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Abstract—Secure Two-party Computation (2PC) allows
two parties to compute any function on their private inputs
without revealing their inputs to each other. In the offline/on-
line model for 2PC, correlated randomness that is independent
of all inputs to the computation, is generated in a preprocessing
(offline) phase and this randomness is then utilized in the online
phase once the inputs to the parties become available. Most
2PC works focus on optimizing the online time as this overhead
lies on the critical path. A recent paradigm for obtaining
efficient 2PC protocols with low online cost is based on the
cryptographic technique of function secret sharing (FSS).

We build an end-to-end system ORCA to accelerate the
computation of FSS-based 2PC protocols with GPUs. Next,
we observe that the main performance bottleneck in such
accelerated protocols is in storage (due to the large amount
of correlated randomness), and we design new FSS-based 2PC
protocols for several key functionalities in ML which reduce
storage by up to 5x. Compared to prior state-of-the-art on
secure training accelerated with GPUs in the same computation
model (PIRANHA, Usenix Security 2022), we show that ORCA
has 4% higher accuracy, 98x lesser communication, and is
26x faster on CIFAR-10. Moreover, maintaining training
accuracy while using fixed-point needs stochastic truncations,
and all prior works on secure fixed-point training (including
PIRANHA) use insecure protocols for it. We provide the first
secure protocol for stochastic truncations and build on it to
provide the first evaluation of training with end-to-end security.
For secure ImageNet inference, ORCA achieves sub-second
latency for VGG-16 and ResNet-50, and outperforms the state-
of-the-art by 8 — 103 x.

1. Introduction

Machine learning training has emerged as an extremely
important and data hungry application. While the trained
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models get better with more data and diverse data, very often
this data is highly sensitive, e.g., financial, healthcare or
browsing data. Use of privacy-preserving technologies such
as secure multiparty computation (MPC) [29], [68] provide
secure training over this sensitive data [40]], [48]], [49]], [60],
[[62]], [64], [66]. Secure training using MPC allows multiple
mutually distrusting parties to train a model of their joint
data without revealing anything about their data to each
other or to any other party beyond the final trained model.
However, MPC-based secure training has high performance
overheads. Through a series of recent works, the end-to-
end time required to securely train models on the CIFAR-
10 dataset has reduced from years [49]], to months [64], to
weeks [60], to a day with PIRANHA [66]. PIRANHA is the
current state-of-the-art in accelerating secure training using
GPUs. Our goal is to reduce this time to less than an hour.

PIRANHA works in the offline/online model where the
data-independent correlated randomness is generated in an
offline pre-processing phase, and parties use this correlated
randomness during the data-dependent online phase. Works
in this model, including PIRANHA and us, focus on reducing
the online complexity. To obtain efficient secure training, PI-
RANHA makes several MPC-friendly approximations to ML
such as replacing maxpools with average pools [60], truncat-
ing shares locally [49], [60] and approximating exponenti-
ations with piecewise-linear functions. Moreover, following
Falcon [64]], it also trade-offs security for efficiency, and
reveals intermediate values during softmax computation, a
leakage disallowed by standard MPC security requirements.
PIRANHA observes that its ad hoc approximations lead to
a significant loss in model accuracy w.r.t. PyTorch training.
For example, PIRANHA reports that VGG16 on CIFAR-10
gives 67% accuracy in PyTorch, which drops to 55% in
secure training [66]]. Finally, all prior works on secure
training and inference that rely on stochastic truncations
[24], [32], [401, [43]I, [47]-149], [60], [62], [64], [66], use
cheap but insecure protocols for it (e.g., truncating shares
locally), as pointed out by [45].



1.1. Our Contributions

Unlike [49], [60], [62]], [64], [66], our secure train-
ing remains faithful to quantized training algorithms from
ML literature [31] that are known to mirror floating-point
PyTorch training. We show that faithful secure training
of small models (with thousands of parameters) produces
more accurate models than secure training of large models
(with millions of parameters) with PIRANHA. PIRANHA
approximations fail on small models - training our small
models with these approximations (either truncating shares
locally or piecewise-linear approximation of exponentiation)
reduces the accuracy of the trained model to that of a random
classifier. On CIFAR-10, our secure training beats PIRANHA
on all metrics. We are secure and produce models with
4% higher accuracy in 26x less time while incurring 98 x
lower communication. ORCA reaches a CIFAR-10 accuracy
of 59.6% in 45 minutes and 69% in 112 minutes (vs.
PIRANHA’s 55% in a day).

On the technical side, our starting point is recent ad-
vances in function secret sharing (FSS) based secure 2-
party computation (2PC) protocols in the pre-processing
model [16], [19], [30]. A key feature of these protocols
is that they reduce online communication while increasing
compute and storage. The online phase in FSS requires a
large number of AES evaluations and reads huge FSS keys
that are generated during pre-processing. Thus, FSS shifts
the performance bottleneck from the external network to
compute and memory that is scoped to a single machine. In
this work, we significantly reduce the overheads of secure
training by effectively accelerating FSS-based 2PC with
GPUs. However, we face several challenges on both the
systems and cryptographic front, which we discuss next.

1.1.1. System optimizations (detailed in Section 3). To ac-
celerate compute, we create efficient GPU implementations
of FSS protocols that are an order of magnitude faster than
the CPU-based protocols. This result is surprising because
prior work that attempted to accelerate FSS with GPUs
got only marginal improvements over the CPU implemen-
tation [58|]. The key to our accelerated implementation is a
unique combination of system optimizations guided by the
GPU micro-architecture. We leverage several GPU micro-
architectural features, such as using GPU’s scratchpad mem-
ory for faster AES computation, optimizing data layout to
improve GPU cache hit rates, and utilizing GPU’s lockstep
execution by groups of threads to optimally pack interme-
diate results of cryptographic computations in the memory.
Interestingly, we discovered that once the computation is
well-optimized on the GPU, the time to read GBs of FSS
keys from the SSD to GPU memory becomes the bottleneck.
To address this, we lean on new cryptographic protocols
(discussed next) to reduce FSS key size for commonly
occurring nodes in training.

1.1.2. Cryptographic improvements. Staying faithful to
quantized training, e.g., the one described in Gupta et

al. [31]], requires efficient protocols for stochastic trunca-
tions of fixed-point values, ReLUs, maxpools, and floating-
point softmax. Stochastic truncations, ReLUs and maxpools
are expensive and lead to large keys. Gupta et al. [31]]
show that deterministic truncations fail to maintain accuracy
during training and propose the use of stochastic truncations.
However, the stochastic truncation protocols used by all
prior works on secure training are insecure [45[. To maintain
end-to-end security, we provide the first secure protocol
for stochastic truncations. This stronger security comes at
a significant cost. We create novel protocols that reduce
the key size by up to 5x (Section 5) and are crucial for
obtaining low end-to-end latency. Quantized training per-
forms almost all operations in fixed-point but uses floating-
point arithmetic in softmax computations to maintain accu-
racy [31]. In secure training literature, there are three ways
of computing exponentiations occurring in softmax. First,
use the very cheap piecewise-linear approximations [41],
[66]. Second, use fixed-point approximations that are more
expensive [39], [40]. Third, use even more expensive but
precise computation over floating-point [54]]. To stay faithful
to the computations done by Gupta et al. [31]], we choose
the third option. To this end, we create novel FSS protocols
to efficiently stitch protocols for fixed-point with protocols
for floating-point (Section [6).

1.1.3. ORCA. We implement our techniques in ORCA, a
push-button tool for secure training, that will be made pub-
licly available!. ORCA sports a library of GPU-accelerated
FSS blocks that future research in this area can build upon
(Section[7). We show that training small models with ORCA
while staying faithful (see Figure [5)) to quantized train-
ing [31]], outperforms the approximate large model training
of PIRANHA in accuracy (upto 14%), time (4 — 26x),
and communication (39 — 98x) (Section [8.I). In a more
apples-to-apples comparison, ORCA outperforms PIRANHA
on approximate training of large models by ~ 7.3x (Sec-
tion 8.2.I). ORCA also outperforms prior works that don’t
use PIRANHA approximations by 7 — 693 x (Section [8.2.2).
ORCA’s protocols need smaller FSS keys (Table [§) and
ORCA’s GPU-based protocols outperform their CPU coun-
terparts by an order of magnitude (Table [7). Finally, ORCA
achieves the first ever sub-second ImageNet-scale inference
of VGG-16 and ResNet-50 and outperforms the state-of-the-
art [30], [41]] by 8 — 103x (Table [9).

2. Preliminaries

2.1. Notation

Let A denote the computational security parameter. 1{b}
represents the indicator function that outputs 1 when the
predicate b is true and O otherwise. Arrays are represented
using boldface, and their elements are represented using
the same symbol in a normal typeface with the index in
subscript, starting from 0. For example = {z¢, 1, ... }.

1. https://github.com/mpc-msri/EzPC.git



Datatypes. For N = 2", Uy represents the set of n-
bit unsigned integers. We denote the set of real numbers
using the symbol R. For x € Uy, uint,(z) and int,(z)
represent the corresponding unsigned and signed number
(in 2’s-complement representation) in Z respectively.

Fixed-point representation. Fixed-point representation,
parameterized by a bitwidth n and a scale f, encodes a
real number » € R into z € Uy such that z = |r - 27|
mod N. For an unsigned (resp., signed) fixed-point number
x € Uy with scale f, [[z]]rff (resp., [z]n,f) denotes it’s

underlying real value %jc(x) (resp. m;#)

Operators. Arithmetic operations in Uy, like addition
and multiplication, are followed by a mod N and we omit
this whenever it is clear from the context. For x € Uy,
and n > m, we use the notation ZeroExt,, ,(x) (resp.,
SignExt,,, ,()) to represent a number y € Uy such that
uint,, () = uint,(y) (resp., int,,(x) = int,(y)). We use
x >4 f (resp., x > f) to represent arithmetic (resp.,
logical) right shift of = by f such that the input and the
output have the same bitwidth. For an n-bit number = and
f < n, the operation truncate-reduce, denoted by TR(z, f),
is defined as dropping the lower f bits of input and returning
the output as an (n — f)-bit number. For an array a and
i < |a|, we use the notations @ > i and @ < i to represent
the array rotated to the right and left, respectively, by ¢ steps.

Secret sharing. For x € Uy, we define (additive) secret
sharing of z as the process of sampling two random numbers
g, x1 € Uy, such that = xg + ;7 mod N and denote it
by share(z). For array variables and tuples, this operation
is applied element-wise. When the secret shares are held by
two parties, e.g., Py holds zy and P; holds x;, we denote
the operation of exchanging the shares and adding them up
by z = reconstruct(zy), for b € {0,1}.

2.2. Threat Model

We consider 2-party secure computation (2PC) in the
pre-processing model [30]], [41]l, [58], [66]. In the pre-
processing phase, correlated randomness independent of all
inputs to the computation is generated. This can be gener-
ated in several ways — through a trusted dealer [16]], [[19],
[300, [41], [58], [66], a 2PC protocol [29], [68]], or through
more efficient specialized 2PC protocols [26]. In this work,
we deploy the first method. We prove the security of our
protocols in the standard simulation paradigm [20], [29],
[46] against a semi-honest static probabilistic polynomial
time (PPT) adversary that corrupts one of the two parties.
For completeness, we describe the detailed threat model in

Our protocols trivially extend to the “client-server”
model, where m > 2 clients secret share their inputs with
the servers Py and P, thus delegating their computation to
these two parties [49]]. Security can be analogously defined
in this case and we can obtain semi-honest security against
up to m — 1 clients colluding with one of the two servers.

2.3. Function Secret Sharing and DCFs

A Function Secret Sharing (FSS) Scheme [17]], [18] is
a pair of algorithms (Gen, Eval). Gen splits a function g :
G™ — G°“t into two functions (go,g1) and Eval takes as
input the party identifier b € {0, 1}, function share g, and
evaluates g, on input z € G™". The correctness property of
the FSS scheme requires go(z)+g1(z) = g(x). The security
property requires that each function g; hides g.

Definition 1 (FSS: Syntax [17], [18]]). A (2-party) FSS
scheme is a pair of algorithms (Gen, Eval) such that:

o Gen(1*,§) is a PPT key generation algorithm that given
1" and § € {0,1}* (description of a function g) outputs a
pair of keys (ko, k1). We assume that § explicitly contains
descriptions of input and output groups G, G°Ut.

o Eval(b, kp, ) is a polynomial-time evaluation algorithm
that given b € {0,1} (party index), ky, (key defining gy :
G — G°*) and x € G™ (input for gy) outputs vy, € GOUt
(the value of gp(x)).

The keys (ko, k1) output by Gen are called FSS keys.
Size of kg or ki is the key size and corresponds to the cor-
related randomness required to be stored by each evaluator.
We formally define the correctness and security properties
of an FSS scheme in

Distributed Comparison Functions (DCFs) were intro-
duced by Boyle et al. [[18] and provide an FSS scheme for
special interval functions.

Definition 2 (DCF [[16], [[18]]). A special interval function

a< 5" Uy — G°, also called comparison function, takes
as an input x € Uyn and outputs B if v+ < o and 0
otherwise. The corresponding FSS scheme for this function

(Gen™,Eval<) is called Distributed Comparison Function.

All our protocols use DCFs for the case when GOt =
U, for some L = 2¢ .0 < ). Below, we summarize the cost
of such a DCF using the optimized construction from [[16].

Theorem 1 (Cost of DCF [16]). Given PRG G : {0,1}* —
{0,1}4**2, there exists a DCF for fss : Un — Uy for

N = 2" L = 2° with key size n(A+£+2) + \+£. Number
of PRG invocations in Gen? is 2n and in Eval is n.

We write DCF,, ; and keysize(DCF,, ;) to represent this
scheme and its key size, respectively. Similar to prior
works [[16]], [30]], we set A = 126 and realize the required
PRG using 4 calls to AES with 128-bit output in CTR mode.
Next, as observed in [30], during evaluation it suffices to
make only 2 AES calls because only 2 out of 4 blocks are
needed in the evaluation algorithm of [16] and CTR mode
allows us to only generate the required blocks. When we
require a DCF with smaller output length, we use the early
termination optimization from [18] (ported to the context
of DCFs) and obtain the following costs.

Theorem 2 (DCF with small payloads). For i €
{0,1,2,3,4,5,6), £ = 2i, A = 126 and n > 7 — i, the
key size of DCF,, ¢ is (n — 8 +i)(A+ €+ 2) + X\ + 256. The
number of AES calls in Geny is 8(n — 8 +1i) + 4 and in



Evaly is 2(n — 8 +i) + 1. When n <7 — i, the key size of
DCF,, ¢ is 2""" and the number of AES calls in Gen and
Evalys is 0.

2.4. Secure 2PC with pre-processing using FSS

[L6], [19] proposed a semi -honest static secure 2PC
protocol using FSS. Consider two evaluators who want to
evaluate the computation circuit with gates {g;}; and wires
{w;};. The protocol evaluates this circuit securely in two
phases - offline and online.

2.4.1. Offline Phase. For each wire w; in the computation
circuit, randomly sample a mask r;. For each gate g, with
input wire w; and output wire w;, generate FSS keys
(K3, kJ) for the offset function, g\""il(z) = g(x —r;) +r;,
and provide party b with k. For input and output wires w;
owned by party b, party b learns the corresponding mask r;.

2.4.2. Online Phase. For each input wire w; with value
x; owned by party b, the party b calculates masked wire
value &; = x; + r; and sends it to the other party. Now,
starting from the input gates, the two parties process gates
in topological order to receive masked output wire values.
To process a gate g, with input wire w;, output wire wj,
and masked input wire value &; = x; + r;, party b uses
Eval with k{ and &; to obtain a share of the masked output
wire value #; = gl"7il(%;) = g(&; — ;) + 1 = g(z:) +
r; = x; +r; which they reconstruct using a single round of
communication to obtain £ ;. For output wires, they subtract
the corresponding mask from the preprocessing phase to
obtain output in clear.

2.5. GPU accelerated computing

While the graphics processing unit (GPU) was originally
designed for accelerating graphics, they have emerged as a
key platform to accelerate parallel computation, including
DNN training, data analytics, and graph processing. Even
a mid-range NVIDIA A6000 GPU can execute over five
thousand threads concurrently. Further, more than a hundred
thousand threads remain ready to run in a GPU for quickly
substituting threads whose execution stalls. GPU program-
ming languages such as CUDA [2] require programmers to
arrange threads in a hierarchy to keep GPU’s massive par-
allelism tractable. A group of 32 GPU threads called warp
typically executes in lockstep and is the smallest schedulable
unit of work. Up to 32 warps make up a threadblock. A
GPU kernel is often launched with hundreds of threadblocks,
creating a grid of hundreds of thousands of threads.

A GPU’s architecture reflects its programming hierarchy.
Threads of a warp execute in lockstep on a Single Instruction
Multiple Data (SIMD) unit. Several such SIMD units are
placed on a Streaming Multiprocessor (SM). A GPU will
have tens of such SMs; e.g., A6000 has 84 SMs. All threads
of a threadblock are scheduled onto the same SM; threads
from different threadblocks can run on different SMs.

GPU’s memory subsystem reflects a similar hierarchy.
The memory onboard the GPU typically supports more than
TB/sec bandwidth but is limited to a few tens of GBs in
capacity. Contents from this memory are cached in two
levels of hardware caches. A GPU has several specialized
software-managed hardware caches too. For example, each
SM has a scratchpad (a.k.a, shared memory) for easy sharing
of data amongst the threads of the same threadblock. This
is possible since all threads of a threadblock are guaranteed
to execute on the same SM. Similarly, a constant cache in
an SM is purpose-built for storing frequently used read-only
data. Each thread in CUDA also has tens of fast registers.
Since threads of a warp always execute as a group, CUDA
enables collective operations to exchange and/or reduce data
across threads of a warp using the registers.

Finally, we note that a GPU is always accompanied
by a CPU. It connects to its host CPU over a PCle in-
terconnect [[10]. A GPU-accelerated program starts running
on the CPU. Portions of the program running on the CPU
allocate/de-allocate memory on the GPU and also transfer
data to and from the GPU memory over the PCle bus.
CPU is also responsible for launching GPU “kernels” (GPU-
accelerated function written in CUDA/OpenCL) with a de-
sired number of threads in the grid to compute on the GPU.

3. Accelerating FSS on a GPU

Accelerating FSS-based secure computation on GPU is
an essential goal of ORCA. Toward this, we make progress
in two key aspects. I) We demonstrate how a GPU’s archi-
tecture must be leveraged for reasonable speedups in FSS-
based computation. (2) We discover that the time to read FSS
keys from the storage can eclipse the benefits of GPU ac-
celeration. We propose a combination of new cryptographic
techniques and systems improvisations to limit key read
time. Next, we detail these two aspects in ORCA’s design.

3.1. Accelerating FSS-based compute on GPU

The prior work that attempted to accelerate FSS-based
protocol on GPU [58]] observed only modest speedups over
CPU implementation in the absence of a comprehensive
strategy to leverage idiosyncrasies of a GPU architecture. In
ORcCA, we employ three key techniques to harness GPU’s
computing power as follows.

@D Faster AES computation (AES) A key primitive in
FSS-based computation is the Distributed Comparison Func-
tion or DCF (Section ). We empirically find that computing
DCF can account for the majority of overall computation
time, e.g., in the forward pass of CNN3, DCFs account for
about 93% of the overall compute time. Evaluating a DCF
over x € Uy requires 2n invocations of AES (Section 2.3).

Consider the task of performing 10 million DCF evalua-
tions for n = 64 as a microbenchmark to quantify the speed-
up potentials of different optimizations we will discuss
in this subsection. This choice is driven by the fact that
several models perform many millions of DCFs per layer.



Table |1| empirically captures the computation time of the
microbenchmark, starting with the baseline discussed next.

To accelerate AES on a GPU, we start by using Py-
Torch’s csprng extension [11]] following prior work [58]],
[60]. AES requires repeatedly looking up precomputed
lookup tables [61]. Upon analyzing the performance of
PyTorch’s csprng using NVIDIA’s Nsight tool [8], we
notice that it often stalls while accessing the lookup table. It
keeps lookup tables on the constant cache within each SM of
the GPU. While accesses to constant cache are fast, they are
suitable only if the GPU threads access the same address at
any given cycle [3]. Otherwise, the accesses are serialized,
stalling computation. Unfortunately, different threads access
different indices (thus, different addresses).

To reduce such stalls, we replicate the lookup table once
for each warp in an SM (here, 32) following the strategy laid
out in a prior work [61]]. Further, the replicated tables are
placed onto the scratchpad (shared memory) of each SM in
the GPU. This is because the scratchpad is banked, unlike
the constant cache. Data in different banks can be accessed
simultaneously without stalling. Thus, replicas of the lookup
table are placed in different banks of the scratchpad, allevi-
ating stalls due to accesses to the AES’s lookup table.

The first entry in Table|l|shows that the AES implemen-
tation of PyTorch’s csprng extension [[11] requires 3305
ms. It reduces to 840 ms when we use the optimized AES
implementation (“AES” in the Table) giving a 3.9 x speedup.

@ Optimized data layout for cache locality (LAYOUT)
Computing a DCF requires the evaluator to perform n
chained PRG (2n AES) [16], [30]. However, the evaluator
slightly modifies the output of the 7** PRG invocation before
feeding it to the (i +1)*"* PRG invocation with a correction
word (CW;) [16]. Consequently, there are n correction
words for each DCF key. We notice that the layout of these
correction words in the memory impacts performance.

In a parallelized CPU implementation, each thread
would compute a DCF while running independently on a
CPU core. Thus, laying out n correction words for a DCF
computation contiguously in the memory is better for cache
locality. In a GPU implementation, however, a group of
32 threads in a warp execute in lockstep as each thread
computes a DCF. In a lockstep execution, threads in a warp
can proceed to compute its k" PRG only when all threads
in the warp have finished computing (k — 1)® PRG. Thus,
unlike the CPU implementation, keeping all the n correction
words for a given DCF contiguously leads to poor cache
hit rates. Instead, for a GPU implementation, one must
consider cache locality for all threads in a warp in aggregate.
Therefore, we place the correction words for a given round
of PRG across all threads in a warp contiguously. In other
words, the correction words for a given (say, k") round of
PRG of all threads in the warp (DCF computation) are laid
contiguously in the memory. The correction words for the
next round of PRG (k + 1) are placed thereafter in the
memory in a similar fashion.

We found that the optimized layout of correction words
improves the L1 cache hit rate from 20% to 49%. As shown

Naive | AES | AES+LAYOUT | AES+LAYOUT+MEM
Time (ms) | 3305 840 716 523
Speedup 3.9%x 4.6x 6.3

Table 1: Speedup of 10M DCFs with our optimizations

in Table 1} this optimization (LAYOUT) further reduces the
time to compute ten million DCFs from 840 ms to 716 ms.
@ Optimizing memory footprint (MEM): FSS-based pro-
tocols lower communication overheads but demand larger
key sizes. The files containing keys would typically reside
on the storage (e.g., SSD) and must be read into the memory
during online computation. Reading large keys from the
SSD can be prohibitively slow (Section 3.2). We address
this challenge with novel cryptographic protocols that sig-
nificantly reduce the keysize for commonly occurring nodes
in training and inference detailed in Sections [ [5] and [§]
A reduction in keysize not only reduces the data movement
between the CPU and GPU over the slow PCle interconnect,
it also reduces the footprint on limited GPU memory. A key
technique in reducing keysize is using DCFs with smaller
payloads, e.g., 1-bit instead of 64-bit, and performing com-
parisons on shorter inputs, e.g., 40-bit inputs instead of 64-
bit inputs wherever possible.

However, harnessing the full benefits of a smaller DCF
payload is not straightforward. A simple implementation that
would keep 1-bit output to a standard data type such as
a byte leads to 8x memory bloat. Instead, in ORCA, 32
threads of a warp write their 1-bit DCF output into a 32-
bits integer in a lockstep fashion. This avoids memory bloat
but requires threads in a warp to write to a single inte-
ger without needing locks. Locks are prohibitively slow in
GPUs [65]. OrRCA leverages CUDA’s warp-synchronization
primitives to ensure that each thread can write its out-
put without interfering with writes from other threads in
the warp. Specifically, it uses CUDA’s __ballot_sync() and
__shfl_down_sync() intrinsic methods for warp-level syn-
chronized data exchange without locks [13]]. Table E] shows
further speedup due to this optimization (MEM). The time to
perform ten million DCFs drops to 523 ms (27% speedup),
capping a 6.3 x improvement over the naive implementation.

3.2. Reducing time to read FSS keys

A key advantage of FSS-based secure computing pro-
tocol is that it limits communication between the parties.
However, it necessitates reading large amounts of pre-
generated keys while performing online computation. We
discovered that once the computation is accelerated on the
GPU through the above-mentioned strategies, the time to
read the FSS keys from the storage (here, SSD) to GPU’s
memory becomes the bottleneck. We adopt a three-prong
approach to address this bottleneck.

@D Bypassing OS page cache: By default, the OS caches
file contents on the CPU’s DRAM in the hope that a file’s
data will be accessed repeatedly over time. However, page
cache can add overhead in the critical path of accessing file
contents. Since an FSS key is used only once, there is no
reuse. Thus, files containing FSS keys don’t benefit from



the page cache but pay the overheads. For example, one of
the models that we train, CNN3 from [31] needs 34.7 GB
of key per iteration prior to cryptographic improvements.
Bypassing the OS’s page cache, reduces the time to read
this key from 13.4s to 6.2s.
@ Overlapping key read with computation: To further
reduce the impact of the key read time, we overlap the
computation of the *" training iteration with the reading
of the key for the (i + 1) iteration. This ensures that the
entire key read time is not in the critical path.
® New cryptographic technique to limit key size: Even
after the above-mentioned optimizations, the time to read the
keys from SSD can overshadow the GPU computation time
for larger networks. We observe that key read time becomes
the bottleneck only when the computation is accelerated well
on the GPU as in ORCA. This is not the case for a CPU-
only implementation of FSS protocols or the GPU-based
implementation without the optimizations in
We construct new FSS protocols to reduce keysize in
popular non-linearities like ReLU and maxpool while re-
ducing online communication as well when combined with
truncations in quantized training (Sections @][5). For instance,
we get 5.7x reduction in keysize for truncation followed by
ReLU. Overall, for training, we get up to 3x reduction in
key size (Table B[) For CNN3, we reduce the time to read the
key per iteration from 6.2s to 1.9s that can now be perfectly
overlapped with 2.4s of GPU compute (Table [T2).

4. Protocols for Basic Building Blocks

Syntax. We use (*) to denote masked values, e.g., &. We
describe our protocols (denoted by II) for the setting when
evaluators hold masked values of input x, denoted by &, and
mask r'" (generated in the preprocessing phase) is unknown
to the evaluators. After the protocol, the evaluators hold the
shares of the masked output, that is, § = y + roU for output
y. The corresponding protocols II where evaluators end with
masked output ¢ in the clear can be easily constructed from
II by adding a round of reconstruct. We denote the key size
required by the protocol II (or, II) by keysize(II).

Unlike prior works on FSS-based 2PC [16], [19], [30]
where the online phase for a gate was non-interactive, we
construct more complex protocols, where the online phase
is allowed to be multi-round. However, this poses no issue
w.r.t. stitching together of protocols as evaluators still end
with masked values or shares of the same.

Below, we first provide new FSS-based protocols for
functions Select and Signed Extension that would be used as
building blocks in the protocols described in later sections.

4.1. Select

Select function, select,, : {0,1} x Uy — Uy, takes as
input a selector bit s € {0, 1} and an n-bit payload z € Uy,
and returns z if s = 1 and 0 otherwise. It is equivalent
to unsigned mixed-bitwidth multiplication between x and
s. That is, select,(s,z) = s - n. Using the expression for

Select TIselect
Gense= (e, ). 1)
1: u = extend(rl", n)
2w =u-r + o
Zz=2-u-ry
4: share (u, ', w, z) _
5: For b € {O, 1}, ky = ub||r'2"’b\|wb|\zb

Eval*®®(b, ky, (3,2)) :
1: Parse ky as up||rg,|[ws]|2p

2: if § = 0 then

3 return g, = up - T+ wp — 2p

4: else .

s return g, =b-T —up - —ry, +wp
6: end if

Figure 1: Protocol for Select.

offset function of unsigned mixed-bitwidth multiplication
from [30], the offset function for select,, would be:

selectn[('ilﬂ”g‘)”w](é, )= (58— ril'” +2-1{s < riln ) (& — rg)
+ % mod 27
:g'ifriln-if§~ri2n+rif'ri2”+r°“t
+2-1{5=0and " =1} - (z — ") mod 2"

Here, we use the fact that 1{§<r] =
1{s§=0and r' =1} as § and r" are single bit values.
Using this expression, we describe the protocol IS¢t for

select in [Figure 1
Theorem 3. IS¢t jn realises select,, securely

with keysize(TI3¥*) = 4n and no communication.

4.2. Signed Extension

[30] provides the following expression for the offset
function of SignExt functionality (Section 2)):

SignEXt’E‘::goul] (jj) _ JA’,‘/ _ rin 4 om 1{.%/ < rin} _ 2777,—1 4 rOUt
where 2’ = 2 +2™~! mod 2™. [30] also provides a non-
interactive protocol for implementing it securely but suffers
from a large key size (of keysize(DCF,, ,,) +n). We provide
a protocol with a smaller key size at the cost of an additional
round and 2 bits of online communication. We describe the
protocol IT>ENE in In the protocol, we calculate
the value of 1{Z’ < r} as a one-bit masked value w in the
first round with mask r(*). The dealer also sends shares of
(0,2™) or (2™,0) depending on the mask r(*). Evaluators
use w to select between 2 and 0 as n-bit shares. As we
only need the output of comparison as a bit, we achieve a
smaller key size compared to [30] due to a smaller 1-bit
payload (and early termination).



Signed Extension IT5€n5
GenSignExt(rin rout) .
m,n ) :
1: ¢ =rout — extend(ri”,n)'— gm—1
2 (k5. k) + Geny, (14,1, 1, Us)
3: T(,w) (i UQ
4 p={t,t+2"}>>r U
s: share (r(*), p)
6: For b € {0,1}, ky = kb<||7"z§w)”pb

Evaly &= (b, ky, 2) -

1: Parse ky as k= ||ri"||ps

2: ' =242""1 mod 2™

3 1y  Eval$ (b, kS, 2') + i) mod 2
4: 1 = reconstruct ()

5: return g, =b- &' 4+ pyp

Figure 2: Protocol for SignExt.

Theorem 4. IIENE< in realizes SignExt,, ,, se-

curely such that keysize(IL'815) = keysize(DCF,, 1)+2n+

1. In the online phase, the protocol requires 1 evaluation of
DCF,,,,1 and communication of 2 bits in 1 round.

S. Protocols for Secure Training

Training Functionalities. To implement secure training, we
need protocols for the following functionalities: a) Linear
layers, such as matrix multiplications and convolutions;
and b) Activation functions, such as ReLU and Maxpool.
Linear layers are computed securely using the same method
from LLAMA [30] (i.e., through the use of Beaver triples
generated in the preprocessing phase). In fixed-point arith-
metic, multiplications must be followed by a truncate oper-
ation in order to maintain scale. That is, multiplying two
fixed-point values with scale f over integers, results in
a fixed-point value with implicit scale as 2f and hence,
we need a truncation by f to obtain result with scale f.
The literature considers three kinds of truncations when
implementing fixed-point arithmetic in secure computation:
faithful truncation or arithmetic right shift, stochastic trun-
cation [31]], [32], [40], and local truncations [49]. Most
prior works on secure training [49]], [60]], [62], [66] use
local truncations as they are most efficient due to being
local operations. LLAMA [30] provides an FSS protocol
for faithful truncation. Gupta et al. [31] make a case for the
necessity of stochastic truncations in quantized training, and
we provide FSS protocols for stochastic truncation (defined
in [Section 5.2). In ML inference and training, linear layers
are followed by activation functions. When implementing
fixed-point training, this would correspond to linear layers
being followed by a truncation, which is then followed by
ReLU and sometimes Maxpool. In such cases, we observe
that it is more efficient to fuse and compute these nodes
together.

Section Overview. We begin by describing our new pro-

tocols for ReLU (Section 5.1) and stochastic truncation

(Section 5.2) with reduced key size. Next, in

we show how to fuse the stochastic truncation nodes with
activation functions such as ReLU and ReLU+Maxpool to
obtain lower key size and compute compared to the naive
approach of sequential computation. Throughout, our focus
is on reducing the key size (even if we slightly increase the
number of online rounds of communication).

5.1. ReLU

For a signed value z, the ReLU functionality returns
max(z,0). AriaNN [58] provides a 1-round protocol for
RelLU,, (with a 1-bit error) with a key size of ~ (n+1)(A+
2n), while [[16] constructed a non-interactive protocol (with
no error) with the same key size. Here, we construct a 1-
round RelU,, protocol (with no error) with a key size of
(n—8)(A+3)+A+4n+257 and 2 additional bits of online
communication compared to [16]. Concretely, for n = 64,
this results in a ~ 2.1x reduction in key size.

When z € Uy is an n-bit 2’s-complement representation
of an underlying signed value,

ReLU,(z) = = - 1{z < 2" '} = select(DReLU,,(z), x)

where DRelLU,,(x) = 1{z < 2" '} is called Derivative of
ReLU. Using this expression, we calculate DReLU,,(x) in
the first round with a single bit output and then use the
protocol TI%¢e<t o output x or 0 based on the comparison
output. Since we only need the comparison output as a single
bit, the key size of this protocol is smaller than the spline-

based protocol in [16] with comparison output in 2n bits.
We prove the following expression for the offset function
of DRelLU,, (Appendix H) For §j =& +2"' mod 2"
DReLUI"*1(&) = 1{§ < "} — 1{z < r"}
+1{g>2""1} +r° mod 2

Based on this, we describe the protocol for DRelLU,,
T1PReLY in Protocol for ReLU,,, ITReLY  is obtained
by running I1;"¢"Y followed by a round of reconstruction
for ¢ and ITselect,

Theorem 5. TIReY realizes RelU,, securely such that
keysize(ITRLV) = keysize(DCF,, 1) + keysize(TIse'*t) + 1.
In the online phase, the protocol requires 2 evaluations of
DCF,,,1 and communication of 2 bits in 1 round.

5.2. Stochastic Truncations

In stochastic truncations, both bitwidth preserving and
bitwidth reducing, the result of truncation is rounded up
or down, with a probability depending on the truncated
fractional part. We provide novel secure protocols for both
of these versions below.

5.2.1. Stochastic Truncate-Reduce.



DReLU I[0ReLV
GenDReLU(rin rout) .
1: (kg k) « Genys (12
2: share rout
3. For b e {0,1}, ky = rbm||k<

7rin7 1aU2)

EvaIEReLU(b, kp, &) :
1. Parse ky as rg”‘ka
2 j=2+42"1 mod 2"
up  Evalys (b, K, 2)
vp < Evalyy (b, k-, 9)
return g, = v, —up + b - 1{g > 2771} 4 U
mod 2

nosw

Figure 3: Protocol for DReLU.

Definition 3. For x € Uy, 29 = ¢ mod 2/, the stochastic
truncate-reduce of x with f, represented by stTR(z, f) €
Ugn-y is y such that

) TR(z, f) with probability 1 — xy-277
v= TR(z, f) + 1 with probability xq -2~/

Now, stTR(z, f) can be computed as follows: Pick a
value w at random that is 1 with probability zo -2~/ and 0
otherwise, and output TR(z, f) + w. Next, we observe that
w can be computed as 1{s < zo} for a random s € Us;.

We prove the following lemma that al-
lows us to provide a secure protocol for stochastic truncate-
reduce at the cost of DCF ;.

Lemma 1. For a masked value & € Uy with underlying
value © and random mask r(®), let o = x mod 2f, To =2
mod 27 and ’I“(()I) = 7@ mod 2/. Then,

TR(z, f) = TR(&, f) — TR(r®), f) — 1{$ <rih
1{s < mo} = 1{do < r{?} — 1{8 < r{?} + 1{5 < 2}
And, hence,
stTR(z, f) = TR(z, f) + 1{s < zo}
= TR(#, f) — TR®, £) — 1{5 < {7V + 1{5 < 7}

For the final expression in the above lemma, the first
term can be computed locally by the evaluators, the second
and the third terms can be computed by the dealer, and the
last term can be computed using a DCF ;. Interestingly,
we also note, from the above lemma, that (faithful) truncate-
reduce and stochastic truncate-reduce can both be computed
with a similar cost of a single DCF; ;. We provide a
formal protocol for stochastlc truncate-reduce, HSt-SCR and its

security proof in | with cost summarized below.

Theorem 6. HSt-;R realizes stochastic truncate-reduce se-
curely such that keysae(HStTR) = keysize(DCF; 1) +2(n —
f) bits. The online phase requires 1 evaluation of DCF;
and communication of 2 bits in I round.

5.2.2. Stochastic Truncation.

Definition 4. For x € Uy, o = x mod 27, the stochastic-
truncation of x by f, represented by x >4 f, is an n-bit
number y € Uy such that:

_J(@>af) with probability 1 — xzo-2~7
) (z>a f)+ 1 with probability xo-2~1

Using similar ideas as above, one way to compute
stochastic truncation is = >¢ f = (z >a f) + 1{s < 20},
for a random s in U,s. Here, the first term, (z >4 f)
can be computed using the arithmetic right shift protocol
from Boyle et al. [[16] and the second term, 1{s < xo} can
be computed using the expression in Overall
this approach would be require a DCF,_; 2,, a DCFy,
and 2 DCFy ,, which is expensive. We prove the following
lemma (Appendix I) that allows us to securely realize
stochastic truncation at the cost of a stochastic truncate-
reduce by f and a signed extension from n — f to n bits’.

Lemma 2. For x € Uy such that int,(z) < 2"~ — 2/,
T >q f = SignExt,_; . (stTR(z, f))

Protocol HStTr Parties first run a protocol for stochastic
truncate- reduce by f followed by a reconstruction of masked

output, i.e., 1'[St , followed by a protocol for signed exten-

Ext
sion to n-bits, i.e. Hi'g"fx

Theorem 7. I  realizes
curely such that keyS|ze(H5‘T') =

stochastic-truncation  se-
keysize(HStTR) +
keyS|ze(HS'g"EXt) In the online phase, the protocol requires

1 evaluation each of HStTfr and
2(n — f + 1) bits in 3 rounds.

HSlgnExt

n—fn and communicates

Compared to the straightforward approach described
above, for n = 64, f = 24, our key size is 3.6x lower
and number of AES calls in online phase is 2.4x lower.

5.3. Stochastic Truncation + Activations

As discussed earlier, when linear layers are followed
by activations such as ReLU and Maxpool, we fuse the
stochastic truncation node along with ReL.U (or ReL.U and
Maxpool, depending on the nodes present) to obtain a single
protocol for the fused functionality. In this section, we de-
scribe how this is done for the case of ReLU; in[Appendix B]
we describe the case of ReLU+MaxPool.

As mentioned before, linear layer is computed over Uy
followed by stochastic truncation by a public scale f. We
define a fused functionality, stochastic-truncation + ReLU,
which takes as input z € Uy, stochastically-truncates it by
f, and returns the RelLU over the truncated value. Formally,

2. We note that it is common to assume that the largest values occurring
in the computation can be represented in lesser number of bits than the
bitwidth used. Nonetheless, to ensure that security holds for arbitrary values
occurring at runtime, we change our cleartext/ideal functionality to also use

the expression on the right in



stTrReLU,, s(x) = ReLU, (2 >« f)

The above expression can be realized in 5-rounds by
running the protocol HStTr followed by TTRLV. We improve
over this significantly i in 2 steps descrlbed below.

First, based on [Lemma 2| in stochastic truncation,
stochastic truncate-reduce by f bits is followed by a signed
extension to n-bits. Next, this is followed by a ReLU
computation on n-bit inputs. We observe that we can switch
the order of ReLU and extension that allows us to compute
ReLU on (n — f) bits instead of n-bits, reducing both the
key size and online compute. Moreover, since ReLU output
is always non-negative, we can use zero extension, whose
protocol is very similar to signed extension (Section 4.2)).

Second, we improve upon the above by providing a
new protocol that does ReLU and zero extension together
by leveraging similar comparisons done for DReLU and
ZeroExt. This reduces the key size further. We call this func-
tionality ReLU-Extend, denoted by ReLUExt,_;,(z) =
ZeroExt,,_ ¢ ,(ReLU,_f(2)).

For x € Uyn-s, mask ri“_ and masked value Z, let d =
DReLU(z) and w = 1{Z < r"}. Moreover, from [30],

ZeroExt!"” u](:%) =G — g2 gy 4O

n—f,n

Then, the offset gate for ReLUExt,,_, can be written as

Q+rOUt d:(),w:()

ou O+r0ut d:O’u}:l
ReLUExt!™"](3) = { & | 7

e X (%) = & - rout _ 4in d=1,w=0

42 et =1 =1

That is, we need to compute a 1-out-of-4 selection based
on values of d and w. Now, both d and w use comparisons
with r" and hence can be computed using a single DCF
key and their masked value can be obtained in a single
round of interaction. Now the selection can be done using
2 consecutive calls to select, resulting in an overall 2 round
protocol. We improve this further to 1 round below.

We compute d, w over Uy instead of Us. Let i =2 -d+
w € Uy be the index of this 1-out-of-4 selection. We denote
the masked value and the secret mask of i by i and r(0,
respectively. Note that the underlined values in the above
expression are known to both parties. To obliviously select
between these 4 values, the dealer gives out shares of an
array p € U4, such that p, = 1 when k = 4 — (¥ and 0
otherwisq. In the online phase, evaluators rotate p, to the
right by ¢ places to get shares of a one-hot array which is
1 at position . Inner-product of this array with {0, 0, Z, & +
27=F} produces shares of the selected underlined value.

Based on the value of d, the evaluators need to oblivi-
ously select between r°! and r°U' — ", where both values are
known to the dealer. To do this, the dealer gives out shares of
an array q € U3, with elements r°“t and r°U — ", swapped
when (9 mod 2 = 1. In the online phase, evaluators index
the array q, at d mod 2. Adding the two selected shares
results in shares of the required masked output.

ReLU-Extend HSG_L}JEL“
Ge ReLUExt( in rout) :7

fin
s (kg kYY) < Gengs_ (1%, ¢, 1, Uy)
’I“(d) (i U4
T(w) @ U4
r(i) = 2 . /r(d) _|_ T(w)
={1,0,0,0} << r® € U}
= {rout rout _¢inl s (D) mod 2) € U%
share (r(d),r(w),p, q)
For b € {0, 1}, by = k||| ol @

-

AN A

Evalft P24 (b, ki, 2) :

n—f.n
w

1: Parse kj as k<\|rbd)||rb lloo]|lgn

2: y—x—i—?” mod 2"~/

3: wy + Eval$ 7{ b ks, 2)

4: wb<—wb—|—rb ) mod 4

50 dy < Evaly;_ (b, k) —wp+b-1{g > 2"~ =14
rl()d) mod 4

6: (1, d) = reconstruct (iy, dp)

7. i=2-d+ w_ mod 4

8: Py, = pp > i

9: 7=d mod 2

10: return 4, = pj - (& + 2" F) 4 Pho T+ 5
mod N

Figure 4: Protocol for ReLUExt.
We present the protocol HReL}JEXt for ReLU Ext,_f, in

and proof of its security in Using
thlS we can trivially obtain a protocol for stTrReLUn,f by
running II$TR followed by TIRELVE.

Theorem 8. IISTReLY  reqlizes stTrRelU,, s securely
such  that key5|ie(HStTrReLU) = keyS|ze(H5tTR) +
keysize(DCF,,—s2) + 6n + 4. Online phase requires 1
evaluation of Hff:rR and 2 evaluations of DCF,,_; o and
communicates of 2(n — f + 5) bits in 3 rounds.

Cost Comparison. We argue that our new approach to
build fused protocols results in lower costs. The naive
way of implementing this functionality (via protocols
from LLAMA [30]) is by using truncation followed by
ReLU and requires a key size of keysize(DCF,_12,) +
keysize(DCF,,,) +2-keysize(DCF ;1) + keysize(DCF,, 2,,) +
9n. On the other hand, the straightforward (non-fused) ap-
proach that uses our improved protocols has a key size of
keysize(DCF 1) + keysize(DCF,,— f,1) + keysize(DCF,, 1) +
8n — 2f + 2. Concretely, for n = 64, f = 24 our key
size is 5.7x and 1.9x lower than these 2 approaches,
respectively. Our approach also has 2.9x and 1.9x lower
AES evaluations in online phase.

6. Protocols for Softmax

To mirror the quantized training of [31], we calculate
softmax accurately in floating-point. To do this securely,



we make use of the state-of-the-art 2PC floating-point
library, SECFLOAT [54]]. However, in order for the parties
to invoke the softmax protocol from this library, they must
hold secret shares of the floating-point representation of
the input. Hence, we require a protocol that would convert
masked fixed-point values (from an FSS scheme) into
secret shares of the corresponding floating-point values
according to the representation of [54]. Similarly, in order
to use the output of the softmax computation in the rest
of the training protocol, we require a protocol that would
convert secret shares of floating-point values back to the
corresponding (masked) fixed-point values. We begin with
background on floating-point representations and softmax
followed by our protocols for FixToFloat and FloatToFix
in [Section 6.1] and [Section 6.2

Floating-point representation. SECFLOAT [54] represents
a 32-bit floating-point number « using four values
(z,8,e,m) € FP where z € {0, 1} represents zero-bit (set
when o = 0), s € {0,1} represents the sign bit (set when
a < 0), e € Usio represents the unbiased signed exponent
with values lying in the range [—127,128] and m € Us2a
represents normalized unsigned fixed-point mantissa with
scale 23, taking values in the range [223 2% — 1] U {0}.
Moreover, « = (z,s,e,m) represents the real number
(1 —2)- (1~ 2s)- 20 . [;m]f, ,;. When a = 0,
e = —126 and m = 0 holds. ’

Softmax. For a d-dimensional vector z € R? of real
numbers, softmax calculates a vector y € R4 such that:

emi, ezi_fmax
Vi € [O,d - 1]) Yi = d—1 = d—1 (1
Zi:O evi Zz:O @i~ Tmax

where ZTmax = max(zg,1,...24-1). The latter ex-
pression is usually preferred as exponentials in the former
expression can become arbitrarily large leading to overflows.
The second expression on the other hand limits the expo-
nential outputs to lie in the range (0, 1].

6.1. FixToFloat

To convert a fixed point number x € Uy with scale f to
the equivalent floating-point number (z, s,e,m) € FP, we
have to find (z, s, e, m) such that the underlying real values
are close. So, the following relation® holds:

[[xﬂn,f =(1—-2) (1-2s) - gintio(e) . [[mﬂér4,23
int, ()
2f

uint24 (m)
223

=(1—2)-(1—2s)- 2ol

As z and s denote the zero and sign bit respectively,
calculating them is trivial using the following relations:

z=1{x=0}; s=1{z>2"""}

3. For reals a and b, we abuse a = b to mean |a — b| < 2723,

Note that when 2z = 1, e = —126 and m = 0 holds. In the
case when z = 0, it only remains to find e and m such that:
int, (z)
2f
— |int, (z)| = 20 =23 hintyy (m)

uintay(m)
9223

— Qintlo(e) .

Computing e. For a given z, there can be multiple solutions
to this equation. However, as m has to be normalized,
i.e., lies in the range [2%3,22% — 1], there is a unique pair
(m,e) which satisfies both these constraints. Let £ < n
be a number such that 2= < |int,(z)] < 2*. Then,
223 < 2%k int,(z)| < 2%%. Multiplying 22*~* to both
sides of the above equation,

2247k int, ()| = 20 (eF H1=R) L hintyy (m)

As the LHS and uintg4(m) both lie in the range [223,224—1],
the above equation can only hold when:

gntio(etH /TR = ] — =k~ f—1
Computing m. Now we have that:
uint24(m) = 2247}C . |intn(x)|

Note that |int, (x)| can be calculated as an n-bit number
using the relation |z| = 2 - ReLU, (z) — 2. To calculate m,
we have:

2" . lint,,
uintas(m) = 247% - |int,, (z)| = w

In the fraction above, we notice that as |int,(z)| < 2,
the numerator 2"~ . |int,(z)| < 2" can be represented
accurately as an n-bit unsigned number. To calculate m as
a 24-bit number, it suffices to truncate-reduce the numerator
by n — 24 to get an accurate approximation of m.

Putting things together, for a given n-bit fixed-point
number z with precision f, we define functionality
FixToFloat, s : Uy — FIP which calculates the floating-
point number (z, s, e, m) € FP where:

ez{k—f—l
| —126

with |z| and k defined similarly as above. Compared
to a natural approach of computing each sub-expression
involving a comparison with a separate DCF key, we provide
a novel protocol that uses only 2 DCF keys. Overall, for
n = 64, we get a reduction of 1.8x over naive approach.
We provide a detailed description of our protocol, achieving

the cost summarized below, in

Theorem 9. Hfli,’fTOFbat realizes FixToFloat, s securely
such that keysize(IIF*ToFloat) - = keysize(DCF,, ) +
keysize(TI3'*<t) + 2n2 + 3n + 1. In the online phase, the
protocol requires 2n evaluations of DCF,, ,, and communi-
cates 4n + 2 bits in 2 rounds.

z=1{z =0}
s=1{z >2""1}
m=TR(jz|-2" % n—24

if 240
if =0



6.2. FloatToFix

Given a secret-shared floating-point value (z, s, e, m) €
FP, we need to compute shares of one of the two
closest n-bit fixed-point number x with scale f. Our
protocol ITF/9?ToFix ‘that realizes the above functionality
FloatToFix,, s for softmax outputs uses similar ideas as
above and due to space constraints, we delegate details to
the full version [34]. The following theorem summarizes its
cost where ITARS s the protocol for arithmetic right shift of
an n-bit value by f provided by [16]].

Theorem 10. I17°2tToFix yeqlizes FloatToFix,, ; securely
such that keyS|ze(HF'°atT°F'X) = keysize(DCF24u,) +
keysize(TI5¢ect) - keyS|ze(HARS) +2049n + 35. In the online
phase, the protocol requires 1 evaluation of DCFa4y, and
HARS and costs communication of 4n+ 70 bits in 3 rounds.

6.3. End-to-end training

As discussed earlier in [Section 3] individual FSS-based
protocols for convolution, matrix multiplications, ReLU,
Maxpool and so on can be combined to build end-to-end
protocols. When convolutions (or matrix multiplications)
are followed by ReLU (or ReLU+Maxpool), they are
replaced by the protocols for convolutions (correspondingly

matrix  multiplications) ~followed by IISReEY  (or
HIRfM respectively). Training protocols require softmax

computation at the end of the forward pass and here we
first convert masked fixed-point outputs to secret-shared
floating point numbers using IT}*T°F°%¢, call the protocol
for softmax from SECFLOAT [54] and then finally convert
the secret-shared floating point numbers back to masked
fixed-point numbers using IT;'%7*7". To compute the
backward pass for ReLU and Maxpool, we re-use the
comparison outputs from the forward pass and combine
them with T3¢t and bitwise-AND; hence, there is no
benefit in fusing nodes here. The security of the end-to-end
protocol can be argued in the simulation paradigm. For

details, see

Preprocessing Cost. In the preprocessing phase, the
dealer must both compute and transfer the keys to P, and
P,. Almost all the cost in computing the keys comes from
computing the Beaver triples and DCF keys, and this can
be approximated to be about 1 — 4x the cost of running
our protocol in the online phase. However, if the computed
keys are to be transferred to Py and P; over a network,
then this cost would dominate and depend on the network
bandwidth. As an example, a single iteration of training of
PIRANHA’s VGG16 model on the CIFAR-10 dataset with
batch size 128 would require transferring a key of size
approximately 15.1 GB, which in our network setting of
9.4 Gbps would take about 12.8s. In comparison, the online
phase of executing the same benchmark takes 2.5s. In a
WAN setting with 293 Mbps bandwidth, transferring the
keys would take 422s, while the online phase takes 38.4s.

7. Implementation

We implement ORCA as a C++ library for easy use. It
contains optimized GPU kernels for the FSS gates described
in Sections @] and [5] ORCA’s software framework sup-
ports the key functionalities necessary to implement GPU-
optimized FSS protocols. We leverage optimized kernels
from NVIDIA’s CUDA libraries where available and write
our own CUDA kernel where necessary. Unlike a prior work
CryptGPU [60], we do not embed 64-bit integers into 64-
bit floating-point numbers for leveraging optimized floating-
point kernels from NVIDIA’s cuBLAS [1] and cuDNN (7]
libraries. Instead, similar to PIRANHA [66]], we stick to
integer kernels to avoid the overheads of embedding.

Table [2] lists the key functionalities that our framework
implements as GPU kernels. It also reports which ones
are written by us (ORCA). We use well-optimized CUDA
kernels from NVIDIA’s CUTLASS [5] for convolutions and
matrix multiplications in the linear layers. The rest of the
optimized kernels were implemented as part of this work.
In Section [3] we described various optimization that we
perform (AES, LAYOUT, MEM) to speed up DCF. As noted
in the table, we apply several of the same GPU-centric
optimizations to other kernels as suitable.

Some parts of our framework run on the CPU. As
mentioned in Section E], we use SECFLOAT [12] to compute
softmax in floating point, which only has a CPU imple-
mentation. Furthermore, to go from fixed-point to floating
point and back, we implement the protocols FixToFloat and
FloatToFix on the CPU as these conversions have a tiny
cost compared to floating-point softmax itself.

Beyond the design optimizations mentioned in Section 3]
we also ensure optimized implementation of the software
stack through several practical considerations as follows.
For every invocation of an FSS function (e.g., a DCF) on
the GPU, GPU memory needs to be allocated to hold the
function’s key. Same needs to be de-allocated after the com-
pletion of the function. The repeated allocation/de-allocation
of GPU memory adds overheads. Toward this, we leverage
a new feature introduced in a recent CUDA release (CUDA
11.2), called CUDA memory pools [6]], to reserve GPU
memory for fast allocation/de-allocation of keys. Further, we
pre-allocate host-side communication buffers on the CPU to
avoid overheads of dynamic memory allocations at runtime.
We also pin host memory on the CPU, allowing for faster
data transfers between GPU and CPU using DMA [9]. We
use multiple CPU threads to overlap the CPU tasks of
reading keys from the SSD to the CPU DRAM, launching
GPU kernels, and to communicate with the other party.

Besides accelerating FSS evaluation, we also accelerate
the offline key generation with GPUs. We use cuRAND
library [4] to generate the randomness on the GPU for the
dealer, thus reducing the offline computation time.

We extended LLAMA [30], the state-of-the-art tool for
FSS-based inference on CPUs, to support training by ex-
ecuting its inference protocols for fixed-point operations
occurring in training and using ORCA’s implementation for
softmax. We name this LLAMA extended to support training



Func. | Description Source | Optimizations

Matrix | Multiplies two matrices CUTLASY —

mult.

Conv | Performs convolution CUTLASY —

DCF The DCF described in [16] ORCA AES, LAYOUT,
MEM

DReLU| The DReLU protocol in Figure E] ORCA AES, LAYOUT,
MEM

Select | The Select protocol in Figure |1f and | ORcA | LAYOUT, MEM

its variants in Figures 2] and [
Bitwise | Securely computes AND of two bits | OrRca | LAYOUT, MEM

AND

Table 2: Key components of accelerated FSS

as LLAMA in the sequel and use it to show our systems and
cryptographic contributions quantitatively in [Section 8.3

8. Evaluation

We compare ORCA against the state-of-the-art secure
2PC training tools that support the same threat model as
ours, i.e., a trusted dealer provides input independent corre-
lated randomness to two parties in an offline phase, and then
the two parties run a 2PC protocol for an ML task on their
sensitive data in an online phase. We provide an empirical
evaluation to justify the following claims:

e ORCA faithfully implements the quantized training algo-
rithms in ML literature [31] that mix floating-point and
fixed-point arithmetic (Figure[5). ORCA beats the accuracy
of PIRANHA (the current state-of-the-art in accelerating
secure training with GPUs) generated models in 4 — 26 x
less time and with 43—98x less communication (Table [3).

¢ On identical training and inference tasks, ORCA outper-
forms (GPU-based) PIRANHA by up to 10X in latency and
up to 14x in communication (Table [d). ORCA also out-
performs state-of-the-art CPU-based secure training [40]
by up to 693x (Table [6).

« ORCA’s GPU-based protocols are up to 19x more efficient
than their CPU counterparts (Table [7). Moreover, the size
of FSS keys required by ORCA’s protocols is up to 3x
lower (see Table B]) than LLAMA, the state-of-the-art tool
for FSS-based machine learning.

e« ORCA enables sub-second ImageNet-scale inference of
VGG-16 and ResNet-50 and outperforms state-
of-the-art by an order of magnitude.

Parameter setting. We evaluate ORCA and PIRANHA on
a fixed-point representation with bitwidth n = 64 and
precision f = 24. The CPU-baselines [40]] and CrypTen [41]]
also use the bitwidth n = 64.

Datasets and models. We use the same datasets as PI-
RANHA for our training evaluation, i.e., 10-class MNIST and
CIFAR. The training set of MNIST has 60,000 monochro-
matic 28 x 28 images and the test set has 10,000 images.
The training set of CIFAR has 50,000 RGB images and
the test set has 10,000 images. We annotate the names of
models for MNIST and CIFAR with subscripts M and C,
respectively. PIRANHA [[66] uses the following models: P-
SecureML), and P-Lenety, for MNIST, and P-AlexNetc and

P-VGG16¢ for CIFAR. P-VGG16¢ has over 100 million
parameters and is the largest model of PIRANHA. These
models use approximations, e.g., local truncations, that are
not used by state-of-the-art CPU-based secure training tools.
To compare against them we use the following models from
[40]: Model-Bp [40] and AlexNetc [60]]. For models from
Gupta et al. [31]], we use the 36k parameter CNN2y, model
with 2 convolutions and the 200k parameter CNN3¢ model
with 3 convolutions.

Finally, we also evaluate secure inference for the
ImageNet-1000 [25] dataset. The models here are much
larger than the MNIST/CIFAR models as they operate on
224 x 224 RGB images, which are 7 x 7 bigger than CIFAR
images. In particular, compared to P-VGG16¢, the largest
model in PIRANHA, VGG16 for ImageNet has 49x more
multiplications and 73X more comparisons. We evaluate
secure ImageNet inference with maxpools and stochastic
truncations to match its floating-point accuracy. We omit
secure ImageNet training as it is currently impractical; even
with ORCA’s speedups, end-to-end training on ImageNet-
1000 will take years.

Evaluation setup. We perform our experiments on two
virtual machines, connected in a LAN setup with 9.4
Gbps bandwidth and 0.05 ms RTT, each equipped with
an NVIDIA RTX A6000 GPU with 46 GB of onboard
memory and an AMD Epyc 7742 processor. Each machine
sports nearly a TB of RAM and a Samsung 980 PRO
NVMe SSD that supports about 6 GBps of sequential read
bandwidth. We use four of the CPU cores for CPU-only
experiments. We use four CPU cores in the GPU evaluations
to support the parts of the computation that run on the CPU.
Additionally, we use another CPU core to read keys from
SSD to RAM.

The training times reported for ORCA are inclusive of
the time required to move FSS keys from SSD to RAM,
as keys required in training for many iterations over many
epochs will not fit in RAM. This is not an issue for infer-
ence and the inference time measurements assume that the
keys reside in RAM. Note that the times reported for the
baselines, for both training and inference do not include the
time to load the pre-processing material into RAM. Similar
to [[66]], for all the baselines and ORCA, we only report the

online time*.

8.1. End-to-end training with ORCA

Our goal is to show that for a given classification task,
ORCA can train a model that matches the accuracy of
the models trained by PIRANHA, while incurring signifi-
cantly less time and communication. Recall that PIRANHA’s
implementation of softmax leaks private information [|64],
while ORCA uses a secure floating-point softmax that helps
provide end-to-end security.

4. Since the key generation in ORCA is GPU-optimized, almost all of the
offline time of ORCA is spent in moving keys (of sizes given in Table [8)
from the machine running the dealer to the machines holding secret data.



Accuracy Time (in min) Comm. (in GB) Time (ms) Comm. (MB)
Dataset | PIRANHA | ORCA | PIRANHA | ORCA | PIRANHA | ORCA Model Task PIRANHA | ORCA | PIRANHA | ORCA
96.8 56 2,168.4 .. 166 31
MNIST (—0.3%) 97.1 (4.0x) 14 (43.2x) 50.2 P-SecureMLy training (2.2x) 76 (5.7%) 5.45
55 1170 65231.3 . 57 21
CIFAR-10 | (—4.6%) 59.6 (26x) 45 (98.5%) 662.4 inference (9.5%) 6 (8.2x) 2.56
55 1170 65231.3 .. 720 474
—14%) | | (104x) | 12 | 39.4x) | 16561 P-LeNety training |y 7oy | 174 75 | 93
. . inf 402 4 335
Table 3: ORCA matches accuracy of PIRANHA in lesser time inference | g g S| @88x) | B
and with lower communication on MNIST and CIFAR-10. . 084 606
training 193 109
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ol e e 11 4 ‘ ‘ ‘ \ Table 4: Comparing against GPU baseline PIRANHA for one
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(a) Training CNN2y with batch  (b) Training CNN3¢ with batch
size 100 for 1 epoch. size 100 for 2 epochs.

Figure 5: Cross-entropy loss over the test set as a function
of the number of training iterations.

On the MNIST dataset, PIRANHA reports an accuracy
of 96.8% while training P-LeNety, incurring about an hour
in training time and about 2TB of communication. Table [3]
shows that ORCA matches this accuracy with 4x less time
and 43x less communication while training the CNN2y
model [31]. We evaluate ORCA on P-LeNety in Table []

On the CIFAR dataset, which is a harder classification
problem than MNIST, the improvements are even more pro-
nounced. While training CNN3¢ [31]], ORCA outperforms
PIRANHA’s training of P-VGG16¢ by 4.6% in accuracy,
26x in latency, and 98x in communication. We achieve
the accuracy of 59.6% by training CNN3¢ for 2 epochs.
When training for 5 epochs, we achieve a much higher ac-
curacy of 69% (14% better than PIRANHA) while still being
10.4x faster and requiring 39x lower communication than
PIRANHA. We evaluate ORCA on P-VGG16¢ in Table [

Accuracy. Since ORCA evaluates the models by Gupta
et al. [31] faithfully, there are no accuracy gaps between
(PyTorch) cleartext training and secure training. We show
this empirically as well in Figure [5] Training these models
instead with PIRANHA approximations leads to 10% accu-
racy, i.e., that of a random classifier.

8.2. Comparison with baselines

Next, we compare ORCA and baselines on identical
models. In particular, we compare ORCA with GPU-based
PIRANHA on the models that PIRANHA supports in Sec-

tion In Section [8.2.2] we compare ORCA and state-
of-the-art CPU-based secure training [40].

8.2.1. GPU baselines. We compare ORCA and PIRANHA
in Table [] on the benchmarks used by PIRANHA for both

training iteration and inference with a batch size 128.

Time (s) Comm. (MB)
Model Task PIRANHA | ORCA | PIRANHA | ORCA
P-SecureMLy, | "aining (2‘3(.54><) 13 (5.371><) 345
inference (8‘2é3><) 0.28 (8.221 ) 2.56
P-LeNety training (413; 25 (7?;) 63
inference (8%6><) 0.97 (83.25><) 38
P-AlexNetc | Taining (51.?)2) 4 (56.(6)6x) 109
inference (81 ?7>2< ) 1.4 (; (2)4; ) 36
P-VGGl6c training (:;372 '><9) 38.4 (19735;3) 1854
inference (12:,;5%?0 19 (112553) 911

Table 5: Comparing against GPU baseline PIRANHA for one
training iteration and inference with a batch size 128 in a
WAN setting with bandwidth 293 Mbits per second and ping
time of 60ms.

training and inference tasks. We observe that ORCA is up
to 10x better in latency and 14X better in communication.
Here, for a fair comparison, both ORCA and PIRANHA use
average pools, linear approximations for softmax, and local
truncations. Protocols in ORCA for these approximations
are provided in Since the communication of
ORCA is much lower than PIRANHA, with lower bandwidth

(e.g., WAN settings), these improvements are generally even
higher (Table [3).

8.2.2. CPU baselines. The latest work in CPU-based secure
training is by Keller and Sun [40], shown as KS in Table [
Secure training in KS uses faithful maxpools and stochastic
truncations, and does not support local truncations. To mea-
sure running time of KS, we instrument MP-SPDZ [38]] to
measure the time taken by one iteration of online phase after
the preprocessing material has been loaded in RAM. Table [6]
shows that ORCA (with stochastic truncations, maxpools and
floating-point softmax) is up to 693 x faster than KS, while
incurring up to 261 x less communication.



Time (in sec) Comm. (in MB)
Model KS ORCA KS ORCA
CNN2y (7.100>< ) 1.42 ( 3361 (1)1 ) 86
Model-By (1?.72><) 147 | 4577.3(; , | o
AlexNete | Gan | 201 | qorse | 3
CNN3c (Gégisx) 243 (21(75;135 i) 678

Table 6: Comparison against CPU baseline KS [40]] for one
training iteration with batch size of 100.

Dataset Model Task LLAMA | ORcCA
MNIST | CNN2y, | ‘raining (22.‘s;i) 073
inference (31.'31) 0.51

CIFAR-10 | CNN3¢ | [Taining (?f(')ﬁxﬁ I
inference (?&?ﬁ?) 9.32

Table 8: Comparison of key size (in GB) against LLAMA
for a single iteration of training and inference (batch 100).

Dataset Model Task LLAMA | Our CPU | Our GPU
trainin, 3.54 2.57 1.42
MNIST | CNN2y & (2.5%) (1.8%) :
. 1.57 0.93
inference (31.4%) (18.6%) 0.05
trainin, 38.58 18.85 243
CIFAR-10 | CNN3¢ & | (15.9%) | (7.8x) :
. 31.89 14.77
inference (42.0%) (19.4%) 0.76

Table 7: Comparison of latency (in seconds) of a single
iteration of training and inference (batch size 100) between
LLAMA, our CPU and GPU implementations.

8.3. Improvements breakup

LLAMA [30] is the state-of-the-art in FSS-based pro-
tocols for ML tasks, and outperforms other tools such as
AriaNN [58]]. Conceptually, ORCA makes two performance
improvements over LLAMA. First, it provides new protocols
for operations occurring in ML tasks with smaller FSS keys
and lower compute. Second, it accelerates these protocols
with GPUs. In Table [/| we investigate the individual con-
tributions of protocols and GPUs to the overall speedups in
runtime over LLAMA. We compare concrete communica-
tion of LLAMA and ORCA in and note that
ORCA incurs slightly (up to 25%) higher communication.

Overall, the protocols of ORCA, described in Section E]
provide roughly 3x reduction in key size over LLAMA
(see Table [8) and lower number of AES calls. As key read
is not the performance bottleneck in CPU implementation,
new protocols translate to < 2.2x improvement in running
time of ORCA run on CPU over LLAMA in Table [} GPU
acceleration of our protocols brings running time further
down by up to 19x. Reading huge FSS keys becomes
a performance bottleneck after accelerating compute with
GPUs and key size reduction through our new protocols
becomes crucial. For example, in CNN3¢ training, with a
key size of 11.51 GB (Table [§), ORCA with GPU runs
in 2.43s (Table [7). Without ORCA’s key size reduction, it
would take 6.2s to move the 34.66 GB key (Table [§) from
our SSD to RAM, which will degrade the overall latency
from 2.43s to 6.2s. Even with smaller key size, overlapping
key read and the rest of the computation is crucial to keep
latency low (Table [12] [Appendix A.4).

The inference tasks show better acceleration than train-
ing tasks because of floating-point softmax. Recall that
softmax is only present in training, not in inference, and
softmax’s exponentiations use a floating-point 2PC protocol

Model | LLAMA | CrypTen [—— ORtCir?w o
ResNet-50 (é?fi ) (;'gi) (fji ) | 068137121
ResNet-18 (815231 N (2%.927@ (%i) 0.14 [32, 10]

Table 9: Runtime (in seconds) for secure ImageNet inference
with LLAMA (CPU), CrypTen (GPU), ORCA with bitwidth
n = 64 and precision f = 24, and ORCA with smaller
bitwidth and precision [n, f] that is sufficient to maintain
floating-point model accuracy.

from prior work [54] that hasn’t been accelerated with either
FSS or GPUs. We find that once the rest of the compute
has been accelerated with GPUs, softmax accounts for a
considerable portion of the training runtime. For example,
once keys are in RAM, out of 1.4s compute in 1 training
iteration of CNN2y, 1.3s (= 92%) is taken by softmax.
We show that GPU accelerates both linear and non-linear

layers by an order of magnitude in Figure [6]

8.4. Secure ImageNet inference

Table shows that ORCA enables sub-second se-
cure ImageNet-1000 inference. We compare quantitatively
against the state-of-the-art secure ImageNet inference works
that use the same threat model as ORCA. Here, CrypTen [41]]
uses GPUs and LLAMA [30] is CPU only. We under-
approximate CrypTen’s runtime by dividing its reported
communication with the network bandwidth of our setup.

The accuracy of secure inference with ORCA using
bitwidth n = 64 matches the cleartext floating-point ac-
curacy over a validation set of 50,000 ImageNet images.
It is well known that smaller bitwidths can be sufficient to
maintain inference accuracy [24], [56]. We run ORCA with
smaller bitwidths to obtain a further 1.4 — 2.3x speedup
over ORCA with bitwidth 64, while maintaining accuracy.
Since CrypTen doesn’t support these smaller bitwidths, we
keep the bitwidth of baselines as 64. We report ORCA’s key
size for these tasks in [Table 11] (Appendix A.3). Overall,
ORCA is 8.5 — 103 x faster than baselines.

Although ORCA’s time for ResNet-50 is over 13x and
118x better than the latency reported by CryptGPU [60]
and Cheetah [32]] respectively, such comparisons are unfair
to these baselines as their threat models are different.




9. Related Work

This work crucially builds on several existing tech-
niques. Gupta et al. [31] provide quantized training algo-
rithms and models that preserves accuracy, which became
the cleartext functionalities for our secure implementations.
Alternatively, it is possible to not quantize and run the
full training algorithm in floating-point [53]], however, this
option has higher cost. Various works have shown that
GPUs are effective at accelerating MPC protocols [41]], [60],
[66]. Since communication overheads cannot be reduced by
GPU acceleration, it is natural to consider low communi-
cation protocols like FSS [[17]. We use PIRANHA’s [66]
proposal for evaluating linear layers efficiently with GPUs.
For ReLU, non-interactive protocols are known [16]. We
trade-off rounds to decrease the key size for commonly
occurring ML operations like ReLU and ReLU followed
by a Maxpool.

Secure training is a rich area with various techniques.
There are solutions that lack cryptographic security guar-
antees like Trusted Execution Environments [69] and Fed-
erated Learning [59]. There are complementary techniques
like Differential Privacy (DP) [14], [63] that dictate what
training algorithms preserve privacy and ORCA can run such
algorithms securely. Among the cryptographic techniques
for secure multiparty training, various threat models have
been explored:

Two party training. Two parties holding secret data train
a joint model with 2PC protocols [[15[, [37], [49].

Two party training with dealer. A trusted dealer provides
correlated randomness to two parties that can then run their
2PC protocols more efficiently. FSS-based protocols fall in
this category [58]], [67].

3-party honest majority. Three non-colluding parties run
a secure training protocol [42], [48]], [51], [60], [62], [64].
M-party dishonest majority. M parties, each holding
secret data, train a joint model while honest parties are
protected from any number of dishonest parties [23[], [40],
[41], [70].

Prior works in secure inference that don’t address secure
training include [21]], [22], [30], [32], [35], [36l, [43]], [44],
[47], [55]-[57]. Works that accelerate non-FSS protocols
with GPUs include [28]], [33], [47], [50], [52], [60], [66].
In particular, GFORCE [50] accelerates secure MNIST/CI-
FAR inference with GPUs, but neither evaluates ImageNet
inference nor training. Similar to all prior works on secure
training of DNNs, we have limited ourselves to semi-honest
adversaries as malicious security entails additional perfor-
mance overheads [24], [27], [38], [42], [51], [70].

10. Conclusion

ORCA takes a step towards practical secure inference
and training by accelerating FSS-based protocols through
both system advances with GPUs and new cryptographic
techniques to reduce the size of FSS keys. Together, the
time to securely train CIFAR models has reduced to 52
minutes and ImageNet-1000 inference runs in sub-second.

We also identify concrete challenges for future work: inte-
grating newer PCle5 hardware and GPU-accelerated FSS-
based protocols for accurate softmax.
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Figure 6: Comparison of online time on CPU and GPU

Appendix A.
Additional Empirical Results

A.1. Microbenchmarks

We show acceleration of GPUs for linear and non-linear
layers separately in Figure [6] Across microbenchmarks of
varying sizes, GPU-based protocols in ORCA are an order
of magnitude faster than their CPU counterparts.

A.2. Online communication

We show that ORCA’s online communication is only
slightly higher than LLAMA in [Table 10

Dataset Model Task LLAMA | OrcCA
traini 76 86
MNIST | CNN2y | T2™MP& | (0.88x)
. 22
inference (0.79%) 28
.. 579
CIFAR-10 | CNN3¢ | "aining | g5y | 678
. 365
inference (0.89%) 411

Table 10: Comparison of communication (in MB) of a single
iteration of training and inference between LLAMA and
ORCA. Batch size of 100 is being used.

A.3. Key size of ImageNet Inference tasks

shows the key size of various ImageNet infer-
ence tasks required by ORCA and LLAMA.

ORCA
Model | LLAMA - —— ez Tn 71
VGG-16 50,54 313 | 561 (32, 12]
ResNet30 | 47.69 99 549 37, 12]
ResNet-18 | 11.43 778 | 121 [32, 10]

Table 11: Key size (in GB) of secure ImageNet inference in
LLAMA (CPU) with bitwidth n = 64, ORCA with bitwidth
n = 64 and precision f = 24, and ORCA with smaller
bitwidth and precision [n, f] that is sufficient to maintain
floating-point model accuracy.

28, 32, 64, 128, 224. 28, 32, 64, 128.

Key size | Key read | Compute | ORCA

Model (nGB) | (m9) | s
P-SecureML 0.03 5 75 76
P-LeNety 0.36 63 172 174
CNN2y 0.75 129 1407 1415
Model-By 1.27 219 1460 1466
P-AlexNetc 0.34 64 192 193
AlexNetc 8.34 1387 2011 2011
CNN3¢ 11.51 1911 2424 2432
P-VGG16¢ 15.1 2489 2310 2489

Table 12: Key size, time of key read, and compute (inclusive
of communication) for ORCA for one training iteration of
different models. The last column reports the larger of key
read time and compute time.

A.4. Overlapping key read

Table [12| shows the time ORCA spends on reading keys
and on compute (including time to communicate) for one
training iteration. Since key read and compute overlap in
ORCA, a training iteration takes the larger of the two times.

Appendix B.
Stochastic-Truncation + ReLU + MaxPool

In many networks, it is common to have a convolu-
tion layer, a RelLU layer, and a MaxPool layer in succes-
sion. Since convolution is always followed by truncation
in the case of fixed-point training, truncation, RelLU, and
MaxPool occur in succession. Hence, we need a protocol
for stochastic-truncation + ReLU + MaxPool. We note that
the result of this fused operation doesn’t depend on the order
in which ReLLU and Maxpool are applied. As a result, many
existing works carry out RelLU after MaxPool [43], [56],
as this reduces the number of elements on which RelU is
calculated.

LLAMA [30] provides a protocol for MaxPool, which
internally uses the spline-based protocol for ReLU from
[16]] to calculate max of two elements. First, we replace
this ReLU with our protocol ITR®'Y and follow a three-step
approach to implement a protocol for stochastic-truncation
+ ReLU + MaxPool with bitwidth n and precision f:

1) Stochastic truncate-reduce the input to (n — f)-bits.



2) Apply the modified protocol for uniform bitwidth
MaxPool to the (n — f)-bit truncated output.

3) Apply the protocol for ReLUExt,_¢ , to the resulting
(n — f)-bit values to get result in n-bits.

In the above protocol, all the comparisons are done over
(n — f)-bits instead of n bits and use our key optimized
ReLU protocol, giving us significant savings over a proto-
col designed using building blocks in [30]. The theorem
summarizes the cost for MaxPool over k£ elements.

Theorem 11. There exists a protocol HTRMk which realizes

stochastic-truncation + ReLU + MaxPool of k elements
securely such that keyS|ze(Hl'3ch) =k- key5|ze(HfltTR) +
(k—1) - keysize(ﬁﬁi’-}’) + keysme(HE‘ﬂ-UEft). Its online
phase requires k evaluations of HifoR, k —

of HREL}J 1 evaluation of HRGLUEXt and communication of

,n

22k-1)(n—f+1)+38 bits in 2k + 1 rounds.

1 evaluations

In contrast, the baseline [30] has keysize roughly & -
(keysize(DCF,, 25,) + 5n) + keysize(DCF,,_1 2,) + n. For
n = 64, f = 24 used in our benchmarks, for a MaxPool of
size 3 x 3, that is, £k = 9, we get a key size reduction of
2.5X.

Appendix C.
Stochastic Truncate-Reduce

C.1. Proof of Lemma 1

Lemma 1. For a masked value & € Uy with underlying
value © and random mask r(®), let o = x mod 2f, Lo =2
mod 2f and réx) = 7@ mod 27. Then,

TR(z, f) = TR(&, f) — TR(™, f) — 1{:50 <rihy
1{s < mo} = 1{do < r{?} — 1{8 < r{?} + 1{5 < %}
And, hence,
stTR(z, f) = TR(x, f) + 1{s < zo}
= TR(#, f) — TR(®, £) — 1{5 < {7V + 1{5 < %}

Proof. To derive the first equation, we have:

TR(z, f) = TR(& — ™ mod 2, f)
=TR(z —r® 4+ 2" . 1{& < r @}, f)
= (% - (l)+2” i <r®}) >, f mod 2P
=@—r®)y>, F+2" i <r®} mod 2007
(i—r(w)>>Lf mod 2("=7)

Let 21
r(@) —

= TR, f),r\") = TR(r@, ). So, & = &, -2 + &y,
rgx) -2f +r(()x). Plugging in these equations, we have

TR(z, f) = r®)>p f mod 2n~F)

(@ —
=3 — r§m) + (&9 — r(() )) > f mod 20"=1)

Stochastic Truncate-Reduce II5'R
Genff}R(r'”, routy

S (i UQf

r) =" mod 2f

§=s+7r® mod 2/

(kg ki) < Gen7 (1%, 8,1, Uy)

z & Uy r(®) = extend(z,n — f)
r=r _TR(r", f) — 1{5 < rM}
share r, (¥

For b € {0,1}, ky

AN A ol e

= k7 ||y ||s

Eval 'R (b, Ky, &) -

11 Parse ky as k77 ||ri™||ry

2t =42 mod 2-

3 by < Evalf (b, ky ) + rlgw) mod 2

4: W = reconstruct(wp)

5 cp = rl(,w) + extend(w,n — f) - (b — QTZ()w))
6: return g, =b- TR(Z, f) +r, + ¢

Figure 7: Protocol for stTR.

Note that the term (&g — r(()x)) >, f can only take values
Oor2f —1as -2/ <3 — r(()w) < 27, So, we have:

TR(z, f) = &1 — r1 — 1{d0 < r{"}
= TR(z, f) — TR("®, f) — {zo < r§7}

Now, we derive the second expression, that is, expression
of 1{s <xzp} = 1{s€[0,x0)} for a randomly sampled
s € Uys. Let § = s+r((f mod 2/. This means, calculating
1{s € [0,z¢)} is equivalent to returning 1 when § lies
between the region starting at r(()x) ending at %, taking care
of wraps. Consider two cases:

) a > 7 In this case, 1{s€[0,x)} =
1{s el d0)} = 1{8 < 2o} — 1{8 < r{"}.

2) &y < rém): In this case, 1{s€[0,20)} =
1{s e [o xo) U™ 2f =1} = 1{s <@} +

1{s>ri = 1{s < a0} +1—1{8 < i
The two cases differ by 1 and we can trivially combine by:
— 14 (@ _q1ra (x) P,
Hs<ao}=1zo<rg '} — {8 <ry }+1{s < 2o}

We complete the proof by deriving the expression for
stTR(z, f) by adding the two expressions (by definition):

stTR(z, f) = TR(z, f) + 1{s < zo}
=TR(&, f) = TR®, £) — 1{s < {7V + 1{5 < 7}

O

C.2. Protocol for Stochastic Truncate Reduce

We provide a formal protocol in



C.3. Security Proof

For ease of proof, we consider a real interaction where

along with r'™ and roUt, Geni;TfR is paramterized by s € Uyy,
where s is the associated randomness of stochastic truncate-
reduce. Similarly, we consider an ideal world that is also
parameterized by r", r°! s In real interaction, Py, P; run
EvaIff}R. In the ideal interaction, Py, P; send Z to ideal
functionality, that unmasks it and computes the output. That
is, computes § = TR(Z—r", f)+1{s < 2} +r°", and sends
shares of ¢ to Py, P;. Below, we describe the simulator that
simulates the view of a real world adversary in such a real
interaction.
Simulator. For b € {0,1} the simulator Sim*'" for stochas-
tic truncate reduce is given & and ¢ and has to simuate the
view of party b, i.e., messages k;’ ||rl§w)|\rb from the dealer
and w;_p from P;_p. The simulator follows these steps:

1) Pick {")  at random from Usn- ;.
2) Sett =4 mod 2/.

3) Invoke Sim; to get k"

b,sim*

4) Set Wy gim < Eval§ (b, ki, ) + 740
5) Pick wsim € Uz at random and set Wi _p sim = Wsim ©
wb,sim‘

6) Run step 5 to compute Cp gim.
7) Set rpsim =0 — b TR(Z, f) — Cpsim.

It is easy to argue that the joint distribution of the
view of the adversary and output of honest party in the
real interaction is indistinguishable from that in the ideal
interaction in the presence of the above simulator.

Appendix D.
Interconversion between Fixed and Float

Our fixed-to-float protocol uses an FSS gate for multiple
interval containment from [16] summarized below.

D.1. Multiple Interval Containment

For public parameter arrays p, g € U}, multiple interval
containment function, MIC,, ,,, p 4 : Uy — UY}, calculates
a vector y € U}y for a given input x € Uy, such that
Vi € [0,m — 1], we have:

)1 ifp<z<qg
Yi= 0 otherwise

[16] provides a protocol ITM'C for MIC,, 1, p.q- We

. n,m,p,q
restrict our discussion to the special case when py = 0,

Gm-1=2"—1and p; =q;—1 + 1Vi € [1,m — 1].

Theorem 12 (Multiple Interval Containment [16]]).
thz/l,lr%,p,q realizes MIC,, ,,, pq Securely such that
keysize(HM',i’pyq) = keysize(DCF,,,) + mn. In the

online phase, m evaluations of DCF,, ,, are needed.

D.2. Protocol for sz}T"F'Oat

Recall that we need to compute z,s,e,m using the
expressions in Section [6.I] A natural way to compute
FixToFloat,, ; securely is by using the existing protocols
for Zero-Test [[19], DReLU, multiple interval containment (to
compute 2"~ %) and ReLU. However, each of these protocols
would require a DCF key (DPF key, in case of Zero-Test)
and hence, the overall protocol would incur a key size of
n(4X + 3n + 15) 4+ 4\ + 3 bits. We describe an alternative
approach to achieve the same result using two DCF keys
and a key size of n(2\ + 3n) + 14n — 30 + 209 bits.

Let p(™ and ¢ be two constant series’ of length 2n,
representing 2n disjoint intervals in Uy, such that:

0 ifi=0
my )22 if i € [1,n—1]
Pim= ot ifi=n
2n — 22—l L 1 ifie[n+1,2n—1]
ifi=2n-1

2n -1
! pgi)l —1 otherwise

Let u = 2" F. We observe that for all values of x
lying in the interval [pz(" ,qin)], u, e, z, and s hold constant
values. Hence, we can use the protocol for multiple interval
containment to get shares of a one-hot vector
that specifies which interval x belongs to. We can then get
shares of values u, e, z, and s by elementwise-multiplying
the shares of the vector with the correct constant value in
the corresponding interval and adding them. Then, we can
calculate |z| = 2RelLU,,(z) — « cheaply by reusing the sign
bit. The resulting value when multiplied with v and truncate-
reduced by (n —24), gives mantissa m. For truncate-reduce,
we use a protocol HZR similar to the protocol for stochastic
truncate-reduce with same costs.

We describe the protocol for FixToFloat,, s in
that achieves the cost in Theorem

Theorem 13. I1}>°F°*" realizes FixToFloat, ; securely

such that keysize(f[ziff%'t"’at) = keysize(HX'QCn p(m q(n)) +
keysize(IT5e'°t) + keysize(IIR, _5,) + 3n + L. In the online

: : MIC
phase, the protocol requires 1 evaluation of Hn’%’pm)’q(n)

and TI'R . each, and communicates 6n + 2 bits in 3
rounds.

Security Proof. For b € {0,1}, the simulator Simj *T°Flo3t

for FixToFloat is given % and (z,sp,€p,mp) and
has to simulate the view of party b, ie., messages
MO |15 7801109 |- ¢ | TR from  dealer and
$1-p||G1-p||G1—b||Z1—p from the other evaluator. The simu-

lator follows the following steps:
(s)

b,sim

2) Randomly samples réi)im,yl_bﬁim and 4y _psim from
Un.

3) Sets S5m = sp + T?Efs)im + glfb,sim~

4) Randomly samples 9 <im constrained to the condition
that LSB of gy sim + b 2 is 0.

1) Randomly samples 7 and 51_p sim from Us.



FixToFloat I1FixTeFloat
Gen’;l’)}TOFloat (rin) .

1: Let p= p(") and q= q(n) .

2: (k(()MIC)7k§MIC)) <—Genmf,q(f'”a0)

3 () & U,

4 rw) & UN

5. T(select) FU

6: (k(select) k(select)) — Genselect( (S),rin,r(select))
7: r(y) -9. r(select)

g (2 & Uy

9. ¢ = . () 4 p(2)

10: (k(-)er kirR) < Genli_24(r(z),o)

: share (r(s),r(“),r(y>,c)
. Vb € Eo 1}, ky =
ks M e |5 | e | TR

[ —
N —

Ev |F|><ToF|o;n:(b7 kl”i') :

Let p = p(”) and g = q(™

Parse ky as kg "' || ||| ey | TR
t, Eva|,“f'§q(b, EM) 2

2y = tp,0 mod 2

Sy = 22" 1tbl mod 2

Sp = sp + Tb

ep = —126 -ty 0+ (n—f—1) -ty + >0 (i +
tb,2n—i) (Z - f - 2)

ity = 1"+t + 30 (b + tozn-i) - 277

9: (8,4) = reconstruct (8y, 1)

10: gy < 2 - Eval®e(p, kY 1 — 5,
11: § = reconstruct (gp)

12 g =b-g-a—rY a—r" g+a
13: £ = reconstruct (Z)

14: my, < Evallh o, (b, k1R, 2)

15: return (2, Sp, €p, Myp)

B R o e

*®

2)—b-&

Figure 8: Protocol for FixToFloat.

5) Invokes SlmseleCt with input (1 — Sgm,Z) and output
(yb’s'T +b- %) > 1 to generate kie:rff

6) Sets Jsim = Ub,sim + Y1—b,sim

7) Randomly samples asim,réﬁm, Ch,sims 21—b,sim irom
Un.

8) Sets?b,sim :A b'@sim'?fsim*T[(,f/s)im'ﬁsim*réjgm'gsim+cb,sim

9) Set Zsim = Zb,sim T Z1—b,sim

10) Invokes SimzR with input Zg, and output m; to get
i
11) Randomly samples tp sim from U{%}‘ subject to con-
Ile oFI

straints in line 4,5 and 7 in Eva oat,
12) Calculates %)

b,sim

13) Invokes Simp'

MIC
erate Ky ..

according to line 8 in Evalj,"foroat,
with input & and output % sim to gen-

D.3. FloatToFix

For a given floating-point number (z, s,e,m) € FP, the
functionality FloatToFix,, ; calculates a fixed-point number
x € Uy with precision f such that:

[2]nf=(1—2) (1 —2s)- gintio(e [[mﬂ24 .
= x=(1-2)-(1-2s)-|m- gintio(e)+f— QSJ

But since we are only concerned with softmax output, we
restrict the discussion to the case when s = 0, z = 0, and
intjo(e) < 0. Note that the protocol can be generalized to
other cases trivially using calls to the protocol for select.
So, we can simplify the above equation to:

T = Lm . 2int10(e+f723)J

As m is a 24-bit value, x = 0 when intjp(e + f — 23) <
—24, i.e., intyp(e) < —1 — f. Also, as softmax outputs real
values between 0 and 1, intjp(e) < 0. Hence, we are only
interested in calculating = when range int19(e) € [—f, 0] and
and return O in other cases. To make the exponent positive,
we set ¢/ = e+ f and we rewrite the above expression when
intyo(e) > —f (or intyp(e’) > 0) as:

> = Lm . 2int1o(e+f—23)J _ (m i 2int10(e/)) >4 23

We drop the int;y notation, as we only deal with positive
exponents from now on. We combine other cases and write
the joint expression for x as:

{m~251
t =
0

T=1t>423

if 0 S intlo(e/) S f
otherwise

We now discuss technique to evaluate the above computation
securely. Note that as m is a 24 bit number and we need
n bit output, mixed-bitwidth multiplication is required. So,
to derive an offset expression for ¢ (and trivially for x), we
need to take care of wraps due to mask of m.

m-2¢ = (i — (™ mod 2%%) . 2¢’
= (1 — ™ 4 2% 1 < r(MY) . 2¢
=m-2¢ — (. 2¢ £ 924 9¢ 1 < p(M))

Consider four terms in the above expression:

1) m- 2¢": For calculating shares of this term, the dealer
provides secret shares of one-hot vector of —r(€),
The evaluators can simply then rotate the share of the
vector by €’ to get shares of one-hot vector of e’. The
evaluators can now calculate the dot product of this
vector with vector containing 2° for index i € [0, f] and
0 otherwise. The resulting value is a share of 2¢" which
can be locally multiplied with m to get the required
share.

2) 224 . 2¢"; Since the evaluators already have shares of
one-hot vector of ¢/, they can calculate shares of 224.9¢’
in the same way as 1 - 2¢’



3) r(m). 2¢': As the dealer knows r(’”) it secret shares the

vector containing r(™) - 21— for all index i € [0, f]
and O otherwise. The evaluators simply index the array
at ¢’ to get the required shares.

4) 1{m < r(™}: Shares of this term can be simply cal-

culated using a DCF key, as in our other protocols.
The final expression for FixToFloat can be calculated
securely using calls to multiplication protocol and local
addition of these terms, followed by a final call to a protocol
for ARS. Note that the above discussion automatically takes
care of the case when e’ lies outside the range [0, f] by
returning zero for each of the terms. For ARS, we use the
protocol ITARS from [16]. We present the complete protocol

IIF1o2tToFix for FloatToFixy, s in Unlike other

FloatToFix HFlO;!tToFD(

FloatToFix / out
Gen,, ¥ (rou)

7‘(m) & [U224

() & Uygaa

T(w) é UQ

T(h) (i UN

T(t <— UN

: (kS kYY) + Gengy (12, r(™) 11, Uy)

. Let p = {1{i = 1024 — (¢’ >}} € U,

. Let ¢ = {r® —,r( m) . pow (i — r(€) )} e U,

share (), () p(@) (0] p g)

(k(select) k(select)) “ Genselect( (w) p(h) 0)
(ZARS k(ARS ) < Ge nARS( (1), pout)

FOI‘ be {0 1} kb _ k<||kselect”r}()m)||rl()e)||rl()w)”
i llpe sl 3
EValf/F T (b, ky, (1, 1)

4 h
1+ Parse ky as ki~ [[kg | |rs™ [[rs 15 [[rs" ||po g

R A T o

[ —
=

—_
l\)

w
o)
|
)
<o
+
3
=
m\
+
Sy
~

4: (1, €') = reconstruct (1, €;)

i, ¢ Evaly (b, k1) + ™ mod 2

Dy, =Py > ¢

Ddp = 21100 POWf( i) - pg,i

:hy =1 422 dy

9: (w h) = reconstruct (i, hy)

10: f = qye + Eval®™ D (b, kY v, h) + 1 - d
11: ¢ = reconstruct (f;)

12: & Eva|ﬁ§§(b, kARS 1)

13: return Iy

N oW

o

Figure 9: Protocol for FloatToFix. Here, pow(y) returns
2Y if y € [0, f] and O otherwise.

protocols, TI}°F*T°F starts with secret shares, as SECFLOAT
returns shares of m and e. We summarize the costs of the
protocol in Theorem [I0] and provide its security proof.

Theorem 10. IIF°2ToFx yeqizes FloatToFix,, s securely

such that keysae(HF"}atT"F'X) = keysize(DCFa4,y,) +
keysize(ITselect) - keysme(HﬁRS) +2049n + 35. In the online
phase, the protocol requlres7'1 evaluation of DCFay 1y, and
Hﬁ?fs and costs communication of 4n + 70 bits in 3 rounds.
Security proof. For b € {0,1}, the simulator
Sim;, for FloatToFix is given (my,e,) and ), and
has to simulate the view of party b, i.e., messages
et | eSO )11+ [ py | gy, from dealer and
a—p||€]_p||1— b||t1 » from the other evaluator. The sim-

ulator follows the following steps:
(m)
b,sim
()

b,sim

1) Randomly samples 7 and 711 _p sim from Usza.

2) Randomly samples r and &), g, from Usio.

3) Sets Tieim = My + rlﬂ T i _psim and &, = ey +

Tl(yea)m + 617b +b- f )

4) Randomly samples rl(:;im and W1y sim from Us.
5) Generates ki

using Simb and calculates Wy sim <
Eva|24(b kb sim?

Msim) + rl()“;)m mod 2
6) Randomly samples Pb.sim @b,sim from
7) Sets pg,sim = Db sim > é5|m

8) Sets db,sim = 21100 pOWf( ) pb sim,

9) Randomly samples réh?m and h1 b,sim from Uy

10) Calculates o sim = 7’ o + 224+ di i

11) Sets w5|m = wb sim 1 wl b,sim

12) Sets h5|m = hb,5|m "': hl b,sim-

13) Randomly sample tp gim,t1—p,sim from Uy.

14) Generates k‘ze;f’rff using Slms‘e'eCt with input (@sim, heim)
and OAUtPUt tAb,sim qb,sm,esim msim : db,sim'

15) Sets tsim - tb ,sim + tl—b,sim

16) Generates kbAffn
output Tp.

Note. The key size of H,Fl'f’;‘tT°FiX can be further reduced by

only sending the elements in arrays p and g which needs

to be accessed in the evaluation, based on the constraints

on the value of e. Moreover, as the array p is set to 1 at

a single index, it can be replaced with a Distributed Point

Function key [17] to further reduce the key size at the cost

of increased compute. We omit these optimizations here.

b,sim

1024
U024,

ARS

using Simy - with input tsm and

Appendix E.
End-to-end training protocols

Given the protocols discussed in the previous sections,
we now discuss how they can be stitched together to obtain
an end-to-end protocol for securely computing any function.
Let us assume that the cleartext function comprises of two
functionalities A : G; — G5 and B : G, — Gg3 that are
sequentially invoked and let us assume that their correspond-
ing secure protocols are IT4 and 15, respectively. To devise
a secure protocol for B(A(x)), the dealer simply sets the
input random mask of I1Z equal to the output random mask
of IT* and runs the respective Gen algorithms to generate
the FSS keys. The evaluators can then pass the output of



I14 to the input of IIZ to get the required masked output.
Arbitrary number of protocols can also be composed in a
similar way. The security of this protocol can be argued in
the simulation paradigm as follows. Since each individual
protocol returns values masked by a random value, it suffices
to set these intermediate values to a random value (from the
corresponding group) during simulation. Simulators for the
constituent protocols can then be sequentially invoked to
complete the simulation of the overall protocol.

Now we consider the case of fixed-point training. Let the
global fixed-point scale be f. A typical machine learning
model contains layers like convolution, matrix multiplica-
tion, ReLU, MaxPool, and so on, where convolutions and
matrix multiplications are followed by truncations. A sin-
gle training iteration constitutes three steps: forward pass,
softmax calculation and backward pass. Once we have a
protocol for a single iteration that outputs updated masked
weights, multiple iterations can be trivially composed.
Forward Pass. Any sequence of the form convolution-
ReLU-MaxPool is computed securely using the protocol
for convolution followed by HTRM Sequences of the form
convolution-ReLU in the remamlng layers are computed
securely using the protocol for convolution followed by
HStT'ReLU Similar computations are done for matrix mul-
tlphcatlons (in place of convolutions) as well. For the re-
maining truncation and RelLU layers, we use the protocols
HStTJc' and TIRLY | respectively.

Softmax. The masked fixed-point outputs of the forward
pass protocol are then converted into secret-shared floating
point numbers using the protocol HF'XT"F'°at These secret
shares are then passed into the protocol for softmax from
SECFLOAT, which returns the output as a secret shared
floating point numbers, which are then converted back to
masked fixed-point numbers using IT}'%?* T, The masked
one-hot vector of the training label is locally subtracted from
the output to calculate the input to the backward pass.
Backward Pass. The outputs of DReLU that were computed
during the forward pass can be reused during the backward
pass; ReLU is hence realized using a call to TI5¥"*t, while for
MaxPool, the protocol for bitwise-AND and 1'[5‘5"3Ct suffices
(along with the stored forward pass values). Hence there is
no benefit in fusing layers as was done in the forward pass.
Backward pass of convolution and matrix multiplication
are realized using the protocols for convolutions, matrix
multiplications and HStT’

Appendix F.
Security proof of ReLU-Extend

For b € {0,1}, the simulator SimX-®* for Rel UExt
is given Z and up, and has to simulate the view of party
b, i.e., messages k:b<||r£d)|\rl()w)||pb\|qb from the dealer and
ﬁ)l,b||c21,b from the other evaluator. The simulator does the

following:
1) Generates kg, by invoking Sim;.  Runs
Evals (o kb<5|m, ) to obtain wp gim-

2) Randomly samples réfl)m,réds)lm, W1 _p.sim» d1—p.sim € Uy.

ReLUExt

4) Sets wSIm — wb 5|m+w1 b,sim mod 4 and d5|m - db S|m+
dl,b’s,m mod 4.

5) Sets igim = 2 - dsim + Wsim mod 4.
6) Randomly samples p,sm € U
p{),sim > i5im'

7) Sets js|m = cis.m mod 2.

8) Randomly samples a, sim.1~Jan cUn.

9) Sets qb sim j sim pb sim,3 (33 + 2n—f) + pg,sim,2 - &
10) Sets qb,sim = {Qb sim,05 4b,sim, 1}

3) Calculates Wy sim, ch sim using steps 2,4, 5 in Eval

and sets pj . =

Appendix G.
Piranha Functionalities using FSS protocols

We show how to build FSS-based protocols for func-
tionalities used by PIRANHA [66]]. These functionalities are
implemented in our library to directly compare the perfor-
mance of ORCA with PIRANHA on the same benchmarks.

G.1. Local-Truncation + ReLU

As discussed several prior works on secure training use
local truncations, i.e., parties locally truncate their secret
shares. In the FSS setting, this translates to the dealer
truncating the mask and the evaluators truncating the masked
value. While comparing with these works, to be apples-to-
apples, we provide FSS-based protocols and optimizations
for this setting. Our ideas of fusing truncations will non-
activations such as ReLU or ReLU+Maxpool are also ap-
plicable for local truncations and result in lower key size
compared to the naive approach of sequential computation.

A straightforward way to realize a protocol for Local-
Truncation + ReLU for an n-bit input = with public scale f,
with an error similar to the local truncation protocol [49],
is to locally truncate = by f and use the result as an input
to the protocol for ReLU from [16]. Over this protocol, we
perform two optimizations:

1) We replace the single-round protocol for ReLU from
[T6]] with the two-round protocol with a
smaller key size.

2) Since the value x >4 f can be represented accurately
in (n — f)-bits, we optimize the comparisons required
for the calculation of DRelLU bit to be done over a
reduced bitwidth of (n — f).

We present the full protocol for Local-Truncate + RelLU in
Figure 10| and summarize its costs in the following theorem:

Theorem realizes  local-truncation
+ RelLU securely such that keyS|ze(H'°ca'TrReLU) =
keysize(DCF,,_;1) + keysize(II$¢') + 1. In the online
phase, the protocol requires 2 evaluations of DCF,_¢
and costs communication of 2 bits in 1 round.

14. HIoc;ITrReLU

The naive unoptimized approach costs a key size of
keysize(DCF,, 2,,) + 5n bits. For n = 64 and f = 24, our
protocol costs 3x less key size. In the case when local-
truncation is followed by MaxPool followed by RelLU, we



Local-Truncate + ReLLU HL‘;CJ?'T'RGLU (Gt =TUy)
Genlrcl)’cfalTrReLU(rin’ r°“t) : ’

I =, f

2 (ks k) < Genyy_ ((1%,7/,1,Uy)

3: T(d) <i U,

4: share r(@

5 (k(()select)7 kgselect)) o Gense|ect(r(d)7 ’l"/, rout)
6: For b€ {0,1},ky = ki ||y || ky>etee?

Evally T (b, by, ) -

1: Parse ky, as kb<||7“l(,d)|| kl()select)

2 3 =3> f

3y—x+2nf1 mod 2"~/

4: t, + Evals_ f(b ko 9) — Eval® (f (b, kS, 2)
> dbitbij Wy >2n = 1}+Td) m0d2
6: d = reconstruct (db)
7: return u;, < Evalselect(b k(select) d A,)

Figure 10: Protocol for Local-Truncate + ReLU. b refers to
the party id.

follow the idea described in to calculate all the
internal DReLU bits on a reduced bitwidth of n — f.

G.2. Approximate Softmax

PIRANHA used to implement softmax with
the following approximations for exponential and inverse.
it —2<2<0

42
N
() =10" ifr< o

= relu(xz 4+ 2)/2

if0b<zr<1

if 281 L o < 2F

iﬁv(x) _ 2.6322 — 5.857x + 4.245
T )inv(z/2k) 27k

The expression for eXp(x) can be trivially realized using
the protocol for local-truncation + RelLU (Section G.IJ.
For inv(z), PIRANHA calculated & securely but revealed
its value in the clear, leaking the range of x. To mimic
this behaviour, we first calculate & using the protocol for
multiple interval containment and reveal its
value to the evaluators. Then the above polynomial can
be trivially evaluated using protocols for multiplication and
local-truncation.

Appendix H.
Correctness of DReLU offset function

Starting with the definition of offset function, we get:

DReLU,,"""*"(2) =
zl{x—r

DReLU,, (& — r™ mod 2") + roU
mOd 27L < 27L—1} + rOUt

Let § =2 + 2" mod 2" and 7’ = r" + 2"~ mod 2".
According to the above equation, the indicator function
above returns 1 when & lies in the region starting from r"
until 7/, taking care of wraps. Now, we will simplify this
expression by considering two cases.

Case 1: r" < 2"~1: This implies that r" +2"~1 < 2" and
r’ = r" + 27~ Hence, the expression becomes:

DReLUI"™1(2) = 1{& € [/, ')} + ro
= 1{& <’} = 1{& <"} 4o
Case 2: r" > 2"~1: This implies that r" + 2"~ > 2" and
r’ = r" — 27~1 Hence, the expression becomes:
DReLUI""™(2) = 1{& € [0,7/) U [/, 2" — 1]} + rout
= 1{& <’} +1{z > "} 4 rout

=1{i<r'}+1—1{& <"} 4o

Since the expressions in the two cases differ exactly by 1,
combining the two cases, we get:

out]

DReLU ™ (z) = 1{r" > 271} + 1{z < +'}

—1{& < r"} 4 rout 2

Now, to further simplify the 1{Z < '} term, we use the
following lemma from [16]:

Lemma 3 (Lemma 1 from [16]). Let a,a,b, B,r € Uy,
where a < b @& = a+rmodN and b = b+ r mod N.
Define 4 boolean predicates over Uy — {0,1} as follows:
P(x) denotes x < a, P'(x) denotes x < a, Q(x) denotes
(x4 (b—a) mod N) < b, Q'(x) denotes (x+ (b—a) mod
N) < b. Then, the following holds:

P(z) = Q(x) + (ea — €2) and P'(z) = Q'(z) + (ea — €x)
where e, = 1{a+ (b—a) > N — 1} and
ez =z +(b—a)>N-1}
In the above lemma, if we set a = 0,b = 2" 1 b—a =
2n=t r =" 2 =g, we get:

i=a+r mod N =r"
b=b+7r mod N=r"4+2""1 mod N =1/
P =1{g<a}=1{g <"}
Q) =1Hg+2" mod N <o’} =1{& <}
eo = {4 2n"l > om 1) = 1{/" > 2n 1)

eg=1{g+2" t>2" —1}=1{g=2"""}
We observe that Q(7) is the term we need. So:

Q(@) = P(Q) —€q 1 €y
i<’y =1{g <"} —1{r" > 271}
+1{g=2"""}



Plugging this result in Equation 2} we get:
DReLU, "™ (3) = 1{z < #'} + 1{/" > 271}
—1{& < v} 4 ot
={g<r—1{" 2" 1 1{g =2}
F1{M =2 — 1 < P 4 o
=g <r} -1z <M} 1{g =2} 4 v

out]

Appendix L.
Proof of

Lemma 2. For x € Uy such that int, (z) < 2" ! — 2f
X >>st f = SignEth_f’n(S‘t-I—R(I'7 f))

Proof. As stTR(z, f) = (z >« f) mod 2"/, stTR(x, f)
represents the same integer value as x >4 f, but in a
smaller bitwidth. So, it suffices to sign extend stTR(z, f)
to n bits to get x >¢ f. But, when int, (z) > 2"~! — 2f,
the stochastic-truncation by f can produce an output of
2n=f=1 with a non-zero probability, which represents the
smallest negative number in 2’s-complement representation
and is incorrect. Hence, when int,(z) < 2"~ ! — 2f,
T >q f = SignExt,,_; . (stTR(x, f)). O

Appendix J.
Correctness and Security of FSS Scheme

Definition 5 (FSS: Correctness and Security [17], [18]]).
Let G = {g} be a function family, Pg = {G} be the set
of descriptions of functions in G, and Leak be a function
specifying the allowable leakage about §. When Leak is
omitted, it is understood to output only G™ and G°'t. We
say that (Gen, Eval) as in Definition|l|is an FSS scheme for
G (with respect to leakage Leak) if it satisfies the following.

o Correctness: For all § € Pg describing g : G" —
G°, and every x € G™, if (ko, k1) <+ Gen(1*, §) then
Pr [Eval(0, ko, ) + Eval(1, k1, 2) = g(z)] = 1.

o Security: For each b € {0,1} there is a PPT algo-
rithm Simy, (simulator), such that for every sequence
(9x)xen of polynomial-size function descriptions from
G and polynomial-size input sequence x) for gy, the
outputs of the following Real and |deal experiments are
computationally indistinguishable:

— Realy: (ko, k1) < Gen(1*, g)); Output ky.
— Idealy: Output Simy(1*, Leak(gy)).

Appendix K.
Our Threat Model

2-party secure computation (2PC) enables two parties
Py and Pj, with private inputs zy and z; respectively, to
compute any public joint function y = f(x,z1) on their in-
puts. Informally, security requires that they only learn y and
nothing else through the course of an interactive protocol
which they execute. We consider 2PC in the trusted dealer

model. That is, there exists a trusted dealer that provides
correlated randomness to the two parties in a pre-processing
phase (before inputs to the computation are available). Se-
curity is proven in the simulation paradigm [20]], [29], [46]]
against a semi-honest static probabilistic polynomial time
(PPT) adversary that corrupts one of the two parties. That
is, the adversary corrupts either Py or P; before the protocol
begins. The corrupted party is guaranteed to follow the
protocol specification but may try to learn additional infor-
mation from the protocol. Security is modelled by defining
two worlds: a real world in which P, and P; interact with
each other through the protocol in the presence of adversary
A and the environment Z; and an ideal world in which the
parties send their inputs to a trusted functionality computing
f(zo,x1) faithfully. Security requires that for every real-
world adversary, there exists an ideal world adversary (called
the simulator S) such that no environment Z can distinguish
between the two worlds.

Appendix L.
Meta-Review from IEEE S&P 2024

L.1. Summary

This paper describes methods to speed up secure ma-
chine learning (ML) training for two-party (2PC) scenarios
using Function Secret Sharing (FSS) and GPU computa-
tions. To accelerate FSS, the paper proposes several opti-
mizations/engineering steps that are tailored to the design
of GPU’s inner workings. Additionally, the system presents
variations of FSS primitives that are designed to optimize
the observed performance bottlenecks on naive implemen-
tations.

L.2. Scientific Contributions

e Creates a New Tool to Enable Future Science

o Provides a Valuable Step Forward in an Established
Field

o Establishes a New Research Direction

L.3. Reasons for Acceptance

1) Creates a new tool to enable future science: The pro-
posed system moves towards practical secure infer-
ence and training by accelerating FSS-based protocols
through both systems’ advances with GPUs and new
cryptographic techniques.

2) Provides a valuable step forward in an established field:
The proposed system outperforms the competition in all
tested performance and accuracy metrics.

3) Establishes a new research direction: The authors de-
velop practical optimizations based on their preliminary
analysis that identified the bottlenecks when using GPU
in the context of FSS. The reviewers acknowledged the
authors’ commendable efforts in integrating advanced
techniques, including function secret sharing (FSS),



fixed-point and floating-point arithmetic, and GPU ac-
celeration, to develop the comprehensive system pro-
posed in this study.

L.4. Noteworthy Concerns

1) The reviewers mentioned that including some details
about the 2PC preprocessing in the main text would be
beneficial.

2) The reviewers agreed that the protocols’ writing style
is dense, making it difficult to understand the key
contributions of each protocol. The paper would benefit
if the presentation style of the corresponding sections
became more broadly accessible.
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