instruction-Multiple-Data
(SIMD) units, which in turn contain multiple lanes of exe-
cution (16 - 32). All lanes of a SIMD unit execute the same
instruction on different data items in parallel. The SIMD units
of an SM share an L1 data cache and a scratchpad (shared
memory). While the hardware manages the cache; the pro-
grammer decides the contents of a scratchpad. L1 caches
and scratchpads are private to each SM, while all the SMs
share a larger L2 cache. The GPU’s global memory is acces-
sible to all GPU threads and primarily includes the GPU’s
onboard HBM or GDDR memory. Modern GPUs can have
up to 80 GB of global memory. The hardware caches contents
of global memory in the L1 and L2 caches.

GPU programming languages, e.g., CUDA or OpenCL, re-
quire programmers to arrange threads in a hierarchy of execu-
tion groups that mimics the hardware. The smallest execution
entity is a thread, which runs on a single SIMD lane. In CUDA,
typically 32 threads make up a warp, the smallest hardware-
scheduled unit of work. A threadblock is a collection of warps
guaranteed to reside within the same SM, while the grid is the
largest unit of execution, comprising of multiple threadblocks
that together execute a common GPU kernel (CUDA function).

2.1 Advanced GPU features
Traditionally, GPU programs relied on bulk-synchronous par-
allelism. This model is ably supported by 1 threadblock bar-
riers (syncthreads in CUDA) that synchronize threads within
a threadblock, 2 lockstep execution of threads in a warp
resulting in implicit barriers across a warp after every in-
struction, and 3 implicit barrier across all threads when a
kernel finishes execution. However, they fall short for many
emerging applications that require semantically richer and
finer grain synchronization. Vendors such as NVIDIA, thus, en-
hanced GPU’s synchronization and execution model, enabling
a broader set of multi-threaded CPU programs to leverage
GPU. We describe three such advanced features.
Scoped synchronization: A globally visible synchronization
across thousands of GPU threads is slow. It is also often
unnecessary in a GPU’s hierarchical programming paradigm.

Modern GPUs, thus, provide means to synchronize across
only the threads of a particular level in the execution hierarchy.
This is referred to as the scope of an operation. Currently,
CUDA provides three scopes – block, device, and system. An
operation’s effect is guaranteed only for the set of threads in
its scope. For example, an atomic operation with block scope
guarantees only atomicity with other atomic operations from
within the threadblock of the calling thread. For an operation
to impact all the threads in a GPU, the device scope is needed
(default). The system scope is useful if an operation should
be visible across multiple GPUs and the CPU. OpenCL also
provides similar scopes. In this work, we focus on a single
GPU and thus, ignore the system scope.
Independent thread scheduling (ITS): Before NVIDIA Volta
architecture (circa 2017), threads in a warp always executed
in a lockstep. This created an effect of implicit warp-level
barriers after every instruction. However, it caused deadlocks
in some GPU programs [19]. Consider threads in two warps
that compete for the same set of locks. A subset of threads of
the first warp may acquire their locks, while the rest wait on
locks acquired by threads from the second warp. Similarly, a
subset of threads of the second warp acquire their locks, but
the rest wait for the locks to be released by the first warp. Due
to lockstep execution, none of the warps can progress.

Since Volta architecture, a hardware feature called Inde-
pendent Thread Scheduling (ITS) [22] avoided such dead-
locks by allowing threads in a warp to execute divergent
paths concurrently, i.e., make independent progress. Conse-
quently, implicit warp-level barriers are no more guaranteed.
Instead, programmers should explicitly add warp-level barri-
ers (syncwarp) if lockstep execution is needed for correctness.
Cooperative groups: NVIDIA introduced Cooperative Groups
(CG) [24] to enable more flexible synchronization. For exam-
ple, CG allows programmers to synchronize a chosen subset
of warps in a threadblock instead of the entire threadblock. It
allows multiple threadblocks of an entire grid to synchronize.

CG is a software abstraction that uses atomics, threadfences,
and barriers. For example, to synchronize multiple thread-
blocks, it uses a counter updated by device-scoped atomics
with fences to enforce ordering and synchronizes the threads
within the participating threadblocks using syncthreads.

3 Races due to advanced GPU features
This section demonstrates how advanced features of modern
GPUs can introduce subtle races if used improperly with the
help of examples.

3.1 Races due to scopes
In CPU programs, data races arise when two or more threads
access a shared memory location (at least one of the accesses
is a write) without intervening synchronization. In GPUs, the
mere presence of synchronization cannot prevent a race if it is

SOSP ’21, October 26–29, 2021, Virtual Event, Germany Aditya K Kamath and Arkaprava Basu

1 __device__ int getWork(...)
2 {
3 if(tid != 0) return -1; // Only leader thread
4 // Get work from own local partition
5 currHead[blockId] =
6 atomicAdd_block(&nextHead[blockId],
7 NTHREADS); // block scope
8 // Work left in own partition?
9 if(currHead[blockId] < partitionEnd[blockId])

10 return currHead[blockId];
11 // Otherwise steal work
12 int victimBlock = getPartitionToStealFrom();
13 if(victimBlock == -1) return -1; //No work
14 currHead[blockId] =
15 atomicAdd(&nextHead[victimBlock],
16 NTHREADS);
17 if(currHead[blockId] <
18 partitionEnd[victimBlock])
19 return currHead[blockId];
20 return -1; //No work left
21 }

Figure 1. Insufficient scope in the atomic operation causing a
race in the example CUDA snippet (adopted from ScoRD [28]).

of insufficient scope: it fails to encompass both the producer
and consumer of data [26, 28].

In current GPUs, both atomic and fence operations can
be qualified with a scope. Further, these two operations can
be combined to create (scoped) lock/unlock operations [1,
41, 42]. Insufficient scopes in any of these operations lead to
a scoped race.1 For brevity, we only show an example of a
scoped race involving atomics.

Let us consider the graph coloring problem [28]. Each
thread assigns a color one vertex at a time. The number of
vertices typically exceeds the number of GPU threads. The
vertices are partitioned among the threadblocks, which then
perform multiple iterations to color all vertices in their respec-
tive partitions. The amount of work needed to color depends
on the number of edges incident on a vertex. Therefore, thread-
blocks could take different amounts of time to color vertices
in their partitions. To improve performance, threadblocks that
finish early steal work from others’ partitions.

The function getWork() in Figure 1 shows how the leader
thread of each threadblock obtains the next set of vertices
to be colored after each iteration. The partitionEnd[] holds
the tail index of each block’s partition in the global array of
vertices. Arrays currHead[] and nextHead[] hold the start-
ing indices of vertices to be colored in the current and next
iteration, respectively. In lines 5-7, the leader thread updates
currHead[] with the present value of nextHead[], while atom-
ically updating nextHead[] using a block-scope atomic. The
leader then checks if the threadblock’s original partition is
empty (lines 9-10). If so, the leader steals from other parti-
tions. It chooses the threadblock (victimBlock) to steal from
(line 12). The leader then steals by incrementing the victim’s
nextHead[] using a device-scope atomic (lines 14-16).

1We discuss scoped races to make this paper self-contained. Prior works al-
ready described them, and our hardware-based tool ScoRD detects them [28].

1 __global__ void reductionKernel(...)
2 {
3 ...
4 if (blockSize >= 4 && tid < 2)
5 sdata[tid] = mySum = mySum + sdata[tid + 2];
6 //__syncwarp(); <-- Needed to avoid race
7 if (blockSize >= 2 && tid == 0)
8 sdata[tid] = mySum = mySum + sdata[tid + 1];
9 ...

10 }
Figure 2. Missing warp barrier causing ITS race.

1 __global__ void reduce(float *in, float *out, int N)
2 {
3 cg::thread_block block = cg::this_thread_block();
4 cg::grid_group grid = cg::this_grid();
5 reduceBlock(in, out, N, block);
6 cg::sync(block); // Racey, should be grid
7 if (grid.thread_rank() == 0)
8 for (int blk = 1; blk < gridDim.x; blk++)
9 out[0] += out[blk];

10 }

Figure 3. Insufficient granularity of sync causing CG race.

One may think that the block-scope atomic used to update
nextHead[] in lines 5-7 is sufficient. It is, in the common case,
when no stealing occurs since the leader updates a variable
read only by threads within its threadblock. However, if a
threadblock tries to steal from victimBlock’s partition when
the leader of victimBlock was also assigning itself the next
vertex set from its own partition, a subtle scoped race arises.
The thread stealing work may not see the update as it falls
outside the block scope of the victimBlock.
Barriers and scoped races: Note that threadblock barriers
include the effect of a block-scope fence. A barrier addition-
ally waits for all threads in the block to reach the barrier
and thus, could be slower. However, functionally, a race pre-
ventable by a block-scope fence is also prevented by a barrier.

3.2 Races due to ITS
Any program that implicitly relied on lockstep execution but
failed to use syncwarp where needed will have races on mod-
ern GPUs. Figure 2 shows a code snippet from a reduction
kernel, where threads within a warp sum four elements of an
array. In line 5, the first two threads add the last two elements
to their current sum and store it. In line 8, the first thread
of the warp adds the second element to its current sum and
stores it. Under ITS, a syncwarp is needed between these (line
6). Otherwise, the first thread may proceed ahead and execute
line 8 while the second thread executes line 5, creating a race.

3.3 Races due to Cooperative Groups (CG)
Races happen if a programmer fails to choose the right group
of threads in CG that covers the producer and consumer of
a data item. Figure 3 shows a simplified code snippet for
performing reduction on an array using CG. The input array
in is divided among threadblocks, who reduce their subarray
and store the result in the array out. The reduction happens
in the function reduceBlock (line 5). It takes the thread group
performing the subarray reduction as a parameter. Finally, the

iGUARD: In-GPU Advanced Race Detection SOSP ’21, October 26–29, 2021, Virtual Event, Germany

Table 1. Comparison of features and requirements of GPU
race detectors. *CURD’s perf. is Med only for syncthreads.

Features /
require-
ments Ba

rr
ac

ud
a

[1
7]

C
U

R
D

[3
9]

Si
m

ul
ee

[5
2]

H
ac

cR
G

[2
5]

Sc
oR

D
[2

8]

iG
UA

R
D

Sc. fence Yes Yes No No Yes Yes
Sc. atomic No No No No Yes Yes

ITS No Lim No No No Yes
CG No No No No No Yes
Perf.

overhead
High Med* Med Low Low Med

Needs
recompile

Yes Yes Yes No No No

Extra H/W No No No Yes Yes No

first thread in the grid reduces the array out to a single value.
But before that, all threads in the grid, across all threadblocks,
must finish reducing their respective sub-arrays. Therefore,
all blocks of the grid should be part of the cooperative group
to synchronize. However, in line 6 of Figure 3, only individual
threadblocks are synchronized. This leads to a race.

4 Prior race detectors and iGUARD’s goals
We are not the first to propose a race detector for GPUs. Thus,
we set our goals in the context of existing works.

There exist commercial tools and prior works to efficiently
detect races that occur amongst the threads of a threadblock
via the scratchpad in an SM [9, 37, 54, 55]. However, these
ignore the races that can happen among any pair of hundreds
of thousands of GPU threads through the global memory (tens
of GBs vs. KBs of scratchpad). We focus on detectors that
can find the challenging global memory races.

Table 1 summarizes a qualitative comparison between ex-
isting proposals and ours. Closest to our work is Barracuda, a
software tool to detect GPU races, including scoped races due
to threadfences [17]. It, however, does not detect races due to
wrongly scoped atomics. It cannot catch missing warp-level
synchronization (syncwarp) under ITS, even if it detects races
due to if-else divergence. Barracuda instruments GPU kernels
to collect metadata for race detection but does not perform the
detection on the GPU. Instead, it serializes and ships the meta-
data to the CPU for race detection. This simplifies the design;
detecting GPU races effectively reduces to that on the CPU.
However, it incurs large performance overheads (10-1000×)
as the race detection fails to leverage GPU’s parallelism.

CURD [39] extends Barracuda by speeding up race detec-
tion for traditional kernels that use only threadblock barri-
ers through compiler-directed source-code instrumentation.
It falls back on Barracuda in the presence of atomics or
fences. While CURD reduces overheads for traditional bulk-
synchronous programs to 3×, that for the rest remains. It
could, in theory, detect races due to ITS but does not support

warp-level barriers. Simulee [52] goes beyond race detection
to also detect bugs caused when threads in a threadblock do
not reach a barrier. However, it focuses only on barriers and
is incapable of detecting races caused by atomics or fences.
Barracuda requires recompilation for its shared runtime,

while CURD and Simulee are compiler-directed techniques.
Consequently, their applicability is limited in the presence of
closed-source low-level libraries (e.g., cuDNN, cuBLAS).

HaccRG [25] and ScoRD [28] can check races at low over-
heads (< 1×) but require significant new hardware that does
not exist in today’s GPUs. HaccRG ignores scopes and ITS,
but ScoRD detects all scoped races. In fact, iGUARD borrows
its race detection logic to detect improper use of scopes. How-
ever, ScoRD does not detect missing syncwarp under ITS. Note
that none of the detectors detect races due to improper use
of CG on modern GPUs since none fully support all scoped
operations and detect missing syncwarp under ITS.
Goals: We aim to build a GPU race detector with the follow-
ing goals. 1 Comprehensively detect global memory races,
including those due to scopes, ITS, and CG without new hard-
ware. 2 Limit performance overheads of software-based race
detection (e.g., <10×, instead of 100×). 3 Avoid reserving
GPU’s capacity-constrained memory for the race detection
in a way that limits its usability to small kernels only. 4
Avoid requiring recompilation or re-linking of applications.
5 The detector should work out-of-the-box for a wide range

of kernels without developer intervention.

5 Design overview of iGUARD
We first present a high-level overview of iGUARD and how
its design philosophy caters to our goals. We will detail its
implementation in the next section.
In-GPU race detection: The entire process of race detection
in iGUARD happens on the GPU without requiring any hard-
ware modifications. As thousands of GPU threads execute
in parallel, the corresponding race detection also happens in
parallel on the GPU. This is key to iGUARD’s performance
since there is no serialization due to the CPU.

iGUARD is implemented on top of NVIDIA’s NVBit tool [46,
47]. NVBit is a dynamic binary instrumentation tool that
enables inspection and modification of CUDA kernel assem-
bly code (SASS) on the GPU without recompilation. iGUARD
performs two primary tasks via the instrumentation. 1 It
collects and updates metadata for active synchronization oper-
ations (synchronization metadata) and accesses to each global
memory location (memory metadata). The metadata is later
used for race detection. It instruments synchronization opera-
tions – fences and barriers, and keeps track of their issuing
thread, warp, and the scope qualifiers. All loads, stores, and
atomics are instrumented to update the memory metadata. 2
It implements the race detection using the information of the
current instruction and the metadata for the address of the
access. Race detection happens on loads, stores, and atomics.

SOSP ’21, October 26–29, 2021, Virtual Event, Germany Aditya K Kamath and Arkaprava Basu

An in-GPU race detector needs to consider thousands of
threads. Tracking pairwise interactions for that many threads
(e.g., via vector clocks) is infeasible, unlike for CPUs. There-
fore, the memory metadata tracks read and write accessors,
along with relevant synchronization information, including
scopes, for each unit of global memory (here, 4 bytes by de-
fault). Similar to ScoRD, we then use classic happens-before
relations [29] to check if there have been conflicting accesses
to a memory location (i.e., at least one of them is a write) that
are not separated by adequate synchronization.

Unfortunately, keeping track of all accessors to a memory
location is unrealistic since any of the thousands of threads
can be an accessor. Instead, we keep the identity (thread and
warp ID) of the last writer and last accessor (reader/writer).
This may lead to false negatives if a writer correctly synchro-
nized with the last reader of the same location but not with
previous readers. However, based on our experiments, we
find this unlikely in practice. If a writer synchronized with the
latest reader, it is likely to have synchronized with other read-
ers, directly or transitively. Further, iGUARD tracks if threads
accessing a location fall within a single threadblock or span
across threadblocks to determine inappropriate use of scopes.
In § 6.7, we discuss the trade-offs between keeping detailed
accessor information and the practicality of the detector.

To catch races due to ITS, iGUARD tracks thread IDs, be-
side warp IDs in the metadata and tracks warp-level barriers
(syncwarp). iGUARD reports conflicting accesses to a mem-
ory location by threads within the same warp if the accesses
are not separated by a syncwarp or syncthreads. Note that
syncthreads synchronizes threads within a warp too.
Inferring locking protocols: While there is no instruction
or intrinsic in CUDA for lock/unlock operations, the CUDA
guidebook suggests that atomics and threadfences can be
paired to create one [42]. iGUARD infers these instruction
pairs as lock/unlock without needing programmer annotation,
similar to prior works [17, 25, 28].

However, iGUARD faces a new challenge since it should
support ITS. Under ITS, some kernels employ per-thread lock
within a warp (e.g., matrix multiplication), while others take
one lock per warp where a leader thread performs lock/unlock
on behalf of the warp. To fulfill our goal of not requiring
developer intervention, iGUARD infers the locking protocol
used by an application at runtime. It assumes a warp-level lock
by default. However, it monitors if two or more threads from
the same warp attempt to acquire locks simultaneously. If so,
iGUARD switches to race detection for per-thread locking.

iGUARD detects inappropriate lock/unlock (acquire/release)
using the lockset technique [38], instead of happens-before
as in ScoRD. Lockset has the advantage that it can detect races
that do not manifest during an execution. However, the lock-
set’s useability is limited to lock/unlock only. We augment
the synchronization metadata with lock tables used for in-
ferring locks and locking protocol. The memory metadata is
augmented with a summary of locks held while accessing a

location. The metadata is later used to find if a given location
is accessed without holding a common lock(s).
Metadata management: iGUARD requires 16 bytes of mem-
ory metadata per 4 bytes of data (4× memory overhead),
and a total ∼2MB of synchronization metadata. If the entire
metadata needs to reside on GPU’s limited device memory,
it will inevitably constrain the kernels that the iGUARD can
run. It, thus, allocates the metadata using CUDA’s Unified
Virtual Memory (UVM) feature [23]. With UVM, memory is
not pinned (reserved) on the GPU. It is moved between the
CPU and GPU on demand by the driver. Since only a small
fraction of metadata is updated and used for race detection at
a given time, UVM helps keep the “right” amount of metadata
in the device memory. In short, iGUARD avoids pinning of
GPU’s device memory for metadata by leveraging UVM.
Optimizing metadata access: A unique challenge for in-
GPU software race detection is the serialization of metadata
accesses. Thousands of GPU threads can concurrently access
a shared variable. Accesses to the corresponding metadata
need to be serialized for race detection correctness. However,
serialization can hamstring GPU software. iGUARD, thus, op-
portunistically coalesces metadata accesses due to race detec-
tion to reduce serialization. Further, it employs dynamically
adjusted exponential backoff. It adjusts the backoff length
based on the number of concurrent threads at runtime to limit
metadata contention while also avoiding unnecessary wait.
These are key in ensuring low performance overheads for
kernels with frequent accesses to shared variables.
Race reporting: iGUARD reports identities of instructions,
the address of the data participating in a race, and the cause.
iGUARD allocates a 1MB buffer to accumulate information
of races without stopping execution on detecting a race. This
buffer is sent to the CPU and reported to the programmer
when full or when the program ends. It may sometimes hap-
pen that a kernel livelocks due to a race. Thus, iGUARD pro-
vides a parameterized timeout. On a timeout, iGUARD sends
the details of detected races to the CPU before terminating.

6 Implementation of iGUARD

A familiarity with iGUARD’s metadata layout is a pre-requisite
to appreciate iGUARD’s implementation details.

6.1 Metadata layout and allocation
The metadata layout is akin to ScoRD but is extended for ITS,
and for better race detection accuracy and performance.
Synchronization metadata: The active synchronization sta-
tus of threads, warps, and threadblocks are maintained in the
synchronization metadata. iGUARD keeps counters for differ-
ent synchronization operations to identify the latest synchro-
nization operation performed by individual threads, warps,
and threadblocks. Specifically, a threadblock barrier counter
is kept for each threadblock and is incremented upon en-
countering a syncthreads. Similarly, a warp barrier counter is

iGUARD: In-GPU Advanced Race Detection SOSP ’21, October 26–29, 2021, Virtual Event, Germany

[53 - 48]
Flags

Modified BlkSharedDevSharedAtomic ScopeValid

[45 - 31]
WarpID

[13 - 6]
BlkBarID

[30 - 26]
ThreadID

[63 - 54]
Tag

[25 - 20]
DevFenceID

[19 - 14]
BlkFenceID

[47 - 46]
Unused

[5 - 0]
WarpBarID

[45 - 31]
WarpID

[13 - 6]
BlkBarID

[63 - 48]
Locks

[30 - 26]
ThreadID

[25 - 20]
DevFenceID

[19 - 14]
BlkFenceID

[5 - 0]
WarpBarID

Last writerLast accessor
[47 - 46]
Unused

Figure 4. Layout of a single memory metadata entry (16 bytes).

kept for each warp and is incremented when the given warp
executes a syncwarp. iGUARD keeps two threadfence coun-
ters – one for block-scope and another for device-scope fence
for each thread. We keep threadfence counters per thread
since CUDA defines the semantics of threadfences for each
thread [34]. Under ITS, each thread may have executed differ-
ent threadfences at a given point in the execution. Finally, we
keep a lock table to infer locks and locking protocol at run-
time. We will detail the lock table later while explaining how
we infer the locking protocol. The synchronization metadata
takes ∼ 2MB of space in total.
Memory metadata: iGUARD keeps metadata for each unit of
global memory (4 bytes, by default). The memory metadata
keeps the identity of accessors and access type to a given
location, along with the synchronization information. The
synchronization information is copied from the synchroniza-
tion metadata of the accessor at the time of the access. Instead
of keeping the identity of all accessors to a location, iGUARD
tracks the last writer and last accessor (reader/writer). This
keeps the metadata overhead low. In § 6.7, we discuss why
limited metadata may not lead to false negatives in practice.

Figure 4 shows the layout of a unit of metadata (16 bytes).
The Tag keeps the address tag to uniquely identify 4-byte
global memory addresses corresponding to metadata. Flags
contains bits to track whether the metadata entry is valid
(initialized) and types of accesses to the location. For example,
if it has been written to (Modified), accessed via atomics
(Atomic) and if so, whether block or device scope was used
(Scope). The atomics are treated as stores, and thus, memory
metadata tracks atomic operations. Further, DevShared and
BlkShared note whether the accessors to a location are spread
across multiple threadblocks or part of the same threadblock,
respectively. These help to detect incorrect use of scopes.

The metadata keeps the identity (WarpID and ThreadID)
of the last writer and last accessor. The ThreadID is necessary
to detect races under ITS. The metadata contains the latest syn-
chronization status of the last writer and accessor when those
accesses occurred. For example, a 6-bit DevFenceID iden-
tifies the latest threadfence executed by the writer/accessor
with device scope. The BlkFenceID identifies the same with
threadblock scope. The 8-bit BlkBarID tracks the latest sync-
threads executed by the accessor, while WarpBarID tracks
the latest syncwarp. The WarpBarID is unique to iGUARD.
It is needed for tracking missing syncwarp under ITS. Later
in this section, we discuss the impact of limited counter sizes
on race detection accuracy.
Allocating metadata: While the synchronization metadata
needs just 2MB, memory metadata incurs 4× overhead. If

the entire metadata is pinned on the capacity-constrained
GPU memory, only a 5th of its capacity would be available to
execute the GPU kernel itself. For example, prior works, e.g.,
Barracuda reserves 50% of the memory capacity for buffers.

Instead, we use the UVM feature of NVIDIA GPUs. We al-
locate the entire metadata (∼ 4× of GPU memory capacity)
using cudaMallocManaged while initializing the detector.
This does not reserve any physical memory – it only allocates
virtual addresses. When the detector accesses the metadata,
page faults are triggered. The UVM driver then allocates the
physical memory for the page containing the requested meta-
data. The driver also migrates pages between the CPU and the
GPU memory based on access patterns. This way, only the
needed portion of the metadata resides on the GPU memory.

A drawback of UVM is the overhead of page faults incurred
on the first access to the metadata and the cost of migrating
pages between the CPU and the GPU. Toward this, iGUARD
ensures that the overheads of UVM are incurred only if un-
avoidable. It keeps an account of free memory available on
the GPU by tracking the amount of memory reserved by the
application kernel. It instruments CUDA memory allocation
API (e.g., cudaMalloc()) invoked by the application kernel for
the purpose. If free GPU memory is available after satisfying
the application’s memory needs, iGUARD pre-faults (all or
part of) the metadata onto the GPU by initializing the mem-
ory through cudaMemset. Later accesses to the pre-faulted
metadata during race detection does not trigger page faults.
This way, iGUARD pays the cost of faults and triggers ferrying
of data between GPU and CPU only when it is necessary –
i.e. when the aggregate of the application kernel’s memory
needs and metadata exceeds the GPU’s memory capacity.

6.2 Metadata updation
iGUARD instruments synchronization operations using the
NVBit tool [47]. Figure 5 (a) shows instrumentation code
snippet in CUDA for updating synchronization metadata on
encountering syncthreads. One of the active threads (line
6) in the threadblock increments the corresponding block
barrier counter (BlkBarID). All threads in threadblock are
synchronized thereafter. On encountering syncwarp, the warp
barrier counter is similarly incremented (code not shown).

Figure 5 (b) shows instrumentation code on encountering a
fence operation. iGUARD simply increments the correspond-
ing threadblock or device scope fence counters for the corre-
sponding thread. Threadfences also participate in constituting
lock/unlock operations. We will later see how the routine
activateLocks helps infer the use of locks on fence operation.
These actions are also depicted in Figure 6.

SOSP ’21, October 26–29, 2021, Virtual Event, Germany Aditya K Kamath and Arkaprava Basu

1 __device__ void instr_barrier(uint8_t **syncMD) {
2 if(threadId < WARP_SIZE) {
3 unsigned mask = __activemask();
4 unsigned chosen = ((mask - 1) & mask) ^ mask;
5 if((1 << threadId) & chosen) // Leader thread
6 ++syncMD[BlkBarId][blockId];
7 }
8 __syncthreads();
9 }

(a) Instrumentation code for threadblock-level barriers.

1 __device__ void instr_fence(scope_t scope,
2 uint8_t **syncMD, uint64_t *locks) {
3 switch(scope) {
4 case DEV: ++syncMD[DevFenceId][threadId]; break;
5 case BLK: ++syncMD[BlkFenceId][threadId]; break;
6 }
7 activateLocks(scope, locks); // Set lock active bit
8 }

(b) Instrumentation code for scoped fences.

Figure 5. Instrumentation (simplified) for synchronizations.

Load /
Store

AtomicCAS?

Insert into
lock table

AtomicExch?

Remove from
lock table

No race
Any
true

Race

All
false

Atomic
operation

No No

Yes Yes

Fence Increment scoped
FenceId

Activate
locks

Sync
warp

Block
barrier

Increment BlkBarId in
sync. metadata

Sync
block

Warp
barrier

Increment WarpBarId in
sync. metadata

Sync
warp

Safe
checks

Race
checks

Else Else

Read memory metadata

Writeback
metadata

Writeback
metadata

Figure 6. Overview of iGUARD’s operation. Purple box shows
race detection. Orange boxes shows lock inference.

All memory instructions – loads, stores, atomics – are in-
strumented to update memory metadata and for race detection
itself. On a load, iGUARD first reads the memory metadata cor-
responding to the load address. It then calculates the thread-
block ID of the last accessor by dividing the WarpID in the
metadata by the number of warps per threadblock in the exe-
cuting kernel. The number of warps per threadblock remains
constant for a kernel but can vary across kernels. If this cal-
culated threadblock ID differs from the current instruction’s
theadblock ID, then the DevShared flag in the metadata is set.
If the threadblock IDs match but the WarpID in the metadata
(last accessor) and that of the load differs, then the BlkShared
flag in the metadata is set.

iGUARD updates the WarpID and ThreadID of the last
accessor in the metadata with those of issuing load instruc-
tion. iGUARD then looks up the synchronization metadata
corresponding to the thread/warp issuing the load instruction

Valid
(1 bit)

Active
(1 bit)

Scope
(1 bit)

Address hash
(18 bits)

Valid
(1 bit)

Active
(1 bit)

Scope
(1 bit)

Address hash
(18 bits)

Valid
(1 bit)

Active
(1 bit)

Scope
(1 bit)

Address hash
(18 bits)is

Th
re

ad
 (1

 b
it) Lock

address

Figure 7. Structure of the lock table.

and copies the latest synchronization information (e.g., bar-
rier counters, fence counters, locks held) into the memory
metadata for last accessor (e.g., BlkBarID, WarpBarID, De-
vFenceID, BlkFenceID, Locks). The Locks field keeps a 16-bit
summary (2-way bloom filter) of lock addresses (available in
the lock table) currently held by the accessor. In the case of a
store, a similar process is followed except for two differences.
First, the identity and synchronization information is updated
for both the last accessor and the last writer in the memory
metadata. Second, the Modified bit in the flag is set. The
atomic operations update the metadata in the same way as a
store operation, except for one difference. An atomic opera-
tion also sets the Atomic bit in the flag and updates Scope bit
based on its scope – 0 if device scope, 1 if threadblock scope.

6.3 Inferring the locking protocol
While there are no explicit lock/unlock instructions, the CUDA
guidebook [41, 42] specifies that an atomicCAS on a lock
variable followed by a threadfence can be used as a lock.
A threadfence followed by atomicExch could be used for
unlocking. Therefore, we infer these instruction sequences as
lock and unlock, like previous works [17, 25, 28].

Similar to ScoRD, iGUARD uses a lock table to infer locks.
Each lock table is a 64-bit structure depicted in Figure 7 and
a part of the synchronization metadata. On an atomicCAS,
iGUARD adds an entry to the lock table of the corresponding
warp with an 18-bit hash of the variable’s address. The Valid
bit is set but the Active bit is not. The Scope bit stores whether
the atomic is device or threadblock scope.

On a threadfence, iGUARD sets the Active bit in the corre-
sponding lock table for all entries with matching or narrower
scope. An activated entry signifies a lock that is currently
held by the given warp. On an atomicExch, the warp’s lock
table is looked up, and the Valid bit of any entry matching
the address hash and scope is unset. Note that even if a pro-
grammer misses a threadfence, we will infer the atomicExch
as unlock. We will shortly see how a race caused by missing
threadfence is caught separately. Further, we keep track of up
to 3 separate locks held by each warp at any given time. We
found that this is sufficient for practical purposes, but this can
easily be extended by provisioning more entries in the table.

To infer the locking protocol under ITS, iGUARD faces a
unique challenge. Typically, one thread from each warp ac-
quires/releases locks. However, in some kernels, individual
threads within a warp use distinct locks under ITS. iGUARD
dynamically infers a kernel’s locking protocol, without devel-
oper intervention, by 1 provisioning both per-warp and per-
thread lock tables, and 2 switching to the per-thread table on

iGUARD: In-GPU Advanced Race Detection SOSP ’21, October 26–29, 2021, Virtual Event, Germany

Table 2. Conditions used during race detection. Memory and
synchronization metadata are represented by mm and sm,
respectively. Current accessor details is curr.

Definitions
if(curr.Type == STORE) md = mm.LastAccessor;
if(curr.Type == ATOMIC) md = mm.LastAccessor;
if(curr.Type == LOAD) md = mm.LastWriter;

Preliminary checks for race-free access
Type Condition

P1: First access mm.Valid == false
P2: No write

access
mm.Modified == false

AND curr.Type == LOAD
P3: Program

order access
!md.DevShared AND !md.BlkShared

AND curr.ThreadID == md.ThreadID

P4: Warp-synced
access

!md.DevShared AND !md.BlkShared
AND curr.WarpID == md.WarpID

AND (md.WarpBarID != sm.WarpBarID
OR curr.ActiveMask contains md.ThreadID)

P5: Barrier access
!md.DevShared

AND md.BlockID == curr.BlockID
AND md.BlkBarID != sm.BlkBarID

P6: Safe atomic
access

mm.Atomic AND curr.Atomic
AND (md.BlockID == curr.BlockID

OR mm.Scope == DEVICE)

Conditions for racey access
Type Condition

R1: Scoped-atomic
race

mm.Atomic AND mm.Scope == BLOCK
AND mm.LastWriter.BlockID != curr.BlockID

R2: Intra-warp race

md.WarpID == curr.WarpID
AND md.DevFenceID == sm.DevFenceID
AND md.BlkFenceID == sm.BlkFenceID
AND !mm.DevShared AND !mm.BlkShared

R3: Intra-block race

md.BlockID == curr.BlockID
AND md.DevFenceID == sm.DevFenceID
AND md.BlkFenceID == sm.BlkFenceID

AND !mm.DevShared

R4: Inter-block race
md.BlockID != curr.BlockID

AND md.DevFenceID == sm.DevFenceID
R5: Missing lock

race
(mm.Locks != EMPTY OR sm.Locks != EMPTY)
AND (md.Locks BITWISE_AND sm.Locks) == 0

detecting simultaneous use of locks by threads within a warp
at runtime. iGUARD keeps an isThread bit in the per-warp ta-
ble (unset by default). On an atomicCAS, iGUARD checks the
active mask of the executing warp. The active mask identifies
the threads within a warp that are executing an instruction in
lockstep. If there is more than one thread performing atom-
icCAS, iGUARD infers the use of thread-level locking. It sets
the isThread bit and proceeds to use the per-thread lock table.
The isThread bit is never unset, and the detector does not
revert to per-warp locks after it detects the use of per-thread
locking. iGUARD accesses the warp-level lock table first but
switches to the per-thread table if the isThread bit is set. The
locking protocol typically does not change within a single
kernel. However, a program can have many kernels, each hav-
ing its own locking protocol. iGUARD would infer the locking
protocol of each kernel independently.

6.4 Detecting and reporting races
Races occur when conflicting memory instructions access a
location without intervening synchronization. Thus, iGUARD
looks for possible races upon loads, stores, and atomics.
Atomics are treated similar to stores for race detection.
Preliminary race checks: Most instructions do not partic-
ipate in a race [28]. Thus, similar to ScoRD, iGUARD im-
plements a two-tier race detection logic where preliminary
checks ascertain if an access is trivially race-free. A detailed
race check is employed only if all preliminary checks fail.
iGUARD inherits race check conditions from ScoRD but ex-
tends them to handle execution under ITS.

The top half of Table 2 lists six possible conditions (P1-P6)
for an access to be trivially race-free. The condition P1 states
that the first access to a memory location cannot be a race.
The second condition says that if a location is unmodified and
the current access is not a store, it is race-free.

In the rest of the conditions (P3 - P6), for loads, iGUARD
uses the information (e.g., WarpID, ThreadID, synchroniza-
tion) of the last writer to determine if that load is race-free.
For stores, that of the last accessor is used. The condition
P3 states that two accesses from the same thread in program
order cannot race. The condition ensures that a given location
has never been accessed across threadblocks or warps, and
the same thread accessed the location the last time.

The condition P4 is unique to iGUARD. It checks if the
current and previous accesses are from the same warp (pos-
sibly from different threads) but are separated by a warp
barrier (syncwarp). A mismatch between the warp barrier ID
in the memory metadata and the current value of the warp bar-
rier ID in the synchronization metadata indicates intervening
syncwarp(s). If the threads have not diverged (i.e., accessors
are within the warp’s active mask), their accesses are synchro-
nized at every instruction due to lockstep execution. The fifth
condition checks if there has been an intervening threadblock
barrier (syncthreads) and if the accessors to the location fall
within the same threadblock. Finally, if a memory location
is accessed using atomics of sufficient scope, a race cannot
occur due to the access.
Detailed race checks: If all six conditions (P1-P6) fail, con-
ditions in the bottom half of the table (R1-R5) are checked to
confirm the existence of a race and its type. These conditions
are checked in the order given in the table. If a condition is
satisfied, a race is declared, and later conditions are skipped
for that instruction. Race detection continues for the following
instructions until the execution finishes.

The condition R1 detects the use of insufficient scope in
atomic operations. If the last writer and the current accessor
belong to different threadblocks, but the memory location
was previously accessed with a block-scoped atomic, a race
is declared. As before, if the instruction is a load, then the
memory metadata of the last writer is used, while for stores,
the last accessor is used. The condition R2 in iGUARD is

SOSP ’21, October 26–29, 2021, Virtual Event, Germany Aditya K Kamath and Arkaprava Basu

specific to its ability to catch races that occur under ITS. It
checks if the last and current access to a memory location
by threads within a warp are separated by a fence. If not, an
intra-warp race due to ITS is declared. Note that it does not
check if threads are executing in lockstep. If so, the fourth
condition of preliminary checks would have been satisfied.

The condition R3 checks if accesses from threads within a
single threadblock are not ordered by a threadfence. If so, an
intra-threadblock race is detected. Similarly, R4 declares an
inter-threadblock race if it finds accesses from two different
threadblocks are not separated by threadfence(s) of device
scope. The condition R5 relates to the detection of races due to
improper use of locks. If no locks were held during previous
accesses to a given memory location or during the current
access, locks were not used to order accesses. If locks were
used, but the intersection of locks held during the previous
access and the current one is empty, it still causes a race.

Note that a race is declared only if all conditions P1-P6 fail
and one of R1-R5 is satisfied. It is possible that none of the
P or R conditions satisfies. For example, this will happen for
accesses correctly protected by locks. No race is declared in
such cases. Also, there are no specific checks for cooperative
groups. As discussed in § 2.1, NVIDIA created cooperative
group primitives using synchronization and ITS support. Since
iGUARD supports constituent features, it automatically detects
races due to improper use of cooperative groups.

When a race is detected, iGUARD collects the instruction
pointer, instruction type, address of the racey memory loca-
tion, thread and warp ID of the accessor, the type of race, and
metadata about the previous accesses to that location. If the
binary was compiled with debug information, iGUARD also
reports the source line number of the instruction. These are
accumulated in a small buffer (1MB) to be passed to the CPU.
Summary: Figure 6 summarizes how iGUARD works. On
threadfences and barriers, iGUARD updates the synchroniza-
tion metadata. On a load/store, iGUARD looks up memory
metadata corresponding to the load (store) address. It then per-
forms two-tier checks based on happens-before relations us-
ing the information of previous accesses to the location (from
metadata) and the current access. The atomics are treated as
(special) stores. Thus, on atomics, iGUARD updates memory
metadata and performs race checks. iGUARD dynamically
infers locks and locking protocol. The race detection for im-
proper locking uses the lockset technique. The entire process
happens on the GPU alongside kernel execution.

6.5 Reducing serialization in metadata access
GPU applications thrive in parallelism. We observed that thou-
sands of threads could concurrently access a shared variable
in many applications. Even when they do not cause races
(e.g., read-only accesses), all accesses to the variable’s meta-
data need to be serialized for correct race detection since the
non-existence of a race cannot be affirmed unless checks are
complete [51]. Therefore, accesses to a metadata entry needs

to be serialized. iGUARD keeps a fine-grain lock per metadata
entry to ensure that race detection for accesses to different
locations can leverage the GPU’s parallelism.

However, applications with many accesses to shared vari-
ables still suffer from lock contention for metadata. Fine-
grain lock contention is a bigger nemesis to GPU’s perfor-
mance than to CPU’s since thousands of threads can concur-
rently contend for a lock [48, 53]. This challenge is unique
to iGUARD’s in-GPU software race detection. For example, a
prior software-based race detector Barracuda does not update
metadata or perform race detection on the GPU. It only logs
GPU accesses for the CPU to process later. On the other hand,
hardware-based race detectors such as ScoRD propose dedi-
cated new hardware to order metadata accesses and perform
race detection – a luxury iGUARD does not have.

iGUARD introduces two novel optimizations to reduce per-
formance overheads due to serialization of metadata accesses.
Coalesced metadata access: We note that not all concurrent
accesses to shared variables can race. Consider active threads
in a warp that are all loading or performing an atomic opera-
tion on a single variable. The scope of the atomic operation
is not a concern since all threads within a warp are part of
even the smallest possible scope, i.e., threadblock. Also, loads
alone cannot race with each other.

Driven by this observation, on a memory access, iGUARD
checks if the active threads within a warp are accessing
the same location using load or atomic instructions. Specifi-
cally, threads in a warp use warp instrincs (e.g., activemask,
shfl_sync) that allow them to quickly communicate with each
other to check whether the active threads are accessing a
shared location. If so, only a single thread checks for races
with threads outside its warp on behalf of all active threads.
This allows for opportunistic coalescing of up to 32 serial
metadata accesses and race checks into one without the possi-
bility of missing a race.
Dynamic exponential backoff: Coalescing alone is not suf-
ficient. We further use traditional binary exponential backoff
to spread out contending accesses to locks [45]. However,
we noticed that the upper limit for backoff latency affects its
efficacy. If the limit is too low, contention remains, while if it
is too high, threads unnecessarily wait.

In GPUs, the number of concurrent threads can vary widely
from hundreds to hundreds of thousands. We empirically
found that a single upper limit on backoff does not fit all
cases. Instead, it should be set dynamically based on the
number of concurrent threads in a kernel at runtime. A higher
limit is preferable for kernels launched with a larger number
of threads than those with fewer threads.

We combine the opportunistic coalescing of metadata ac-
cesses with dynamic exponential backoff to reduce the con-
tention for metadata. As a result, iGUARD’s race check sped
up by 7× for eight applications that originally experienced
severe metadata contention, on average (more in § 7).

iGUARD: In-GPU Advanced Race Detection SOSP ’21, October 26–29, 2021, Virtual Event, Germany

1 __global__ void reductionKernel(...)
2 {
3 ...
4 if (blockSize >= 4 && tid < 2)
5 sdata[tid] = mySum = mySum + sdata[tid + 2];
6 //__syncwarp(); <-- Needed to avoid race
7 if (blockSize >= 2 && tid == 0)
8 sdata[tid] = mySum = mySum + sdata[tid + 1];
9 ...

10 }
Figure 8. Missing warp barrier causing ITS race.

1 __global__ void lockingKernel(...)
2 {
3 ...
4 // Spin until lock acquired
5 while(atomicCAS(&lock[lockId], 0, 1) != 0);
6 __threadfence();
7 ... // Critical section
8 data[warpId] += value[threadId];
9 __threadfence();

10 atomicExch(&lock[lockId], 0);
11 ...
12 }

Figure 9. Race with per-thread locking.

6.6 Tying it all together with examples
We illustrate iGUARD’s overall race detection with exam-

ples for two of its unique features – detecting races due to ITS
and inference of an application’s locking protocol at runtime.
Catching ITS races: Figure 8 depicts a CUDA snippet that
contains a race due to ITS (repeated from § 3.2). iGUARD
instruments all loads/stores and synchronization operations
to perform race checks and to update metadata. After thread
1 (tid = 1) executes the load on line 5 (sdata[tid + 2]), the in-
strumentation code of iGUARD performs checks for potential
races (Table 2). It reads the memory metadata corresponding
to the address of the variable. Since this is the first access to
the address, the Valid bit of the metadata was not set. The
access would thus proceed without flagging a race by satis-
fying preliminary check P1. The instrumentation code then
updates the metadata with its thread and warp ID and sets the
Valid flag. Similarly, the store operation on line 5 (sdata[tid])
would not trigger a race, but the corresponding metadata
would have its Modified flag set.

Thread 0 (tid = 0) later accesses the stored data through a
load on line 8 (sdata[tid + 1]). When iGUARD’s instrumenta-
tion code performs race detection upon this instruction, the
preliminary checks P1 - P3 fail as the metadata was marked
Valid and Modified by a different thread. P4 - P6 fail too since
there were no intervening barriers or atomics.

Next, full race check conditions are evaluated since all
preliminary checks failed. Here, condition R2 will evaluate
to true since the WarpID of thread 1 matches the WarpID
of thread 0 and no intermediate fences have been executed.
Upon detecting the race, iGUARD does not stop execution.
Instead, it inserts the details of the race (e.g., address of the
variable, line number) into a buffer along with its type (here,
ITS). Later, a CPU thread asynchronously reads the details of
detected races from the buffer and informs the programmer

that a race is detected on line 8 due to a load operation by
thread 0 to a location previously modified by thread 1.

If there was a syncwarp in line 6, iGUARD would have
instrumented it. Upon encountering the syncwarp, the in-
strumentation code would increment the WarpBarId field of
the warp in the synchronization metadata. In this case, when
iGUARD performs race detection upon the load on line 8, the
WarpBarId of synchronization metadata would not match that
in the memory metadata. This would cause preliminary check
P4 to evaluate true, and thus, no race would be declared.
Lock inference: Figure 9 shows a code snippet where threads
in a warp take individual locks for their critical section and
update a variable. Note that without ITS, for example, on
GPUs before the Volta architecture, such programs would
deadlock. We will next show how iGUARD infers the use of
per-thread locking in this code snippet at runtime.

To accommodate varied locking protocols in applications
under ITS, iGUARD provisions both per-warp and per-thread
lock tables (§ 6.3). On line 5, threads within a warp contend
for different locks, causing them to execute the atomicCAS
simultaneously. iGUARD detects this by monitoring the warp’s
active mask – multiple threads within the warp are active
while executing the atomicCAS. It thus infers that per-thread
locking is used by the kernel and sets the isThread bit of the
warp’s lock table (Figure 7) to indicate this. It then switches
to the individual thread’s lock table. It places a hash of the
lock’s address in the lock table and sets the entry’s Valid bit.

Upon encountering the threadfence on line 6, iGUARD
would first look up the warp’s lock table. However, since
the isThread bit is set, the per-thread lock table is consulted
instead. The Active bit is set for all entries having their Valid
bit set, as a lock acquire has been completed.

On line 8, multiple threads from the same warp concur-
rently update data[] causing a race. When the first thread
accesses data[], iGUARD inserts the details of its active lock
table entries into the lock bloom filter in the corresponding
memory metadata. When the next thread accesses data[],
iGUARD finds that the intersection of locks held by the thread
with those stored in the bloom filter is EMPTY (null). This
causes condition R5 to fail, leading iGUARD to declare a race
due to missing locks. If iGUARD had used only a per-warp
lock table, all threads in the warp would have identical lock
entries, and the race would not be detected.

6.7 Potential false positives and negatives
We aim to create a practical detector of races due to advanced
GPU features. iGUARD excels in catching races across a va-
riety of applications (§ 7). However, it does not guarantee
the detection of all races. For example, the size of the barrier
and threadfence counters are limited to 6-8 bits. Although
very unlikely, counters can wrap around, leading to false pos-
itives and negatives. For example, a threadblock should issue
exactly 256 syncthreads to cause an error in detection.

SOSP ’21, October 26–29, 2021, Virtual Event, Germany Aditya K Kamath and Arkaprava Basu

Besides counters, iGUARD tracks only the last writer and
accessor to a memory location. It is possible that a race consti-
tutes across old accesses but not among the recent ones. How-
ever, in practice, it is unusual to have recent accesses properly
synchronized but not the distant ones (in time). We empiri-
cally confirmed this by tracking the last 2, 4, and 8 accessors
to a memory location in the metadata instead of only the last
accessor (default in iGUARD). Tracking longer access history
did not find any new races for any of the programs we evalu-
ated in this work. A previous work on detecting data races in
CPU multi-threaded applications, called FastTrack [20], also
made similar observations for CPU applications – reads to a
given location are typically totally ordered in practice.

On the other hand, the overhead of the metadata grows
linearly with the number of previous accessors that it keeps.
Therefore, iGUARD keeps the identity of only the last accessor
as a pragmatic choice. Alternatively, it is also possible to
collect metadata and ship it over to the CPU. However, the
CPU would then have to perform race detection, as in previous
works (e.g., [17]). In summary, for in-GPU race detection with
low-performance overhead, iGUARD judiciously chose the
metadata layout and its size without impacting the usefulness
of the race detection in practice.

Table 3. System configuration
CPU Intel Xeon Gold 6242 (16 cores) @ 2.80GHz
GPU NVIDIA Titan RTX (72 SMs, 24 GB GDDR6)

DRAM 768 GB DDR4 @ 2933 MHz
Software CUDA 11.0, Ubuntu 20.04

7 Evaluation
Table 3 details of the evaluation platform. We use workloads
from previous works, e.g., Barracuda, CURD [17, 39] (CUB,
Rodinia, SHoC), and ScoRD [28] (ScoR) for a comprehensive
comparison. Besides, we used two popular graph processing
frameworks, Gunrock [50] and LonestarGPU [11], a GPU
hash table called SlabHash [2], and example applications
from NVIDIA’s CG [24] and cuML [40] libraries for a wide
coverage. In total, we evaluated iGUARD on 42 workloads
from 10 workload suites [2, 10, 12, 13, 21, 28, 33, 35, 40, 49].
Half of these workloads had races while the rest did not.

Table 4 and Table 5 contain the names of the workload
suites and the applications used from that suite. Table 4 con-
tains applications with global memory races and those in
Table 5 are race-free. The applications with races help us
determine the accuracy of race detection. Those without races
aid in evaluating if iGUARD reports false positives. Both help
in measuring the overheads of race detection.

To put iGUARD’s accuracy and performance in perspec-
tive, we compare it with Barracuda. For a fair compari-
son, we disable shared memory race detection in Barracuda
since iGUARD focuses only on global memory races. Further,
iGUARD runs on the latest CUDA 11.0 on recent ISA (SM70).
However, Barracuda cannot run on SM70 and is compiled to

Table 4. Races detected by Barracuda and iGUARD.
IL: Improper locking, AS: Insufficient atomic scope,
ITS: ITS induced race, BR: Intra-block race,
DR: Intra-device race ∗Did not terminate.

Suite Application Barracuda iGUARD Types

ScoR

matrix-mult - 4 IL, AS, BR
1dconv - 1 AS
graph-con - 5 AS, BR, DR
reduction - 7 ITS, BR, DR
rule-110 - 2 AS, DR
uts - 6 IL, AS
graph-color - 6 AS, BR, DR

CG
conjugGMB - 1 CG (DR)
reduceMB - 1 CG (DR)

NVlib_CG grid_sync - 1 DR

Gunrock

louvain - 3 ITS
pr_nibble - 1 BR
sm - 1 BR
color - 2 BR

Lonestar (LS)
mis - 2 BR, DR
cc - 3 BR, DR

SlabHash slabhash_test - 1 DR
cuML cuML_gsync - 1 DR

Kilo-TM
interac 3∗ 4 BR, DR
hashtable 2 2 DR

SHoC shocbfs 2 2 BR
CUB cub_gridbar 1 1 DR

Table 5. Applications without any reported races.
Suite Applications

CUB
b_radix_sort b_reduce b_scan d_part_flag

d_part_if d_radix_sort d_reduce d_scan
d_sel_flag d_sel_if d_sel_uniq d_sort_find

Rodinia
dwt2d hotspot hybridsort kmeans
needle nn pathfinder srad

CG warpAA

1 void sync_grid(int gridSize, volatile int *arrived)
2 {
3 //__threadfence();
4 __syncthreads();
5 if(threadId == 0) {
6 __threadfence();
7 atomicAdd(arrived, 1);
8 while(*arrived != gridSize);
9 }

10 __syncthreads();
11 }

Figure 10. Simplified implementation of grid-level sync.

SM35 for backward compatibility. To ensure fair performance
comparison, we report Barracuda’s overheads by normaliz-
ing its runtime over that for applications (without Barracuda)
also compiled to SM35. Similarly, the overhead of iGUARD is
normalized over the application runtimes compiled to SM70.
This way, any potential differences due to ISA cancel out.

7.1 Detecting races
Table 4 shows the races caught by iGUARD and their types. For
comparison, we report races caught by Barracuda. Table 5
lists applications that Barracuda and iGUARD did not report

iGUARD: In-GPU Advanced Race Detection SOSP ’21, October 26–29, 2021, Virtual Event, Germany

iGUARD Barracuda

1x

10x

100x

1000x

N
o

rm
al

iz
e

d
 r

u
n

 t
im

e

iGUARD Barracuda

(a) Applications with races (b) Applications without races

Timeout Timeout

U
n

su
p

p
o

rt
e

d

U
n

su
p

p
o

rt
e

d

U
n

su
p

p
o

rt
ed

U
n

su
p

p
o

rt
ed

U
n

su
p

p
o

rt
ed

U
n

su
p

p
o

rt
e

d

U
n

su
p

p
o

rt
e

d

U
n

su
p

p
o

rt
e

d

U
n

su
p

p
o

rt
ed

U
n

su
p

p
o

rt
ed

U
n

su
p

p
o

rt
ed

U
n

su
p

p
o

rt
ed

U
n

su
p

p
o

rt
ed

U
n

su
p

p
o

rt
ed

U
n

su
p

p
o

rt
ed

U
n

su
p

p
o

rt
ed

U
n

su
p

p
o

rt
e

d

U
n

su
p

p
o

rt
ed

CUB RodiniaScoR CG Gunrock Kilo-TMLS

Timeout

U
n

su
p

p
o

rt
ed

4.2

61.0

6.3

Figure 11. Performance overhead of iGUARD and Barracuda normalized with no race detection. Note the log scale.

any global memory races for. In total, iGUARD detected 57
races in 21 applications without any false positives. The other
21 workloads did not have races.

Across the workloads in Kilo-TM, SHoC, CUB and Rodinia
used by Barracuda, iGUARD detected all seven races that were
reported. Further, Barracuda did not terminate for interac
kernel of Kilo-TM and misses a true race. iGUARD correctly
caught that race and successfully executed the application.
Barracuda could not run workloads from the ScoR suite [27]
and CG [35] since they have operations like scoped atomics
which it does not support. Barracuda also failed to run Gun-
rock, LonestarGPU, SlabHash, and cuML. Since Barracuda
executes on PTX, the intermediate representation for NVIDIA
GPUs [36], and not the binary, it requires a single PTX file
to be embedded in a binary. It cannot handle large, multi-file
real-world GPU libraries like Gunrock or LonestarGPU.

iGUARD detected all 26 races reported in ScoR [27]. In
addition, iGUARD caught 5 more previously unreported true
races in ScoR due to ITS. ScoRD did not report them since it
does not support ITS. To test if iGUARD detects races due to
improper use of cooperative groups, we modified example
applications in NVIDIA’s CG library to introduce improper
use of cooperative groups. iGUARD detected all those races.
Reporting true previously unreported races: iGUARD de-
tected several previously unreported races. It detected a race
in NVIDIA’s CG library implementing grid-level synchroniza-
tion (NVlib_CG in Table 4). Figure 10 shows a simplified
code snippet implementing grid-level synchronization. As per
CUDA, barrier synchronization operations ensure that threads
proceed after barrier only after all threads in its group reach
the barrier (execution barrier). It also guarantees that writes
performed by threads before the barrier are visible to all
threads in that group after the barrier (memory barrier). How-
ever, the grid sync implementation fails to guarantee the mem-
ory barrier property, causing races in applications. Observe
that threadfence in line 6 of Figure 10 is executed only by
the leader thread of each threadblock. However, the effect of
a threadfence is limited to writes of the calling thread only.
Therefore, after the grid sync, threads are not guaranteed to
observe writes performed by all threads in the grid before the
sync, except for the leader threads. NVIDIA communicated
that they filed an internal bug report based on this. iGUARD

caught similar races in cuML’s and CUB’s grid sync imple-
mentation, which developers have acknowledged.

iGUARD detected 7 races in Gunrock [49, 50] (> 7700
LOC), and 5 races in LonestarGPU [10, 11] (> 6400 LOC) –
two popular GPU graph frameworks. We detected intra-thread
block races and ITS races. Gunrock developers acknowledged
3 races, while LonestarGPU developers acknowledged all.

7.2 Comparing performance overhead
Figure 11 (a) and (b) shows (log scale) performance overhead
introduced by iGUARD for applications in Table 4 and Table 5,
respectively. We also compare overheads with Barracuda for
whichever applications it could run.

We could report numbers for Barracuda only for three ap-
plications in Figure 11 (a). This is because it failed to run for
other applications either for lack of support for scoped atom-
ics (ScoR), lack of ITS support (interac, CG) or because of
application complexity where compilers fail to embed PTX for
large libraries (Gunrock, Lonestar). This also demonstrates
the wider applicability of iGUARD. Figure 11 (a) shows for
several compute-heavy applications, e.g., rule-110, reduction,
the overheads are limited to 2-3×. To put it in perspective, we
compared against Barracuda, wherever it ran. For example,
Barracuda slowed down hashtable and shocbfs by 30× and
60×, respectively. That for iGUARD were 2.1× and 2.8×.

Figure 11 (b) provides a picture of relative performance
overheads as many applications with traditional synchroniza-
tion ran on Barracuda. On average, Barracuda had an over-
head of 61× for the 18 workloads in this graph that did not
time out. iGUARD had a 4.2× overhead for the 21 workloads
in this graph. Across all 20 workloads (2 in Figure 11 (a)
and 18 in Figure 11 (b)) that Barracuda ran without tim-
ing out, it incurred a 58.9× overhead, on average. For the
same set, iGUARD’s overhead is 3.9×. Thus, iGUARD not only
has broader applicability but also significantly lowers perfor-
mance overhead. Across all 42 workloads, iGUARD incurred
5.1× slowdown over no race detection, on average.

7.3 Benefits of reduced serialization in metadata access
We now analyze the performance improvement due to reduced
serialization in metadata access thanks to iGUARD’s coalesced
metadata access and dynamic backoff (§ 6.5).

SOSP ’21, October 26–29, 2021, Virtual Event, Germany Aditya K Kamath and Arkaprava Basu
N

o
rm

al
iz

e
d

ru
n

 t
im

e

1x

10x

100x

1000x

matrix-mult 1dconv graph-con conjugGMB warpAA mis cc cuML_gsync

Baseline With optimization

Figure 12. Performance overhead of iGUARD with and with-
out contention optimisations normalized against no detection.

0%
25%
50%
75%

100%

ScoR CG Gunrock LS Slabhash cuML Kilo-TM SHOC CUB Rodinia

R
u

n
 t

im
e

Native NVBit Setup Instrumentation Detection Misc.

Figure 13. Breakdown of application runtime with detection.

1x

10x

100x

1000x

1 GB 2 GB 4 GB 8 GB 16 GB

iGUARD Barracuda

O
u

t
o

f
m

e
m

o
ry

O
u

t
o

f
m

e
m

o
ry

N
o

rm
al

iz
e

d

ru
n

 t
im

e

Figure 14. Overheads with memory footprint scaling.

Figure 12 shows the performance overhead of race detec-
tion, with and without the aforementioned optimizations for
a subset of workloads that originally experienced high over-
head due to serialization in metadata access. The overheads
of these applications were reduced by 7×, on average. No-
tably, conjugGMB’s overhead dropped from 706× to 6×. It
launches many threads (73728) that synchronize by spinning
on a shared variable. Other applications outside this subset did
not experience much serialization and are agnostic to these
optimizations. We also confirmed that these optimizations did
not affect the accuracy of race detection in any way.

7.4 Understanding sources of overheads
Figure 13 presents the fraction of runtime contributed by
different components of iGUARD for each benchmark suite
(averaged). Native refers to the application runtime with-
out race detection. NVBit refers to time spent by the NVBit
tool analyzing the binary and inserting instrumentation calls.
Setup is the time spent on allocating and initializing metadata.
Instrumentation is the delay to the kernel execution due to in-
strumentation without race detection. Detection captures the
time taken to perform the race detection, while Misc. captures
all other overheads like loading kernel etc.

While the primary source of overheads varies based on
applications, NVBit itself is often a key contributor. If NVBit
is optimized in later versions, or a faster instrumentation tool
emerges, iGUARD will quicken up. Applications in the CG
suite are designed to demonstrate different synchronization
operations and have limited computation. Therefore, race de-
tection overheads dominate in them. Applications in CUB are
short running and thus, the Instrumentation time dominates.

7.5 Scaling with memory footprint
iGUARD does not reserve GPU memory for metadata. To
demonstrate the value of this approach, compared to the mem-
ory reservation approach adopted in previous works, we ran

both detectors for an application with varying memory foot-
print (d_reduce from CUB). Figure 14 shows the performance
overheads with iGUARD and Barracuda. Barracuda’s over-
heads are significantly more. Importantly, beyond 8 GB of
application memory footprint, Barracuda failed due to lack of
memory. However, iGUARD continued to detect races, albeit
with larger overheads due to additional page faults introduced
by the UVM driver to accommodate larger metadata sizes.
This demonstrates iGUARD’s ability to work with practical
data sizes with graceful degradation for increased memory
usage instead of failing.

8 Related work
We discussed GPU race detectors closest to ours in § 4. Here,
we discuss a few other GPU race detectors. Early works
on GPU race detection ignored the harder-to-detect races on
global memory and focused solely on races in the scratchpad
among threads within a threadblock. Boyer et al. [9] utilize
instrumentation and emulation to find such bugs at a heavy
performance overhead. GRace [54], and GMRace [55] use
static analysis and dynamic checking to detect races. LDe-
tector [30] detects races in scratchpad and global memory
by taking snapshots and comparing changes in values but
ignores fences and atomics. SMT solving [3, 4, 6, 7] has been
proposed to find data races at the risk of detecting false posi-
tives. However, no prior work covers all types of races due to
modern GPU features, including scopes, ITS and CG.

Concurrency bug detection has been extensively explored
for multi-threaded CPU software [5, 8, 14–16, 18, 20, 31, 32,
43, 44, 56]. While these provide inspiration for GPU race
detection, they cannot be directly applied due to challenges
that arise from the GPU’s massive parallelism. CPUs also lack
the advanced synchronization operations present in GPUs.

9 Conclusion
To enable a broader set of applications to leverage GPUs,
vendors are progressively introducing semantically richer
synchronization and expressive execution paradigms. How-
ever, improper use of these can lead to subtle races that could
threaten GPU software reliability. We thus propose iGUARD, a
detector of global memory races, including those induced by
advanced features. The detector reported several previously
unreported races, including some in NVIDIA’s own libraries.
The in-GPU race detection without CPU assistance allows
iGUARD to detect races with significantly less overhead.

Acknowledgments
We thank the anonymous reviewers and our shepherd Junfeng
Yang for their constructive feedback. We thank Ajay Nayak
for helping us with workloads. This work is supported by re-
search grants from VMware Inc. Arkaprava is supported by a
Young Investigator Fellowship by Pratiksha Trust, Bangalore.

iGUARD: In-GPU Advanced Race Detection SOSP ’21, October 26–29, 2021, Virtual Event, Germany

References
[1] Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakr-

ishnan, Jeroen Ketema, Daniel Poetzl, Tyler Sorensen, and John Wick-
erson. 2015. GPU Concurrency: Weak Behaviours and Programming
Assumptions. In Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating
Systems (Istanbul, Turkey) (ASPLOS ’15). ACM, New York, NY, USA,
577–591. https://doi.org/10.1145/2694344.2694391

[2] Saman Ashkiani, Martin Farach-Colton, and John D. Owens. 2018. A
Dynamic Hash Table for the GPU. In 2018 IEEE International Paral-
lel and Distributed Processing Symposium (IPDPS). IEEE Computer
Society, USA, 419–429. https://doi.org/10.1109/IPDPS.2018.00052

[3] Ethel Bardsley, Adam Betts, Nathan Chong, Peter Collingbourne, Pan-
tazis Deligiannis, Alastair F. Donaldson, Jeroen Ketema, Daniel Liew,
and Shaz Qadeer. 2014. Engineering a Static Verification Tool for
GPU Kernels. In Proceedings of the 16th International Conference on
Computer Aided Verification - Volume 8559. Springer-Verlag, Berlin,
Heidelberg, 226–242. https://doi.org/10.1007/978-3-319-08867-9_15

[4] Ethel Bardsley and Alastair F. Donaldson. 2014. Warps and Atomics:
Beyond Barrier Synchronization in the Verification of GPU Kernels.
In Proceedings of the 6th International Symposium on NASA Formal
Methods - Volume 8430. Springer-Verlag New York, Inc., New York,
NY, USA, 230–245. https://doi.org/10.1007/978-3-319-06200-6_18

[5] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Charles E.
Leiserson. 2004. On-the-fly Maintenance of Series-parallel Relation-
ships in Fork-join Multithreaded Programs. In Proceedings of the Six-
teenth Annual ACM Symposium on Parallelism in Algorithms and Ar-
chitectures (Barcelona, Spain) (SPAA ’04). ACM, New York, NY, USA,
133–144. https://doi.org/10.1145/1007912.1007933

[6] Adam Betts, Nathan Chong, Alastair Donaldson, Shaz Qadeer, and
Paul Thomson. 2012. GPUVerify: A Verifier for GPU Kernels. In
Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications (Tucson, Arizona,
USA) (OOPSLA ’12). ACM, New York, NY, USA, 113–132. https:
//doi.org/10.1145/2384616.2384625

[7] Adam Betts, Nathan Chong, Alastair F. Donaldson, Jeroen Ketema,
Shaz Qadeer, Paul Thomson, and John Wickerson. 2015. The Design
and Implementation of a Verification Technique for GPU Kernels. ACM
Trans. Program. Lang. Syst. 37, 3, Article 10 (May 2015), 49 pages.
https://doi.org/10.1145/2743017

[8] Michael D. Bond, Katherine E. Coons, and Kathryn S. McKinley. 2010.
PACER: Proportional Detection of Data Races. In Proceedings of the
31st ACM SIGPLAN Conference on Programming Language Design
and Implementation (Toronto, Ontario, Canada) (PLDI ’10). ACM, New
York, NY, USA, 255–268. https://doi.org/10.1145/1806596.1806626

[9] Michael Boyer, Kevin Skadron, and Westley Weimer. 2008. Automated
Dynamic Analysis of CUDA Programs. In 2008 Workshop on Software
Tools for MultiCore Systems.

[10] Martin Burtscher, Rupesh Nasre, and Keshav Pingali. 2012. A Quan-
titative Study of Irregular Programs on GPUs. In Proceedings of the
2012 IEEE International Symposium on Workload Characterization
(IISWC) (IISWC ’12). IEEE Computer Society, Washington, DC, USA,
141–151. https://doi.org/10.1109/IISWC.2012.6402918

[11] Martin Burtscher, Rupesh Nasre, and Keshav Pingali. 2021. Lones-
tarGPU. https://iss.oden.utexas.edu/?p=projects/galois/lonestargpu.

[12] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.
Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A Bench-
mark Suite for Heterogeneous Computing. In Proceedings of the 2009
IEEE International Symposium on Workload Characterization (IISWC)
(IISWC ’09). IEEE Computer Society, Washington, DC, USA, 44–54.
https://doi.org/10.1109/IISWC.2009.5306797

[13] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith,
Philip C. Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S. Vetter.
2010. The Scalable Heterogeneous Computing (SHOC) Benchmark

Suite. In Proceedings of the 3rd Workshop on General-Purpose Compu-
tation on Graphics Processing Units (Pittsburgh, Pennsylvania, USA)
(GPGPU-3). Association for Computing Machinery, New York, NY,
USA, 63–74. https://doi.org/10.1145/1735688.1735702

[14] Dimitar Dimitrov, Martin Vechev, and Vivek Sarkar. 2015. Race De-
tection in Two Dimensions. In Proceedings of the 27th ACM Sym-
posium on Parallelism in Algorithms and Architectures (Portland,
Oregon, USA) (SPAA ’15). ACM, New York, NY, USA, 101–110.
https://doi.org/10.1145/2755573.2755601

[15] Anne Dinning and Edith Schonberg. 1991. Detecting Access Anom-
alies in Programs with Critical Sections. In Proceedings of the 1991
ACM/ONR Workshop on Parallel and Distributed Debugging (Santa
Cruz, California, USA) (PADD ’91). ACM, New York, NY, USA, 85–
96. https://doi.org/10.1145/122759.122767

[16] Laura Effinger-Dean, Brandon Lucia, Luis Ceze, Dan Grossman, and
Hans-J. Boehm. 2012. IFRit: Interference-free Regions for Dynamic
Data-race Detection. In Proceedings of the ACM International Con-
ference on Object Oriented Programming Systems Languages and
Applications (Tucson, Arizona, USA) (OOPSLA ’12). ACM, New York,
NY, USA, 467–484. https://doi.org/10.1145/2384616.2384650

[17] Ariel Eizenberg, Yuanfeng Peng, Toma Pigli, William Mansky, and
Joseph Devietti. 2017. BARRACUDA: Binary-level Analysis of Run-
time RAces in CUDA Programs. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (Barcelona, Spain) (PLDI 2017). ACM, New York, NY, USA,
126–140. https://doi.org/10.1145/3062341.3062342

[18] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. 2007. Goldilocks: A
Race and Transaction-aware Java Runtime. In Proceedings of the 28th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (San Diego, California, USA) (PLDI ’07). ACM, New
York, NY, USA, 245–255. https://doi.org/10.1145/1250734.1250762

[19] Ahmed ElTantawy and Tor M. Aamodt. 2016. MIMD Synchronization
on SIMT Architectures. In The 49th Annual IEEE/ACM International
Symposium on Microarchitecture (Taipei, Taiwan) (MICRO-49). IEEE
Press, Article 11, 14 pages.

[20] Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: Efficient
and Precise Dynamic Race Detection. In Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (Dublin, Ireland) (PLDI ’09). ACM, New York, NY, USA,
121–133. https://doi.org/10.1145/1542476.1542490

[21] Wilson W. L. Fung, Inderpreet Singh, Andrew Brownsword, and Tor M.
Aamodt. 2011. Hardware Transactional Memory for GPU Architectures.
In Proceedings of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture (Porto Alegre, Brazil) (MICRO-44). Association
for Computing Machinery, New York, NY, USA, 296–307. https:
//doi.org/10.1145/2155620.2155655

[22] Olivier Giroux, Luke Durant, Mark Harris, and Nick Stam. 2017. Inside
Volta: The World’s Most Advanced Data Center GPU. https://devblogs.
nvidia.com/inside-volta/. Accessed: 2019-11-20.

[23] Mark Harris. 2017. Unified Memory for CUDA Beginners. https:
//developer.nvidia.com/blog/unified-memory-cuda-beginners/.

[24] Mark Harris and Kyrylo Perelygin. 2017. Cooperative Groups: Flexi-
ble CUDA Thread Programming. https://developer.nvidia.com/blog/
cooperative-groups/. Accessed: 2020-11-19.

[25] Anup Holey, Vineeth Mekkat, and Antonia Zhai. 2013. HAccRG:
Hardware-Accelerated Data Race Detection in GPUs. In Proceedings
of the 2013 42Nd International Conference on Parallel Processing
(ICPP ’13). IEEE Computer Society, Washington, DC, USA, 60–69.
https://doi.org/10.1109/ICPP.2013.15

[26] Derek R. Hower, Blake A. Hechtman, Bradford M. Beckmann, Bene-
dict R. Gaster, Mark D. Hill, Steven K. Reinhardt, and David A.
Wood. 2014. Heterogeneous-race-free Memory Models. In Proceed-
ings of the 19th International Conference on Architectural Support
for Programming Languages and Operating Systems (Salt Lake City,

https://doi.org/10.1145/2694344.2694391
https://doi.org/10.1109/IPDPS.2018.00052
https://doi.org/10.1007/978-3-319-08867-9_15
https://doi.org/10.1007/978-3-319-06200-6_18
https://doi.org/10.1145/1007912.1007933
https://doi.org/10.1145/2384616.2384625
https://doi.org/10.1145/2384616.2384625
https://doi.org/10.1145/2743017
https://doi.org/10.1145/1806596.1806626
https://doi.org/10.1109/IISWC.2012.6402918
https://iss.oden.utexas.edu/?p=projects/galois/lonestargpu
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1145/1735688.1735702
https://doi.org/10.1145/2755573.2755601
https://doi.org/10.1145/122759.122767
https://doi.org/10.1145/2384616.2384650
https://doi.org/10.1145/3062341.3062342
https://doi.org/10.1145/1250734.1250762
https://doi.org/10.1145/1542476.1542490
https://doi.org/10.1145/2155620.2155655
https://doi.org/10.1145/2155620.2155655
https://devblogs.nvidia.com/inside-volta/
https://devblogs.nvidia.com/inside-volta/
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
https://developer.nvidia.com/blog/cooperative-groups/
https://developer.nvidia.com/blog/cooperative-groups/
https://doi.org/10.1109/ICPP.2013.15

SOSP ’21, October 26–29, 2021, Virtual Event, Germany Aditya K Kamath and Arkaprava Basu

Utah, USA) (ASPLOS ’14). ACM, New York, NY, USA, 427–440.
https://doi.org/10.1145/2541940.2541981

[27] Aditya K Kamath, Alvin A George, and Arkaprava Basu. 2019. Scoped
Racey Benchmark Suite. https://github.com/csl-iisc/ScoR/. Accessed:
2020-11-15.

[28] Aditya K. Kamath, Alvin A. George, and Arkaprava Basu. 2020.
ScoRD: A Scoped Race Detector for GPUs. In Proceedings of the
ACM/IEEE 47th Annual International Symposium on Computer Archi-
tecture (Virtual Event) (ISCA ’20). IEEE Press, 1036–1049. https:
//doi.org/10.1109/ISCA45697.2020.00088

[29] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in
a Distributed System. Commun. ACM 21, 7 (July 1978), 558–565.
https://doi.org/10.1145/359545.359563

[30] Pengcheng Li, Chen Ding, Xiaoyu Hu, and Tolga Soyata. 2014. LDe-
tector: A low overhead race detector for GPU programs. In 5th
Workshop on Determinism and Correctness in Parallel Programming
(WODET2014).

[31] Christopher Lidbury and Alastair F. Donaldson. 2017. Dynamic
Race Detection for C++11. In Proceedings of the 44th ACM SIG-
PLAN Symposium on Principles of Programming Languages (Paris,
France) (POPL 2017). ACM, New York, NY, USA, 443–457. https:
//doi.org/10.1145/3009837.3009857

[32] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. 2006. AVIO:
Detecting Atomicity Violations via Access Interleaving Invariants. In
Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems (San Jose,
California, USA) (ASPLOS XII). Association for Computing Machinery,
New York, NY, USA, 37–48. https://doi.org/10.1145/1168857.1168864

[33] Duane Merrill. 2015. Cub: Cuda unbound. http://nvlabs.github.io/cub
(2015).

[34] NVIDIA. 2021. CUDA C++ Programming Guide. https://docs.nvidia.
com/cuda/cuda-c-programming-guide/. Accessed: 2021-05-07.

[35] NVIDIA. 2021. CUDA Samples. https://docs.nvidia.com/cuda/cuda-
samples/index.html. Accessed: 2021-05-07.

[36] NVIDIA. 2021. Parallel Thread Execution ISA Version 7.3. https:
//docs.nvidia.com/cuda/parallel-thread-execution/. Accessed: 2021-
05-07.

[37] NVIDIA. 2021. Racecheck Tool. https://docs.nvidia.com/cuda/cuda-
memcheck/index.html. Accessed: 2021-05-07.

[38] Robert O’Callahan and Jong-Deok Choi. 2003. Hybrid Dynamic Data
Race Detection. In Proceedings of the Ninth ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming (San Diego,
California, USA) (PPoPP ’03). ACM, New York, NY, USA, 167–178.
https://doi.org/10.1145/781498.781528

[39] Yuanfeng Peng, Vinod Grover, and Joseph Devietti. 2018. CURD:
A Dynamic CUDA Race Detector. In Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (Philadelphia, PA, USA) (PLDI 2018). ACM, New York, NY,
USA, 390–403. https://doi.org/10.1145/3192366.3192368

[40] Sebastian Raschka, Joshua Patterson, and Corey Nolet. 2020. Machine
Learning in Python: Main developments and technology trends in data
science, machine learning, and artificial intelligence. arXiv preprint
arXiv:2002.04803 (2020).

[41] Jason Sanders and Edward Kandrot. 2010. CUDA by Example: An
Introduction to General-Purpose GPU Programming (1st ed.). Addison-
Wesley Professional, Boston, MA, USA.

[42] Jason Sanders and Edward Kandrot. 2021. CUDA By Example - Er-
rata Page. https://developer.nvidia.com/cuda-example-errata-page.
Accessed: 2020-05-01.

[43] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and
Thomas Anderson. 1997. Eraser: A Dynamic Data Race Detector for
Multithreaded Programs. ACM Trans. Comput. Syst. 15, 4 (Nov. 1997),
391–411. https://doi.org/10.1145/265924.265927

[44] Konstantin Serebryany and Timur Iskhodzhanov. 2009. Thread-
Sanitizer: Data Race Detection in Practice. In Proceedings of the
Workshop on Binary Instrumentation and Applications (New York,
New York, USA) (WBIA ’09). ACM, New York, NY, USA, 62–71.
https://doi.org/10.1145/1791194.1791203

[45] Matthew D. Sinclair, Johnathan Alsop, and Sarita V. Adve. 2017. Het-
eroSync: A Benchmark Suite for Fine-Grained Synchronization on
Tightly Coupled GPUs. In IEEE International Symposium on Workload
Characterization (IISWC).

[46] Oreste Villa, Mark Stephenson, David Nellans, and Stephen W. Keck-
ler. 2019. NVBit: A Dynamic Binary Instrumentation Framework for
NVIDIA GPUs. In Proceedings of the 52nd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (Columbus, OH, USA)
(MICRO ’52). Association for Computing Machinery, New York, NY,
USA, 372–383. https://doi.org/10.1145/3352460.3358307

[47] Oreste Villa, Zi Yan, and David Nellans. 2019. NVBit Source Code.
https://github.com/NVlabs/NVBit/. Accessed: 2020-11-15.

[48] Kai Wang, Don Fussell, and Calvin Lin. 2019. Fast Fine-Grained
Global Synchronization on GPUs. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems (Providence, RI, USA) (ASPLOS
’19). Association for Computing Machinery, New York, NY, USA,
793–806. https://doi.org/10.1145/3297858.3304055

[49] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy
Riffel, and John D. Owens. 2016. Gunrock: A High-Performance
Graph Processing Library on the GPU. In Proceedings of the 21st
ACM SIGPLAN Symposium on Principles and Practice of Paral-
lel Programming (Barcelona, Spain) (PPoPP ’16). Association for
Computing Machinery, New York, NY, USA, Article 11, 12 pages.
https://doi.org/10.1145/2851141.2851145

[50] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy
Riffel, and John D. Owens. 2021. Gunrock. https://github.com/
gunrock/gunrock.

[51] Benjamin Wester, David Devecsery, Peter M. Chen, Jason Flinn, and
Satish Narayanasamy. 2013. Parallelizing Data Race Detection. In Pro-
ceedings of the Eighteenth International Conference on Architectural
Support for Programming Languages and Operating Systems (Houston,
Texas, USA) (ASPLOS ’13). Association for Computing Machinery,
New York, NY, USA, 27–38. https://doi.org/10.1145/2451116.2451120

[52] Mingyuan Wu, Yicheng Ouyang, Husheng Zhou, Lingming Zhang,
Cong Liu, and Yuqun Zhang. 2020. Simulee: Detecting CUDA Syn-
chronization Bugs via Memory-Access Modeling. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering
(Seoul, South Korea) (ICSE ’20). Association for Computing Machin-
ery, New York, NY, USA, 937–948. https://doi.org/10.1145/3377811.
3380358

[53] Ayse Yilmazer and David Kaeli. 2013. HQL: A Scalable Synchro-
nization Mechanism for GPUs. In Proceedings of the 2013 IEEE
27th International Symposium on Parallel and Distributed Process-
ing (IPDPS ’13). IEEE Computer Society, USA, 475–486. https:
//doi.org/10.1109/IPDPS.2013.82

[54] Mai Zheng, Vignesh T. Ravi, Feng Qin, and Gagan Agrawal. 2011.
GRace: A Low-overhead Mechanism for Detecting Data Races in
GPU Programs. In Proceedings of the 16th ACM Symposium on
Principles and Practice of Parallel Programming (San Antonio, TX,
USA) (PPoPP ’11). ACM, New York, NY, USA, 135–146. https:
//doi.org/10.1145/1941553.1941574

[55] Mai Zheng, Vignesh T. Ravi, Feng Qin, and Gagan Agrawal. 2014.
GMRace: Detecting Data Races in GPU Programs via a Low-Overhead
Scheme. IEEE Trans. Parallel Distrib. Syst. 25, 1 (Jan. 2014), 104–115.
https://doi.org/10.1109/TPDS.2013.44

[56] Pin Zhou, Radu Teodorescu, and Yuanyuan Zhou. 2007. HARD:
Hardware-Assisted Lockset-based Race Detection. In 2007 IEEE 13th

https://doi.org/10.1145/2541940.2541981
https://github.com/csl-iisc/ScoR/
https://doi.org/10.1109/ISCA45697.2020.00088
https://doi.org/10.1109/ISCA45697.2020.00088
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/3009837.3009857
https://doi.org/10.1145/3009837.3009857
https://doi.org/10.1145/1168857.1168864
http://nvlabs.github.io/cub
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-samples/index.html
https://docs.nvidia.com/cuda/cuda-samples/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/
https://docs.nvidia.com/cuda/parallel-thread-execution/
https://docs.nvidia.com/cuda/cuda-memcheck/index.html
https://docs.nvidia.com/cuda/cuda-memcheck/index.html
https://doi.org/10.1145/781498.781528
https://doi.org/10.1145/3192366.3192368
https://developer.nvidia.com/cuda-example-errata-page
https://doi.org/10.1145/265924.265927
https://doi.org/10.1145/1791194.1791203
https://doi.org/10.1145/3352460.3358307
https://github.com/NVlabs/NVBit/
https://doi.org/10.1145/3297858.3304055
https://doi.org/10.1145/2851141.2851145
https://github.com/gunrock/gunrock
https://github.com/gunrock/gunrock
https://doi.org/10.1145/2451116.2451120
https://doi.org/10.1145/3377811.3380358
https://doi.org/10.1145/3377811.3380358
https://doi.org/10.1109/IPDPS.2013.82
https://doi.org/10.1109/IPDPS.2013.82
https://doi.org/10.1145/1941553.1941574
https://doi.org/10.1145/1941553.1941574
https://doi.org/10.1109/TPDS.2013.44

iGUARD: In-GPU Advanced Race Detection SOSP ’21, October 26–29, 2021, Virtual Event, Germany

International Symposium on High Performance Computer Architec-
ture (HPCA ’07). IEEE, Piscataway, NJ, USA, 121–132. https:
//doi.org/10.1109/HPCA.2007.346191

https://doi.org/10.1109/HPCA.2007.346191
https://doi.org/10.1109/HPCA.2007.346191

	Abstract
	1 Introduction
	2 Background
	2.1 Advanced GPU features

	3 Races due to advanced GPU features
	3.1 Races due to scopes
	3.2 Races due to ITS
	3.3 Races due to Cooperative Groups (CG)

	4 Prior race detectors and iGUARD's goals
	5 Design overview of iGUARD
	6 Implementation of iGUARD
	6.1 Metadata layout and allocation
	6.2 Metadata updation
	6.3 Inferring the locking protocol
	6.4 Detecting and reporting races
	6.5 Reducing serialization in metadata access
	6.6 Tying it all together with examples
	6.7 Potential false positives and negatives

	7 Evaluation
	7.1 Detecting races
	7.2 Comparing performance overhead
	7.3 Benefits of reduced serialization in metadata access
	7.4 Understanding sources of overheads
	7.5 Scaling with memory footprint

	8 Related work
	9 Conclusion
	Acknowledgments
	References

