
Faastlane: Accelerating Function-as-a-Service Workflows

Swaroop Kotni∗, Ajay Nayak, Vinod Ganapathy, Arkaprava Basu
Department of Computer Science and Automation

Indian Institute of Science, Bangalore

Abstract

In FaaS workflows, a set of functions implement applica-
tion logic by interacting and exchanging data among them-
selves. Contemporary FaaS platforms execute each function
of a workflow in separate containers. When functions in a
workflow interact, the resulting latency slows execution.

Faastlane minimizes function interaction latency by striv-
ing to execute functions of a workflow as threads within a
single process of a container instance, which eases data shar-
ing via simple load/store instructions. For FaaS workflows
that operate on sensitive data, Faastlane provides lightweight
thread-level isolation domains using Intel Memory Protection
Keys (MPK). While threads ease sharing, implementations
of languages such as Python and Node.js (widely used in
FaaS applications) disallow concurrent execution of threads.
Faastlane dynamically identifies opportunities for parallelism
in FaaS workflows and fork processes (instead of threads)
or spawns new container instances to concurrently execute
parallel functions of a workflow. We implemented Faastlane
atop Apache OpenWhisk and show that it accelerates work-
flow instances by up to 15×, and reduces function interaction
latency by up to 99.95% compared to OpenWhisk.

1 Introduction

Function-as-a-Service (FaaS) is emerging as a preferred cloud-
based programming paradigm due to its simplicity, client-
friendly cost model, and automatic scaling. The unit of com-
putation on a FaaS platform is a developer-provided function.
Contemporary FaaS applications typically comprise a set of
functions expressed as a workflow. A workflow is a directed
acyclic graph that specifies the order in which a set of func-
tions must process the input to the application. When an exter-
nal request such as a web request or a trigger (e.g., timer) ar-
rives for an application, an instance of its workflow takes life.
AWS Step Functions (ASF) [9], IBM Action Sequences [28],
and OpenWhisk Composers [43] enable developers to create
and execute such workflows.
∗Author is currently affiliated with Microsoft Research India. This work

was performed when the author was at the Indian Institute of Science.

FaaS shifts the responsibility of managing compute re-
sources from the developer to the cloud provider. The cloud
provider charges the developer (i.e., cloud client) only for
the resources (e.g., execution time) used to execute func-
tions in the application (workflow). Scaling is automatic for
the developer—as the workload (i.e., number of requests) in-
creases, the provider spawns more instances of the workflow.

In contemporary FaaS offerings, each function, even those
that belong to the same workflow instance, is executed on
a separate container. This setup is ill-suited for many FaaS
applications (e.g., image- or text-processing) in which a work-
flow consists of multiple interacting functions. A key perfor-
mance bottleneck is function interaction latency—the latency
of copying transient state (e.g., partially-processed images)
across functions within a workflow instance. The problem is
exacerbated when FaaS platforms limit the size of the directly
communicable state across functions. For example, ASF lim-
its the size of arguments that can be passed across functions
to 32KB [35]. However, many applications (e.g., image pro-
cessing) may need to share larger objects [2]. They are forced
to pass state across functions of a workflow instance via cloud
storage services (e.g., Amazon S3), which typically takes hun-
dreds of milliseconds. Consequently, the function interaction
latency could account upto 95% of the execution time of a
workflow instance on ASF and OpenWhisk (Figure 6).

Prior works [2, 11, 31, 52] have proposed reducing func-
tion interaction latency, but they are far from optimal. First,
the proposed software layers to communicate state still incur
significant, avoidable overhead. Second, they introduce pro-
gramming and/or state management complexity. As examples,
SAND orchestrates via global message queues for remote
communication [2], while Crucial introduces a new program-
ming API for managing distributed shared objects [11].

We observe that if functions of the same workflow instance

were to execute on threads of a single process in a con-
tainer, then functions could communicate amongst themselves
through load/stores to the shared virtual address space of the
encompassing process. The use of load/stores minimizes func-
tion interaction latency by avoiding any additional software

overhead and exposes the simplest form of communication
possible—no new API is needed. The underlying hardware
cache-coherence ensures strong consistency of the shared
state at low overhead, without requiring elaborate software
management of data consistency, unlike prior works [11, 52].

Faastlane strives to execute functions of a workflow in-
stance on separate threads of a process to minimize function
interaction latency. This choice is well-suited in light of a
recent study on Azure Functions, which observed that 95%
of FaaS workflows consisted of ten or fewer functions [50].
This observation limits the number of threads instantiated
in a process. Faastlane retains the auto-scaling benefits of
FaaS. Different instances of a workflow spawned in response
for each trigger still run on separate containers, possibly on
different machines.

While threaded execution of functions simplify state shar-
ing within FaaS workflows, it introduces two new challenges:
1 Isolated execution for sensitive data. Several FaaS use-

cases process sensitive data. In such cases, unrestricted shar-
ing of data even within a workflow instance leads to pri-
vacy concerns. For example, a workflow that runs analytics
on health records may contain functions that preprocess the
records (e.g., by adding differentially-private noise [19]), and
subsequent functions run analytics queries on those records.
Workflows are often composed using off-the-shelf functions
(e.g., from the AWS Lambda Application Repository [3] or
Azure Serverless Community Library [40]). In the example
above, raw health records are accessible to a trusted prepro-
cessor function. However, they should not be available to
untrusted analytics functions from a library.

Unfortunately, threads share an address space, eschewing
the isolated execution of functions within a workflow instance.
Thus Faastlane enables lightweight thread-level isolation of
sensitive data by leveraging Intel Memory Protection Keys
(MPK) [29].1 MPK allows a group of virtual memory pages
(i.e., parts of process address space) to be assigned a specific
protection key. Threads can have different protection keys and,
thus, different access rights to the same region of the process’s
address space. The hardware then efficiently enforces the
access-rights. Faastlane uses MPK to ensure that functions
in a workflow instance, executing on separate threads, have
different access rights to different parts of the address space.
Simultaneously, it enables efficient sharing of non-sensitive
data by placing it in pages shared across the functions.
2 Concurrent function execution. Some workflow struc-

tures allow many functions within an instance to be executed
in parallel. However, most FaaS applications (e.g., 94%) are
written in interpreted languages, like Python and Node.js [48],
whose popular runtimes disallow concurrent execution of
threads by acquiring a global interpreter lock (GIL) [12, 16].

Threaded-execution thus prevents concurrent execution of
functions in a workflow instance even if the workflow and the

1ARM [7] and IBM processors [27] also have MPK-like page-grouping
support in their processors. AMD has announced MPK-like feature [6].

underlying hardware admit parallelism. Faastlane addresses
this problem via its adaptive workflow composer, which an-
alyzes the workflow’s structure to identify opportunities for
concurrent execution, and forks processes (within the same
container) to execute parallel portions of the workflow. Specif-
ically, Faastlane uses threads when the workflow structure
dictates sequential execution of functions and processes when
there is parallelism. Functions running on separate processes
use pipes provided in the multiprocessing module of Python
for sharing state. Python pipes internally use shared mem-
ory communication. Given that processors with 64-80 cores
are commercially available ([46, 47]), while those with 128
cores are on the horizon [45], we expect that containers can
be configured with enough vCPUs to allow most workflows
to execute entirely within a single container instance. Thus,
our key objective is to enable FaaS workflows to leverage
efficient communication within a single server.

However, it is also possible for some workflow structures to
allow hundreds and thousands of parallel functions. A single
container may not have enough vCPUs to fully leverage the
available parallelism within a workflow instance. Faastlane’s
adaptive workflow composer thus judges if the benefit from
leveraging parallelism in function execution likely to out-
weigh the benefits of reduced function interaction latency due
to execution of all functions of a workflow instance within
one container. If so, the composer falls back on the traditional
method of launching multiple containers, each of which would
run the number of parallel functions that it can execute concur-
rently. Functions of a workflow instance executing in separate
containers communicate state over the network as happens on
contemporary FaaS platforms.

Designing for efficient function interactions also helped
us significantly reduce the dollar-cost of executing FaaS ap-
plications. On FaaS platforms such as ASF, a developer is
charged for 1 the cost of executing functions, 2 the cost of
transitioning between nodes of a workflow across containers,
and 3 the cost of storage services for transferring large tran-
sient states. Faastlane reduces the first two components and
eliminates the last one.

To summarize, Faastlane makes the following advances:

• It reduces function interaction latency over OpenWhisk by
up to 2307× by executing functions on threads. Consequently,
it speeds up a set of example FaaS applications by up to 15×.

• It provides lightweight thread-level isolation using Intel
MPK to support applications that process sensitive data.

• It leverages parallelism in workflows by adapting to exe-
cute functions as processes, when appropriate, to avoid serial-
ization by GILs in popular FaaS language runtimes.

• Further, if the underlying container cannot fully leverage
the available parallelism in a workflow instance, Faastlane
falls back on using multiple containers as appropriate.

The source code for Faastlane and the applications are
available at https://github.com/csl-iisc/faastlane.

https://github.com/csl-iisc/faastlane

(a) Financial industry regulation. (b) ML prediction service. (c) Healthcare analytics.

Sensitive components of each workflow (data or functions) are annotated with a lock icon () and/or shaded orange.

Figure 1: Examples of commercially-important FaaS workflows referenced in Section 2.

2 Function Interaction and State Isolation

We present three commercially-important FaaS workflows
that illustrate the importance of minimizing function inter-
action latency and isolated execution of functions within a
workflow instance. We also identify three key design patterns
that suffice to express a wide variety of FaaS workflows.

2.1 Financial Industry Regulation

The US Financial Industry Regulatory Authority (FINRA)
provides oversight on the operation of broker-dealers to de-
tect malpractices [21]. FINRA requires every broker-dealer
to periodically provide it an electronic record of its trades
performed during that period. It then validates these trades
against market data for about 200 pre-determined rules that
check them against a variety of compliance criteria [20].

On average, FINRA validates about half a trillion trades
daily [20]. However, this computation only needs to run for
some time during the day, and the trade volume to be validated
fluctuates daily. The pricing and auto-scaling models of FaaS
make FINRA validation an ideal candidate for this platform.

Consider a FaaS workflow to validate a trade against an
audit rule (Figure 1a). StartFINRA triggers this application’s
workflow by invoking two functions. FetchPortfolioData,
which is invoked on each hedge-fund’s trading portfolio, takes
a portfolio ID as input and fetches highly-sensitive trade
data, private to each hedge-fund. FetchMarketData fetches
publicly-available market data based on portfolio type. This
function accesses external services to access stock market
trade data (e.g., Nasdaq). These functions can run concur-
rently in a given workflow instance.

The analyzer function (RunAuditRule) takes the sensitive
output of FetchPortfolioData and the non-sensitive infor-
mation obtained by FetchMarketData and validates the trades
in each portfolio against the rules. Typically, the size of port-
folio data (i.e., the state) shared between the functions runs
in KBs, while the market data can be several MBs. Although
we have discussed only one checker, FINRA checks com-
pliance against about 200 rules [20]. The checker for each

such rule (e.g., RunAuditRule2, etc.) can execute in parallel

with the other checkers, and each must obtain the outputs of
FetchPortfolioData and FetchMarketData.

To protect sensitive portfolio data from accidental dis-
closure, FetchPortfolioData and RunAuditRule simply per-
form local computations, and do not access external sources.
It is also important to ensure that FetchMarketData cannot
access sensitive data of the other two functions, even though
all three functions are part of the same workflow instance of
the same application for the same external request.

Current FaaS platforms isolate functions by executing each
function in a different container. However, the functions in a
workflow may be data-dependent and need to share several
MBs of state. Heavy-handed isolation via containers drives
up the cost of sharing state and contributes to a significant
component of the total workflow execution time (Section 5).

2.2 ML Prediction Service

ML prediction is a computationally-intensive task that takes
input data (e.g., images or text), extract features, and provides
domain-specific predictions (e.g., detecting objects or predict-
ing sentiments) [17, 34, 52]. Real-world prediction services
have real-time response requirements [24]. The workload of
an ML prediction service can vary over time and, therefore,
can benefit from auto-scaling as provided by FaaS.

Figure 1b presents an example workflow of an ML pre-
diction service for image classification. The workflow has
three data-dependent functions, and must, therefore, execute
in sequence. Resize pre-processes an input image and passes
the resized image to the main prediction function. Predictor
consults an ML model and outputs a vector of probabilities
that is then post-processed by Renderer and rendered suitably
e.g., by identifying object boundaries, or suitably labeling
objects in an image. The raw image is shared between Resize
and Predictor, and can be 100s-1000s of KB in size, while
the output of Predictor is in the order of 100s of bytes.

In a typical ML prediction service, the pre-trained ML
model is usually the secret sauce, created using sensitive train-

ing data sets and/or at considerable expense. The service
provider may not wish to release the model. However, other
parts of the workflow may use functions developed by third-
parties (e.g., [3, 40]). Here, it is crucial to ensure that Resize
and Renderer do not have access to the state of Predictor,
which loads the ML model in memory to performs its task.

2.3 Healthcare Analytics

Hospitals generate various health records that can be ana-
lyzed to create valuable information for population health
management. Applications that process these health records
need to meet strict compliance rules (e.g., HIPAA) regarding
sensitive data in medical records, including patient details and
doctors’ notes, which we refer to as protected health informa-
tion (PHI). Healthcare analytics applications are also a good
fit for FaaS pricing and scaling models; AWS Lambda hosts
many such applications [41]. Figure 1c depicts an example
of healthcare analytics workflow. PHIIdentifier takes two
inputs: a patient’s health record, which may contain unstruc-
tured text or images, and a consent form. Using the consent
form, the patient can choose to: 1 store the medical record
securely on a cloud-based service, e.g., DynamoDB in Fig-
ure 1c; and 2 offer to make available an anonymized version
of their medical record to analytics functions downstream.
The workflow conditionally executes one or both of the sub-
sequent steps (StoreProtected and AnonRecord) depending
on the patient’s consent—we call this design pattern a choice.

Both these subsequent steps require identifying PHI
data in the unstructured text of the medical record. The
StoreProtected function segregates PHI data from the med-
ical record, and stores both the PHI data and the stripped
medical record securely on a cloud server; the two parts can
be combined later when the patient submits a request to re-
trieve the record. AnonRecord anonymizes the medical record
by masking out the PHI data identified in the record.

The PHIIdentifier function securely communicates with
a trusted, external service to identify PHI data in the medi-
cal record, e.g., a HIPAA-compliant NLP service like AWS
Comprehend Medical [5] or a medical image analyzer like
Amazon Rekognition [22]. The medical record and the PHI
data are sensitive, and the untrusted Analytics function
must not access them. The internal state of PHIIdentifier,
StoreProtected, AnonRecord must also be protected from
Analytics. As in the other two examples, this workflow
also requires communication of a significant amount of state
(e.g., medical records containing images) between functions.

2.4 Function Interaction Patterns in FaaS Workflows

The three workflows discussed thus far illustrate three design
patterns for function interaction in FaaS workflows:

• The parallel pattern as seen in FINRA, in which functions
that are not data-dependent can execute concurrently;

• The sequence pattern as seen in the ML prediction service,
in which data-dependent functions must execute in sequence;

• The choice pattern as seen in Healthcare analytics, in which
functions in the workflow are conditionally executed based
on the user’s input or the output of a function in the workflow.

With these design patterns, we can succinctly encode all
constructs of Amazon States Language (ASL) [4, 8]. ASL
is the format in which application developers specify work-
flows for ASF. Thus, it suffices for Faastlane to incorporate
support for these three design patterns to express most of the
workflows available on contemporary FaaS platforms.

2.5 Threat Model

As illustrated in our examples, functions in a FaaS workflow
produce/consume sensitive and non-sensitive data. Even func-
tions that belong to the same workflow instance of a FaaS
application should not have unfettered access to each other’s
state. It is not uncommon for a single FaaS application to
use untrusted functions from public repositories (e.g., [3, 40])
along with trusted functions and services that can access sensi-
tive data. As we saw, functions do communicate a substantial
amount of state, and the use of any heavy-handed mecha-
nisms for isolation, e.g., executing function within separate
containers, inevitably leads to performance bottlenecks.

Our goal is to enable efficient sharing of state across func-
tions in a workflow with just the right amount of isolation.
We assume that the cloud provider offers an MPK-based hard-
ware platform and the operating system (OS) used to run FaaS
processes includes standard, widely-deployed data-execution
prevention features (e.g., W⊕X). Additionally, Faastlane does
not change the OS features that aid in defending against mi-
croarchitectural side-channel attacks. Best practices to de-
fend against such attacks, such as those developed in Fire-
cracker [1], can also be adapted for use with Faastlane. We
implemented Faastlane’s mechanisms as extensions to the
language runtime (i.e., Python interpreter). We, therefore, as-
sume that the runtime is part of the trusted computing base.
Note that we strive to isolate sensitive data and not code. Thus,
we cannot guard the confidentiality of proprietary functions
in FaaS workflows.

3 Design Considerations

Faastlane’s design has three objectives. First, we aim to mini-

mize function interaction latency without sacrificing concur-

rency in parallel workflows. It leverages fast communication
within a single server (machine) to share state across func-
tions of a single workflow instance, wherever possible. Loads
and stores to a shared address space are the lowest-latency op-
tions for sharing data. Faastlane thus strives to map functions
in a workflow instance to threads sharing a process address
space. While threads serve as a vehicle of concurrency in
most settings, they do not in this case. Interpreters for popular
languages used to write FaaS applications, such as Python and
Node.js, use a global interpreter lock (GIL) that prevents con-
current execution of application threads. Faastlane thus has a
workflow composer, a static tool that analyzes the workflow

structure, and forks processes instead of threads wherever the
workflow allows parallelism. These processes run within the
same container and communicate via Python pipes.

The workflow composer is also cognizant of the fact that a
single container may not have enough vCPUs to run all func-
tions concurrently (as processes) for workflows that admit
massive parallelism. If all functions of an instance of such
workflows are packed onto a single container, the performance
loss from the lack of concurrency may outweigh the bene-
fits of reducing function interaction latency. Therefore, the
composer periodically (e.g., once a day) profiles containers
on the FaaS platform to ascertain the available parallelism.
Wherever the composer encounters large parallelism in the
workflow structure, it determines whether it would be ben-
eficial to deploy instances of that workflow across multiple
containers based on measurements from profiling. Each con-
tainer itself concurrently runs multiple functions as processes,
commensurate to that container’s vCPU allocation.

Second, Faastlane aims to control the sharing of data within

a workflow instance when functions of a workflow instance
run as threads. As motivated in Section 2, we discovered
important workflows wherein sensitive data must be isolated
and shared only with authorized functions. While there is a
large literature on in-process isolation techniques [13, 15, 26,
36], recent work [25, 54] has shown that a hardware feature
available on Intel server processors, called MPK, offers thread-
granularity isolation at low overheads. Faastlane uses Intel
MPK to provide thread-granularity memory isolation for FaaS
functions that share a virtual address space.

Finally, Faastlane aims to meet the above two objectives
without needing FaaS application writers to modify their func-

tions and without requiring them to provide more information
(than they already do) to FaaS platforms. It is also transparent
to the cloud provider, except that Faastlane is most useful
when the underlying hardware supports MPK or MPK-like
features. Faastlane achieves this goal by designing a static
client-side tool, the workflow composer, along with a profiler
to achieve its objective of minimizing function interaction
latency without sacrificing concurrency. A modified language
runtime (here, Python), and the composer, ensure data iso-
lation. Faastlane can be packaged in an enhanced container
image. No new API is exposed to FaaS applications, and no
additional information is required from developers. This dif-
ferentiates Faastlane from many prior works (e.g., [11]) that
introduce new FaaS programming abstractions (e.g., to spec-
ify data sharing). We demonstrate Faastlane’s adoptability
by deploying it atop an unmodified OpenWhisk-based FaaS
platform on a server equipped with MPK.

4 Implementation of Faastlane

Faastlane needs to accomplish two primary tasks. First, it must
spawn threads and/or processes and/or multiple containers to
execute functions of a workflow instance for minimizing func-
tion interaction latency without sacrificing concurrency that

Figure 2: Functions from the FINRA workflow (Figure 1a).

Figure 3: Workflow composer output for functions in Figure 2.

exists in the workflow structure. Second, when executing func-
tions as threads, it must ensure the isolation of sensitive state
across the functions. Faastlane’s workflow composer, aided
by a simple profiler, accomplishes the first task. A modified
language runtime and the composer accomplish the second.

4.1 Minimizing Function Interaction Latency

Current FaaS platforms take a workflow description (Fig-
ure 1a) and function definitions as inputs (Figure 2), as sepa-

rate entities. They create one container for each of the func-
tions in each executing instance of a workflow. The platform
uses the workflow description to suitably route function calls.

Faastlane does not demand any new information from the
FaaS application developer or modifications to the code. Faast-
lane’s workflow composer tailors the JSON workflow descrip-
tion and the function code for execution in Faastlane’s runtime.
The workflow composer first analyzes the workflow structure
(JSON description) to identify if it allows for any concurrency
in executing the functions of an instance. If the workflow is
sequential, the composer packs all functions of the workflow
within a unified function called Orchestrator. To schedulers
on FaaS platforms, the unified workflow provides the illusion

of an application with a single-function. The entire workflow
is thus scheduled for execution in a single container. The
workflow composer also creates function wrappers, which the
Orchestrator invokes suitably to reflect the DAG specified
in the workflow structure. The Orchestrator method’s return
value is the output of the FaaS application.

Function wrappers explicitly identify the input and out-
put of the function. Wrappers have an associated built-in
start() method that is implemented in Faastlane’s runtime.
Invoking a start() method spawns a new thread to execute
the corresponding function (join() denotes the end of the
thread). As will be described later in this section, wrappers
also implement data isolation using MPK primitives. Each
function wrapper begins by reading input from the (shared)
process heap and places its output back on the heap. All the
other data of a function, not explicitly specified in the wrap-
per’s I/O interface, is considered private to that function and
stored in that thread’s heap partition (detailed shortly). The
Orchestrator function specifies the order in which threads
are invoked, thereby enforcing the workflow’s data sharing
policy. The functions of a workflow instance executing as
threads minimizes function interaction latency by sharing
data using load/stores to the shared process heap.

Language runtimes use a GIL that prevents threads from
executing concurrently. This does not present any issues for
sequential workflows but leads to loss of concurrency for
workflows that contain parallelism. Faastlane launches func-
tions of a workflow instance that can execute in parallel as
separate processes instead of threads. Processes can run con-
currently on vCPUs of the container deployed on the FaaS
platform. These functions communicate via Python pipes.

For example, consider the functions FetchMarketData
and FetchPortfolioData that can run in parallel. The
workflow composer creates a parallel-execution wrapper
(PStateWrapper in Figure 3) that identifies parts of the work-
flow that can execute concurrently (using the Process key-
word). The subsequent start() method for P1 and P2 spawns
new processes to execute those portions of the workflow. Each
such forked process can itself be a sub-workflow and can fur-
ther spawn threads or processes as required. The inputs to
these functions need not be explicitly copied, as they are

already available in the address space before the start()
method forks a new process. The output is copied back to the
parent process using Python pipes (queue1 and queue2). The
join() methods in Orchestrator serve as barriers that pre-
vent the workflow from progressing unless the corresponding
function wrapper thread has completed execution.

Using processes eschews some of the benefits of sharing
transient states via loads/stores. Moreover, the language run-
time has to be set up in each process, resulting in extra page
faults. Typically, functions in FaaS are short-running (<1
sec) [50]). Thus, the overheads due to page faults are non-
negligible for these ephemeral processes (detailed in Sec-
tion 5.2). However, the loss of concurrency with only threads
justifies the use of processes for portions of a workflow that
admit parallelism.

A container may not have enough vCPUs to run all func-
tions for a parallel section of a workflow concurrently. The
number of vCPUs exposed to a container may be smaller
than the number of cores in the underlying hardware. Further,
FaaS platform providers may not even expose the number
of vCPUs on the container it deploys to run a workflow in-
stance. Therefore, Faastlane deploys a simple compute-bound
micro-benchmark on the FaaS platform and observes its scala-
bility to infer the number vCPUs in the container deployed by
the platform. Such profiling is needed only very infrequently
(e.g., once a day) since the number of vCPUs in a container
for a given class typically does not change [33].

On encountering a large, parallel workflow structure, the
composer spawns multiple containers, each packed with the
number of processes equal to the (inferred) number of vCPUs
in the container. Networked communication across functions
on different containers happens via a REST API [32].

To support cloud hardware that does not offer MPK (or
MPK-like) support, the profiler checks for pku and ospke

flags in /proc/cpuinfo/ to ascertain if the FaaS platform sup-
ports MPK. If not, the workflow composer uses only processes
to execute functions. This fallback option sacrifices the gains
in lowering function interaction latency that threads offer, but
adheres to Faastlane’s principle of being transparent to both
the application writer and the cloud provider.

4.2 Isolation for Sensitive Data

The use of threads for efficient state sharing among functions
in a workflow fundamentally conflicts with the goal of pro-
tecting sensitive data in situations such as those illustrated in
Section 2. Faastlane leverages an existing hardware feature
to enforce thread-granularity isolation of data. Note that data
isolation is not a concern when functions execute on separate
processes. Each process has its own isolated address space,
and the state-less nature of FaaS means that they cannot com-
municate amongst themselves via the local file system, even
when they run on the same container.

Faastlane’s runtime ensures that each thread gets a private,
isolated portion of address space. There is also a shared parti-

tion of the address space that the threads use to communicate
the transient state via load/store. Isolation is ensured effi-
ciently using MPK hardware. The memory allocator of the
language runtime is extended to ensure that each thread allo-
cates its memory needs from its private partition by default.
Memory protection keys. Intel MPK provides hardware sup-
port for each page in a process’s address space to be annotated
with a 4-bit protection key. Logically, these keys allow us to
partition the virtual address space into 16 sets of pages. MPK
uses a 32-bit register, called the PKRU register, to specify
access rights for each set of pages. Each key is mapped to
2 bits in the PKRU register, that specify access rights of the
currently-executing thread to pages in each set. On a memory
access, permissions are checked against the PKRU register.
Thus, using MPK, it is possible to specify read/write accesses
for a set of pages that share the same protection key.

When a process starts, all pages in its address space are
assigned a default protection key, and the PKRU value allows
both read and write access to all pages. A process assigns a
protection key to a page using a system call (pkey_alloc in
Linux), and the protection key is written into the page-table
entry. To specify access rights for pages with that protection
key, the process uses the WRPKRU instruction, which allows
the process to modify the value of the PKRU register from
user-space. Since the WRPKRU instruction can be executed from
user-space, it is important to ensure that it is only invoked
from trusted code (called thread gates). Faastlane uses binary
inspection (as in ERIM [54]) to verify the absence of WRPKRU
instructions in locations other than thread gates. Faastlane
performs this inspection before the workflow is deployed
in the FaaS environment. Therefore, it does not incur any
run-time performance overheads.
Thread Gates. A thread gate is a sequence of instructions
that contains MPK-specific instructions to modify the PKRU

register or to assign protection keys to pages. A thread gate is
classified as an entry gate or an exit gate, based upon whether
it executes at the beginning or end of a thread. Faastlane
modifies the Python runtime to implement the instruction
sequence corresponding to entry and exit gates in the builtin
start() and join() methods.

An entry gate accomplishes three tasks. First, it attaches a
protection key to the thread, using the pkey_alloc system call.
Second, it communicates this key to the memory manager in
Faastlane’s Python runtime. The memory manager ensures
that all subsequent memory requests are satisfied from pages
tagged with the thread’s protection key. Finally, the gate uses
the WRPKRU instruction to write to the PKRU register to ensure
that only the current thread has read and write access to pages
tagged with that protection key. In effect, this establishes a
heap partition accessible only to that thread.

When the thread completes, the exit gate frees the protec-
tion key for further use using the pkey_free system call. It
also zeroes-out the memory region allocated to serve memory
for that protection key. Such cleanup allows Faastlane to reuse

protection keys for multiple threads without compromising
the isolation guarantees. Without reuse, Faastlane’s Python
runtime would restrict the number of available protection do-
mains to 16, thereby also restricting the number of functions
in the workflow to 15.2 One domain is reserved for the parent
thread (Orchestrator). The shared heap is accessible to all
threads and serves as the shared memory region to which all
threads enjoy unfettered read/write access.
Thread Memory Management. Faastlane modifies Python’s
memory manager to map requests from different threads to
different virtual address regions. Faastlane’s modifications
are packaged as a CPython module (tested for Python3.5).
Faastlane modifies the default memory allocator to main-
tain separate arenas (contiguous regions of virtual address
space; typically 256KB) for different threads and ensures that
memory requests from one thread are always mapped to the
thread’s private arenas. After requesting an arena from mmap,
Faastlane attaches a protection key to the arena using the
pkey_mprotect system call, effectively reserving the arena
for memory requests to the thread owning the protection key.

As discussed, the thread-entry gate associates a protection
key for a thread executing a function in the workflow when it
starts execution and maps all memory requests from the thread
to that private arena. If the arena becomes full, it allocates
another arena. When the wrapper finishes, it destroys all the
arenas associated with that thread’s protection key. The only
exception is that of the main thread (Orchestrator), whose
arenas are accessible to all threads in the process.

4.3 Putting It All Together

Figure 4 summarizes the lifecycle of a FaaS workflow in
Faastlane. The lifecycle starts with the application developer
supplying the functions and a workflow description connect-
ing them. The client supplies these entities to Faastlane’s
workflow composer. The composer analyzes the workflow
and produces a unified description using the design patterns
discussed in Section 2.4, capturing the available parallelism
in the workflow. Based on the available parallelism (if any)
and the number of vCPUs in the container (determined via
profiling), the workflow is deployed in the FaaS platform.

For workflows without or limited parallelism, the composer
provides a single top-level function, called the Orchestrator,
that encapsulates the entire workflow description. The client
supplies this unified workflow description to the FaaS plat-
form, which gives the platform the illusion of a single-
function FaaS workflow. The platform schedules the entire
FaaS application for execution within a single container. If
the workflow contains parallelism that exceeds the estimated
number of vCPUs in a container, the composer creates multi-
ple Orchestrator functions. Each Orchestrator subsumes a
sub-workflow with functions that can run concurrently within
a single container. Each Orchestrator is scheduled on a dif-

2A vast majority of workflows contain fewer than 10 functions [50].
Previous work has also shown ways to virtualize MPK partitions [44].

Cloud Provider

Operating System

fork
foo

private

foobar

private
ParState

private

foo

thread

ParState

thread

Foobar

thread
Orchestrator

thread

bar

thread

Container instance

Intel MPK-based Hardware Platform

create

bar’s heap

baz

thread

baz’s heap

Client

foo

bar

baz

foobar

Input

workflow.json

Output

||
parallel

foo

bar baz

foobar

Faastlane
Workflow
Composer

def Orchestrator (...) {

T1 = Thread(target = fooWrap,

args = [Input])

T2 = Thread(target = ParState,

args = fooOut)

T3 = Thread(target = foobarWrap,

args = ...)

T1.start(); T1.join()

T2.start(); T2.join()

T3.start(); T3.join()

...

}

def fooWrap (Input) {

global fooOut

fooOut = foo(Input)

memset_input(Input)

}

def ParState() {

P1 = Process(target = bar,

args = fooOut);

P2 = Process(target = baz;

args = fooOut);

P1.start(); P2.start();

P1.join(); P2.join();

memset_input(fooOut);

}

...

Unified
Workflow

Shared Heap

(of Orchestrator)

Figure 4: This picture shows a snapshot of the workflow when the functions bar and baz are executing concurrently. The threads

shown in grey have either completed execution (foo), are currently paused (Orchestrator) or are yet to be created (foobar).

ParState is the wrapper for the bar and baz functions in the parent process. Although not shown in this example, Faastlane al-

lows child processes to be sub-workflows that can recursively spawn threads or processes. If the workflow is highly parallel, the

workflow composer creates multiple top-level Orchestrator functions, each of which executes in a different container.

ferent container by the FaaS platform.
Faastlane’s runtime component within the container ac-

cepts the unified workflow description and decomposes it
to identify the functions within the workflow. Based on the
Orchestrator, it either starts threads (one per function) or
forks processes to execute functions of the workflow. When
functions execute as threads, each thread executes instructions
to identify a partition of the process heap accessible only to
that thread (using MPK primitives). It uses this partition to
store data private to the function. The functions running on the
thread can share state via load/stores to a designated shared
heap for the process. When a thread completes, the function’s
output is made available (via the Orchestrator method) only
to the functions in the workflow that consume that output.
When Faastlane forks a process, it passes only the output of
the last method from the parent process to the Orchestrator
method of the child process via a Python pipe. For large paral-
lel workflows, functions in different containers communicate
over the network stack as in contemporary FaaS platforms.

Faastlane does not impact auto-scaling in FaaS. Different
instances of a given workflow spawned in response to a trigger
are scheduled on different containers, as is typical.

5 Evaluation

We evaluate Faastlane against four real-world applications
that broadly capture popular FaaS function interaction pat-
terns [39]. Besides the applications in Section 2, we include
Sentiment analysis, which is another real-world use case [49].

Sentiment analysis evaluates user reviews for different prod-
ucts of a company. Its workflow contains two choice states.
The first choice state chooses an analysis model based on the
product. The second choice state publishes to a database ver-
sus a message queue (for manual analysis of negative reviews)
based on review sentiments. Together, these applications en-

Processor 2 × Intel(R) Xeon(R) Gold 6140 CPU
No. of cores 36 (2×18)
DRAM 384 GB, 2666 MHz
LLC Cache 24 MB
Linux Kernel v. 4.19.90
Docker 19.03.5, build 633a0ea838

Table 1: Experimental Setup.

capsulate all the patterns discussed in Section 2.4.
Table 1 shows the configuration of our experimental sys-

tem, including the software stack. We measure how Faast-
lane improves function interaction latency, end-to-end latency,
throughput, and reduces dollar-cost. We perform the exper-
iments on a single machine where Faastlane can pack all
functions of a workflow instance within a single container.
However, in Section 5.4 we further show how Faastlane scales
up to use multiple containers in face of large parallelism
within a workflow structure.

We compare Faastlane’s performance against ASF, Open-
Whisk and SAND [2]. SAND aims to reduce function inter-
action latency. It executes functions in a workflow as separate
processes within a container and shares state using a hierarchi-
cal message queue. Our performance experiments with Open-
Whisk, SAND and Faastlane were run on our local hardware
platform, while ASF experiments were run on the AWS cloud
infrastructure. We cannot control the AWS cloud hardware
platform. Thus, the ASF measurements are not necessarily
directly comparable to those of the other platforms.

5.1 Function Interaction Latency

Figure 5 reports the function interaction latency of the four
applications under different FaaS platforms. The applications
are as described in Section 2, with the only difference that
the FINRA application checks portfolio data against 50 audit
rules. We run each application at least 100 times and report
the median. We observe that function interaction latency is

72

272 374

35

8076

126
257319

72

24
49

16.7

3.5

1.2 1.02
1

10

100

1000

10000

FINRA ML Prediction

Service

Healthcare

Analytics

Sentiment

Analysis

T
im

e
 (

m
s)

ASF Openwhisk SAND Faastlane26388

Figure 5: Median function interaction latency (in milliseconds)

lowest with Faastlane across all four applications, each with
different function interaction patterns. Faastlane reduces the
latency over its closest competitor by 52.3%, 95.1%, 95% and
98% for FINRA, ML prediction service, Healthcare analytics
and Sentiment analysis, respectively.

SAND reduces the function interaction latency compared
to current FaaS platforms, except for FINRA. FINRA runs 50
audit rules in parallel, where SAND’s hierarchical messaging
queues serialize communication from concurrently executing
functions. Consequently, SAND increases the function inter-
action latency to 319ms from 35ms on OpenWhisk. However,
Faastlane reduces it to 16.7ms. For ML prediction service,
SAND reduces the interaction latency to 72ms from thou-
sands of milliseconds on OpenWhisk while Faastlane almost
eliminates it. Similarly, for the remaining apps, the interaction
latency is a mere 1-1.2ms with Faastlane.

Note that the ML prediction service has very high function
interaction latencies (in thousands of milliseconds) on both
ASF and OpenWhisk. This is because the ML prediction ser-
vice transmits the largest state across functions—an image of
about 1.6MB size from the Resize function to the Predictor
function (Figure 1b). However, on ASF and OpenWhisk, func-
tions in a workflow can directly transmit a maximum state of
size 32KB [35] and 1MB, respectively. Consequently, the ML
prediction service is forced to fall back upon a slow storage
service like Amazon S3 for state sharing on these platforms.
The other applications transmits tens of KBs of state across
functions in a workflow (for the payloads we used).

Though Faastlane offers the lowest function interaction
latency for FINRA, the latency of 16.7ms is higher than the
latency observed for the other applications even if it transmits
only tens of KBs of state across functions. This behavior is
because FINRA’s workflow invokes 50 functions in parallel
to audit the portfolios. Faastlane executes these functions
as separate processes where the state is shared via Python
pipes, instead of loads/stores within a process address space.
While this helps end-to-end latency by leveraging concurrency
(Section 5.2), the cost of sharing state increases compared to
sharing state across threads of the same process.

5.2 End-to-End Application Performance

Latency. The end-to-end execution latency of an application’s
workflow is the time that elapses between the start of the
first function of the workflow and the completion of the final
function in the workflow. We measure end-to-end latency by

executing each application at least 100 times and report both
the median and tail (99%-ile) values.

We dissect the end-to-end latency as follows:

1 The time spent in external service requests. An external
service request is one that requires communication outside the
FaaS platform. For example, the healthcare analytics applica-
tion uses the AWS Comprehend Medical service to identify
PHI in health records (Section 2.3). This component depends
on several factors, including time over the network and the
latency of processing the request at the external entity.

2 The compute time, which is the time during which the
workflow functions execute on the processor. It does not in-
clude the time spent on external service requests.

3 The function interaction latency on the FaaS platform.

Figure 6 presents the end-to-end latency broken down into the
above components. For each application, we report median
and 99%-ile latency on ASF, OpenWhisk, SAND, and Faast-
lane. The total height of each bar represents the end-to-end
latency, and the stacks in the bar show the breakdown. In Fig-
ure 6a, we first note that the compute time is significantly
more on ASF than on other platforms. While the FINRA
application has 50 parallel functions, ASF never runs more
than 10-12 of them concurrently. On other platforms, the com-
pute time is much shorter because all the functions execute
in parallel. Most of the time is spent on the external service
request for retrieving the trade data. Overall, we find that
Faastlane improves end-to-end latency by 40.5%, 23.7% over
OpenWhisk and SAND, respectively.

In ML prediction service (Figure 6b), OpenWhisk’s and
ASF’s end-to-end execution latency are dominated by the
function interaction latency, as discussed earlier. In compari-
son, SAND significantly reduces function interaction latency,
while Faastlane practically eliminates it. Consequently, even
in comparison to SAND, Faastlane improves end-to-end la-
tency by 22.3%. Over OpenWhisk, the improvement due to
Faastlane is 15×. Note that the compute time on OpenWhisk is
shorter (by about 100ms) than that on Faastlane and SAND, al-
though we ran OpenWhisk, Faastlane, and SAND on the same
hardware platform. This difference is because, on Faastlane
and SAND, the ML prediction service application transmits
data between functions using JSON (de)serialization methods,
contributing to the compute time. In contrast, on OpenWhisk,
the application is forced to use S3, and the application does
not use JSON when communicating with S3.

In Healthcare analytics (Figure 6c), the time spent on exter-
nal service request (AWS Comprehend Medical) is significant.
The response latency from AWS Comprehend Medical de-
pends on external factors and is orthogonal to our system
design. We observed that the latency is much lower on ASF
but similar on the FaaS platforms that were executed on our
local hardware. In comparison to OpenWhisk and SAND,
Faastlane improves end-to-end latency by 9.9% and 10.4%,
respectively. Faastlane improves end-to-end latency of Sen-

ASF OpenWhisk SAND Faastlane
2
0
6
3

2
3
6
4

5
4
6
9

5
6
5
6

72
142

1
6
9
9

2
7
2
9

35

59

892 2
2
6
6319

1364

987 1
8
0
617

22

0

3000

6000

9000

Median 99%ile

(a) FINRA

990 1
7
2
4

441 572636 739

72

107

546 628

3.5
4.4

0

500

1000

1500

2000

Median 99%ile

26k
8k

16k
60k

(b) ML prediction service

236 292

272
343

1
1
4
8

1
2
9
9

126

143

1
2
5
8

1
3
3
9

24
37

1
1
4
5

1
2
1
6

1
2

0

400

800

1200

1600

Median 99%ile

(c) Healthcare analytics

377 407

374

464

140 196

257

292

267 357

49

75

154 220

1
1.3

0

200

400

600

800

1000

Median 99%ile

(d) Sentiment analysis

Figure 6: Application end-to-end latency (in ms). Legend shows external service time, compute time and function interaction latency

for each platform in that order. Note that (b), (d) do not have external services and (c) has negligible compute time (2-4ms).

36
57 46 5032

6

43

109

35

83

46

175

45

96

49

262

0

100

200

300

FINRA ML Prediction

Service

Healthcare

Analytics

Sentiment

Analysis

T
h

ro
u

g
h

p
u

t
(p

e
r

m
in

)

ASF Openwhisk SAND Faastlane

Figure 7: Measuring application throughput.

timent analysis (Figure 6d) by 61% over OpenWhisk and
51% over SAND. The tail (99%-ile) latency trends (Figure 6),
mirror the above observations. In short, Faastlane provides
the least end-to-end latency across platforms that are directly
comparable, i.e., run on the same hardware.
Throughput. Figure 7 shows the application throughput,
measured as the number of application requests serviced per
minute on different FaaS platforms. We use the time between
the invocation of the first request and the response receipt
for the last request. We repeat this experiment over several
requests to measure throughput as the number of requests-
per-minute. Unlike end-to-end execution latency, throughput
measurement also accounts for initialization (e.g., spawning
containers), and post-processing time. Note that to compare
throughput, we also need to ensure that all configurations run
on the same hardware. The total number of cores on the hard-
ware platform (and therefore, the available parallelism) has
a first-order effect on throughput, unlike latency. While we
present numbers from ASF for completeness, we forewarn the
readers against directly comparing ASF’s throughput num-
bers (run on hardware not in our control), with the numbers
obtained on other FaaS platforms executed locally.

Figure 7 shows the throughput observed for each of our
applications on ASF, OpenWhisk, SAND and Faastlane. In
general, we observe that throughput follows the trends in the
end-to-end latency. Faastlane provides the best throughput
across all applications. For the FINRA application, Faastlane
improves throughput by 28.6% over its nearest competitor
(SAND). For ML prediction service and Sentiment analy-
sis, Faastlane improves throughput by 15.6%, 49.7% over
SAND and by 16×, 2.4× over OpenWhisk, respectively. For
the healthcare analytics application, Faastlane provides a mod-
est throughput improvement of 6% over SAND.

1 1 1 10.96 0.93
0.98

0.87
1 1 11

1.43

1.09

1.73

0

1

2

FINRA ML Prediction

Service

Healthcare

Analytics

Sentiment Analysis

N
o

rm
a

li
ze

d
 L

a
te

n
cy Faastlane Faastlane-NS Faastlane-Th Faastlane-P3.3

Figure 8: Analysis of the cost of isolation in Faastlane.

Cost of Isolation. For a deeper understanding of the de-
sign choices made in Faastlane, we create three variants of
Faastlane. First, we turn off thread-level memory isolation
in Faastlane by disabling its MPK-enabled memory man-
ager and the zeroing-out of function’s state in the shared do-
main (Faastlane-NS). The difference in performance between
Faastlane-NS and Faastlane quantifies the performance cost of
data isolation using MPK. Second, we constrain Faastlane to
only use threads, and not a mix of processes and threads based
on the workflow structure (Faastlane-Th). The performance
difference between Faastlane-Th and Faastlane quantifies the
usefulness of adapting between processes and threads. Third,
we constrain Faastlane to use only processes, and share state
via Python pipes (Faastlane-P). The performance difference
between Faastlane-P and Faastlane quantifies the importance
of employing threads when possible.

Figure 8 shows the normalized median end-to-end latency
for Faastlane, Faastlane-NS, Faastlane-Th and Faastlane-P for
all four applications. The height of each bar is normalized to
latency under Faastlane. Comparing Faastlane-NS and Faast-
lane, we observe an increase of 1.9-14.9% in the end-to-end
latency in Faastlane, which denotes the cost of MPK-based
isolation mechanism. We argue that this performance cost is
a reasonable price to pay for data isolation.

Next, we observe that the latency for Faastlane-Th is 3.3×
of the Faastlane for FINRA. Recall that FINRA has 50 paral-
lel functions in its workflow. Since the threads cannot execute
concurrently in our Python implementation (due to the GIL),
Faastlane-Th cannot execute these parallel functions concur-
rently. In contrast, Faastlane employs processes instead of
threads and can leverage the underlying hardware resources
for concurrency. For the rest of the applications, there is no
difference between Faastlane-Th and Faastlane as they do not

AWS Step Functions (ASF) Faastlane

Application Lambda Step Storage Total Lambda

FINRA 31.17 1325 0 1356.17 10.2
ML Prediction

Service 21.75 125 27.85 174.6 11.87
Healthcare

Analytics 1.65 150 0 151.65 0.83
Sentiment

Analysis 1.85 175 0 176.85 1.03

Table 2: Cost (in USD) per 1 million application requests

contain any parallel functions. This experiment shows the
importance of analyzing the workflow structure and using
processes instead of threads in the presence of GIL.

Finally, the latency for Faastlane-P is 9-73% higher than
Faastlane in applications except FINRA. Lifetimes of FaaS
functions are short, e.g., 50% of the functions execute in
less than 1s [50]. Thus, processes running these functions
in Faastlane-P are ephemeral and we found the page-fault
latency in setting up language runtime in each process domi-
nates their execution times. Faastlane reduces page-faults by
1.43-3.95× using threads over processes. For FINRA, Faast-
lane uses processes to leverage parallelism. Thus, there is no
difference between Faastlane-P and Faastlane.

5.3 Dollar-cost of Application Execution

We now discuss the dollar-cost implications to developers for
executing applications on Faastlane versus atop ASF. The cost
of executing applications on ASF includes: 1 Lambda costs,
which is the cost of executing the functions of a workflow,
2 Step costs, which is the cost of transitioning from one

node to another in an ASF workflow across containers, and
3 Storage costs, for transferring large transient state [53].

We noticed that execution times of functions on ASF varies
run-to-run. We used the smallest execution time to estimate
the least cost of running an application on ASF.

Unlike with ASF, the dollar-cost of running on Faastlane
only includes the Lambda cost. The Step cost of transitioning
across containers is zero because Faastlane executes an en-
tire workflow instance within a container. Faastlane does not
need a storage service to transfer state and therefore incurs
no Storage cost. To measure the Lambda cost on Faastlane,
we deployed applications with Faastlane-enhanced virtual en-
vironments on AWS Lambda. We disabled MPK instructions
because AWS machines may not have MPK-enabled today.
However, we adjusted the billed-duration and maximum mem-
ory of each application with MPK overheads (1.9-14.9%). We
exclude the cost of any external service that a function uses
for its execution (e.g., AWS Comprehend Medical).

Table 2 reports the total cost incurred for each application
on ASF and Faastlane. Faastlane executes applications only at
0.6-6.8% of the cost of ASF. Faastlane eliminates expensive
step costs and storage costs by designing for efficient func-
tion interactions. Despite running on containers with larger
memory, Faastlane reduces Lambda costs, partly due to the
reduction in runtime because of efficient function interactions
and partly due to the current AWS Lambda pricing model.

1

2

3

4

50 100 200

E
x
e

cu
ti

o
n

 t
im

e
 o

f
a

w
o

rk
fl

o
w

 i
n

st
a

n
ce

Functions in Parallel State

OW Baseline Faastlane (4 vCPUs)

Faastlane (16 vCPUs) Faastlane (50 vCPUs)

Figure 9: Scalability for FaaS Applications with parallelism.

5.4 Scalability with Multiple Containers

All experiments thus far were limited to one server, and the
underlying container had sufficiently many vCPUs to run all
parallel functions in applications like FINRA concurrently.
We now explore how Faastlane would scale if the underlying
container had a limited number of vCPUs and when multiple
servers are to be deployed to cater to the parallelism available
within a single workflow instance. For this purpose, we scaled
up the number of functions in the parallel step in FINRA’s
workflow from 50 to 200. We also varied the number of vC-
PUs in each container from 4 to 50.

When Faastlane detects that the parallelism in the workflow
exceeds the parallelism serviceable by the vCPUs of a single
container, it spawns multiple containers, possibly scheduled
on multiple servers. Each container is packed with a number
of processes commensurate with the vCPUs alloted to it.

Figure 9 shows how Faastlane performs under such circum-
stances vis-a-vis OpenWhisk baseline that runs every function
in separate containers. The y-axis reports the average execu-
tion time of a workflow instance as the number of parallel
functions are scaled (x-axis). We observe that when the num-
ber of vCPUs per container is limited, Faastlane offers limited
uplift (2.46%). This is expected since Faastlane falls back
on network-based communication across containers when
spawning multiple containers. As we increase the number of
vCPUs per container, Faastlane launches fewer containers,
and performs much better. At 50 vCPUs per container, Faast-
lane speeds up by 2.73× over the baseline when there are 50
parallel functions. Even when there are 200 functions, Faast-
lane reduces execution time by 25.3%. In short, Faastlane
is most effective when it can leverage fast communication
within a container, particularly for sequential workflows and
those with limited parallelism. However, even when faced
with large parallelism in workflows, coupled with limited par-
allelism in underlying containers, Faastlane scales at least as
well as the current offerings.

6 Related Work

Table 3 compares Faastlane against closely related systems
using three criteria—function interaction latency, ability to
support unmodified FaaS workflows (e.g., those written for
commodity FaaS offerings such as OpenWhisk and ASF),
and whether the solution supports function interaction across
machines. Commercial FaaS solutions satisfy the latter two
criteria, but have high function interaction latencies [10, 23].

Function Unmodified Interaction
Interaction Latency Application Across Machines

OpenWhisk/ASF High ✓ ✓

SAND [2] Medium ✓ ✓

SONIC [37] Medium ✓ ✓

Crucial [11] Medium ✗ ✓

Cloudburst [52] Medium ✗ ✓
Faasm [51] Low ✗ ✗
Nightcore [30] Low ✗ ✗

Faastlane Low ✓ ✓

Table 3: Comparing Faastlane with related work.

SAND [2] reduces function interaction latency via hierar-
chical message queues, while allowing unmodified FaaS ap-
plications and workflows spanning multiple machines. How-
ever, as our evaluation showed, Faastlane’s approach of using
memory load/store instructions reduces function interaction
latency even further. SONIC [37] aims to reduce function
interaction latency by jointly optimizing how data is shared
(e.g., by sharing files within a VM or copying files across
VMs) and the placement of functions in a workflow. However,
SONIC uses files as the core data-sharing mechanism, leaving
room for latency reduction in several cases.

Crucial [11] improves state-sharing in highly paralleliz-
able functions using distributed shared objects (DSOs). DSOs
are implemented atop a modified Infinispan in-memory data
grid. Unfortunately, Crucial’s approach is not compatible with
unmodified FaaS applications. Cloudburst [52] focuses on
distributed consistency of shared data using Anna key-value
stores [56]; other systems, like Pocket [31], use specialized
distributed data stores for transient data. These systems im-
prove function interaction latency, but leave significant head-
room for improvement because of the overheads of accessing
the remote data store.

While all the aforementioned systems support distributed
FaaS applications, in which interacting functions execute on
different machines, Faasm [51] and Nightcore [30] aim to re-
duce function interaction latency by executing workflows on a
single machine. Faasm [51] uses threads and shared memory
with software-fault isolation [55] (more heavy-weight) to pro-
vide thread-private memory partitions. Unfortunately, Faasm
requires custom-written FaaS applications that are then com-
piled down to WebAssembly for execution. Nightcore [30]
accelerates stateless microservices by co-locating them on the
same physical machine and using shared memory to enable
efficient data sharing. However, the FaaS applications must be
modified to use Nightcore’s libraries to avail of these benefits.
Faastlane’s function interaction latencies are comparable to
Faasm and Nightcore, but it additionally supports unmodified
FaaS workflows and distributed FaaS applications.

Aside from these systems that share Faastlane’s goal of re-
ducing function interaction latency in FaaS workflows, there
is prior work on reducing the memory footprint and perfor-
mance overhead of other aspects of FaaS. Chief among these
are methods that aim to reduce the memory footprint and
performance overheads of containers by creating stripped-
down containers [42], checkpointing [18], language-level iso-

lation [14], or create bare-bones VMs tailored to the applica-
tion loaded in the VM [1, 38]. Faastlane’s lightweight sand-
boxing approach can be used in conjunction with prior work
to improve the overall performance of FaaS applications.

Faastlane uses MPK to offer lightweight memory isolation
between threads when they are used in the workflow. Re-
cent works introduce new OS-level primitives for efficient
in-process isolation [13, 15, 26, 36]. However, the overheads
are still substantial compared to MPK which offers user-
level instructions to switch memory domains. In contrast,
the other solutions add new system calls, or introduce non-
negligible runtime overheads. Prior studies have aimed to
provide intra-process isolation using MPK. We borrow the
ideas of thread gates and binary inspection from ERIM [54].
While Faastlane creates in-process thread-private memory
domains, Hodor [25] creates protected libraries using MPK-
backed protection domains. MPK offers 16 domains, which is
sufficient for most current FaaS applications [50]. For larger
workflows, Faastlane reuses thread domains wherever possi-
ble (Section 4.2). Libmpk [44] offers a software abstraction
of MPK to create a larger number of domains. However, it
adds non-negligible software overheads.

7 Conclusion

Developers structure FaaS applications as workflows con-
sisting of functions that interact by passing transient state
between each other. Commercial FaaS platforms execute func-
tions of a workflow instance in different containers. The tran-
sient state must be copied across these containers or transmit-
ted via cloud-based storage services, both of which contribute
to the latency of function interaction.

Faastlane reduces function interaction latency by sharing
data via memory load/store instructions. To accomplish this
goal, it strives to execute functions of a workflow instance
as threads within a shared virtual address space. However,
this approach raises new challenges associated with isolating
sensitive data and availing the parallelism afforded by the
underlying hardware. Faastlane’s novel design uses Intel MPK
for lightweight thread-level isolation and an adaptive mixture
of threads and processes to leverage hardware parallelism.
Our experiments show that Faastlane outperforms commercial
FaaS offerings and also recent research systems designed to
reduce function interaction latency.

Acknowledgments

We are grateful to the anonymous reviewers for their thought-
ful feedback on the work. Thanks to Onur Mutlu for shep-
herding the paper. This work was supported in part by a Ra-
manujan Fellowship from the Government of India, a Young
Investigator fellowship from Pratiksha Trust, and research
gifts from Intel Labs and VMware Inc.

References

[1] Alexandru Agache, Marc Brooker, Alexandra Iordache,
Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and
Diana-Maria Popa. Firecracker: Lightweight virtual-
ization for serverless applications. In 17th USENIX

Symposium on Networked Systems Design and Imple-

mentation (NSDI 20), February 2020.

[2] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac,
Manuel Stein, Klaus Satzke, Andre Beck, Paarijaat
Aditya, and Volker Hilt. SAND: Towards high-
performance serverless computing. In USENIX Annual

Technical Conference, 2018.

[3] Amazon. AWS Serverless Application Repository—
Discover, deploy, and publish serverless applications.
https://aws.amazon.com/serverless/serverlessrepo/.

[4] Amazon States Language—AWS Step Functions De-
veloper Guide. https://docs.aws.amazon.com/step-

functions/latest/dg/concepts-amazon-states-

language.html.

[5] Amazon Comprehend Medical—extract information
from unstructured medical text accurately and quickly.
https://aws.amazon.com/comprehend/medical/.

[6] Memory Protection Keys on AMD processors. https:
//www.anandtech.com/show/16214/amd-zen-3-ryzen-deep-

dive-review-5950x-5900x-5800x-and-5700x-tested/6.

[7] ARM. ARM Architecture Reference Manual ARMv7-A
and ARMv7-R edition, 2018.

[8] Amazon States Language Specifications. https://

states-language.net/spec.html.

[9] AWS Step Functions—build distributed applications
using visual workflows. https://aws.amazon.com/step-
functions/.

[10] Daniel Barcelona-Pons, Pedro García-López, Álvaro
Ruiz, Amanda Gómez-Gómez, Gerard París, and Marc
Sánchez-Artigas. Faas orchestration of parallel work-
loads. In Proceedings of the 5th International Workshop

on Serverless Computing, 2019.

[11] Daniel Barcelona-Pons, Marc Sanchez-Artigas, Gerard
Paris, Pierre Sutra, and Pedro Garcia-Lopez. On the
FaaS Track: Building stateful distributed applications
with serverless architectures. In ACM Middleware Con-

ference, 2019.

[12] David Beazly. Inside the Python GIL. In Python Con-

currency and Distributed Computing Workshop, May
2009. http://www.dabeaz.com/python/GIL.pdf.

[13] Andrea Bittau, Petr Marchenko, Mark Handley, and
Brad Karp. Wedge: Splitting applications into reduced-
privilege compartments. In Proceedings of the 5th

USENIX Symposium on Networked Systems Design and

Implementation, 2008.

[14] Sol Boucher, Anuj Kalia, David G. Andersen, and
Michael Kaminsky. Putting the "micro" back in mi-
croservice. In 2018 USENIX Annual Technical Confer-

ence (USENIX ATC 18), 2018.

[15] Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang
Sun, and Long Lu. Shreds: Fine-grained execution units
with private memory. In IEEE Symposium on Security

and Privacy, 2016.

[16] Python–Global Interpreter Lock. https://wiki.python.
org/moin/GlobalInterpreterLock.

[17] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J.
Franklin, Joseph E. Gonzalez, and Ion Stoica. Clipper:
A low-latency online prediction serving system. In
USENIX Symposium on Networked Systems Design and

Implementation, 2017.

[18] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu
Yan, Chenggang Qin, Qixuan Wu, and Haibo Chen. Cat-
alyzer: Sub-millisecond startup for serverless computing
with initialization-less booting. In Proceedings of the

Twenty-Fifth International Conference on Architectural

Support for Programming Languages and Operating

Systems, 2020.

[19] Cynthia Dwork and Aaron Roth. The algorithmic
foundations of differential privacy. Foundations and

Trends in Theoretical Computer Science, 9(3–4):211–
407, 2014.

[20] FINRA adopts AWS to perform 500 billion validation
checks daily. https://aws.amazon.com/solutions/case-
studies/finra-data-validation/.

[21] United States Financial Industry Regulatory Authority.
https://www.finra.org/.

[22] Sarah Gabelman. How to use Amazon Rekognition
and Amazon Comprehend Medical to get the most out
of medical imaging data in research, September 2019.
https://aws.amazon.com/blogs/apn/how-to-use-amazon-

rekognition-and-amazon-comprehend-medical-to-get-

the-most-out-of-medical-imaging-data-in-research/.

[23] Pedro Garcia-Lopez, Marc Sanchez-Artigas, Gerar Paris,
Daniel Barcelona-Pons, Alvaro Ruiz Ollobarren, and
David Arroyo Pinto. Comparison of FaaS Orchestra-
tion Systems. In 2018 IEEE/ACM International Confer-

ence on Utility and Cloud Computing Companion (UCC

Companion), 2018.

https://aws.amazon.com/serverless/serverlessrepo/
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-amazon-states-language.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-amazon-states-language.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-amazon-states-language.html
https://aws.amazon.com/comprehend/medical/
https://www.anandtech.com/show/16214/amd-zen-3-ryzen-deep-dive-review-5950x-5900x-5800x-and-5700x-tested/6
https://www.anandtech.com/show/16214/amd-zen-3-ryzen-deep-dive-review-5950x-5900x-5800x-and-5700x-tested/6
https://www.anandtech.com/show/16214/amd-zen-3-ryzen-deep-dive-review-5950x-5900x-5800x-and-5700x-tested/6
https://states-language.net/spec.html
https://states-language.net/spec.html
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
http://www.dabeaz.com/python/GIL.pdf
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://aws.amazon.com/solutions/case-studies/finra-data-validation/
https://aws.amazon.com/solutions/case-studies/finra-data-validation/
https://www.finra.org/
https://aws.amazon.com/blogs/apn/how-to-use-amazon-rekognition-and-amazon-comprehend-medical-to-get-the-most-out-of-medical-imaging-data-in-research/
https://aws.amazon.com/blogs/apn/how-to-use-amazon-rekognition-and-amazon-comprehend-medical-to-get-the-most-out-of-medical-imaging-data-in-research/
https://aws.amazon.com/blogs/apn/how-to-use-amazon-rekognition-and-amazon-comprehend-medical-to-get-the-most-out-of-medical-imaging-data-in-research/

[24] Kim Hazelwood, Sarah Bird, David Brooks, Soumith
Chintala, Utku Diril, Dymtro Dzhulgakov, Mohamed
Fawzy, Bill Jia, Yanqing Jia, Aditya Kalro, James Law,
Kevin Lee, Jason Lu, Pieter Noordhuis, Misha Smelyan-
skiy, Liang Xiong, and Xiadong Wang. Applied machine
learning at Facebook: A datacenter infrastructure per-
spective. In IEEE International Symposium on High

Performance Computer Architecture, 2018.

[25] Mohammad Hedayati, Spyridoula Gravani, Ethan John-
son, John Criswell, Michael L. Scott, Kai Shen, and
Mike Marty. Hodor: Intra-process isolation for high-
throughput data plane libraries. In 2019 USENIX Annual

Technical Conference (USENIX ATC 19), July 2019.

[26] Terry Ching-Hsiang Hsu, Kevin Hoffman, Patrick Eug-
ster, and Mathias Payer. Enforcing least privilege mem-
ory views for multithreaded applications. In Proceed-

ings of the ACM Conference on Computer and Commu-

nications Security, 2016.

[27] IBM. Power ISAT M version 3.0 b, 2017.

[28] IBM Cloud Functions–Creating Sequences. https:

//cloud.ibm.com/docs/openwhisk?topic=openwhisk-

sequences.

[29] Intel. Intel-64 and IA-32 architectures software devel-
oper’s manual, 2018.

[30] Zhipeng Jia and Emmett Witchel. Nightcore: Efficient
and scalable serverless computing for latency-sensitive,
interactive microservices. In 26th ACM International

Conference on Architectural Support for Programming

Languages and Operating Systems, 2021.

[31] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh
Trivedi, Jonas Pfefferle, and Christos Kozyrakis. Pocket:
Elastic ephemeral storage for serverless analytics. In
13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 18), 2018.

[32] API Gateway for AWS Lambda. https:

//docs.aws.amazon.com/lambda/latest/dg/services-

apigateway.html.

[33] Container Configuration in AWS Lambda.
https://docs.amazonaws.cn/en_us/lambda/latest/

dg/configuration-memory.html.

[34] Yunseong Lee, Alberto Scolari, Byoung-Gon Chun,
Marco D. Santambrogio, Markus Weimer, and Mat-
teo Interlandi. PRETZEL: Opening the black box
of machine-learning prediction serving systems. In
USENIX Symposium on Operating Systems Design and

Implementation, 2018.

[35] AWS Step Function limits. https://docs.aws.amazon.

com/step-functions/latest/dg/limits.html.

[36] James Litton, Anjo Vahldiek-Oberwagner, Eslam El-
nikety, Deepak Garg, Bobby Bhattacharjee, and Peter
Druschel. Light-Weight Contexts: An OS Abstraction
for Safety and Performance. In Proceedings of the 12th

USENIX Conference on Operating Systems Design and

Implementation, 2016.

[37] Ashraf Mahgoub, Karthick Shankar, Subrata Mitra,
Ana Klimovic, Somali Chaterji, and Saurabh Bagchi.
SONIC: Application-aware data passing for chained
serverless applications. In 2021 USENIX Annual Tech-

nical Conference (USENIX ATC 21), 2021.

[38] Filipe Manco, Costin Lupu, Florian Schmidt, Jose
Mendes, Simon Kuenzer, Sumit Sati, Kenichi Yasukata,
Costin Raiciu, and Felipe Huici. My VM is Lighter (and
Safer) than Your Container. In Proceedings of the 26th

Symposium on Operating Systems Principles, 2017.

[39] Microsoft. Azure durable popular applica-
tion patterns. https://docs.microsoft.com/en-

in/azure/azure-functions/durable/durable-functions-

overview?tabs=csharp#application-patterns.

[40] Microsoft. Azure serverless community library. https:
//serverlesslibrary.net/.

[41] Chris Munns. Powering HIPAA-compliant
workloads using AWS Serverless technolo-
gies. In AWS Compute Blog, July 2018.
https://aws.amazon.com/blogs/compute/powering-

hipaa-compliant-workloads-using-aws-serverless-

technologies/.

[42] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck,
Tyler Harter, Andrea Arpaci-Dusseau, and Remzi
Arpaci-Dusseau. SOCK: Rapid task provisioning with
serverless-optimized containers. In 2018 USENIX An-

nual Technical Conference (USENIX ATC 18), 2018.

[43] Apache OpenWhisk Composer—A high-level program-
ming model in JavaScript for composing serverless func-
tions. https://github.com/apache/openwhisk-composer.

[44] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon,
and Taesoo Kim. libmpk: Software Abstraction for
Intel Memory Protection Keys (Intel MPK). In USENIX

Annual Technical Conference, 2019.

[45] 128 Core Processor. https://www.crn.com/news/

components-peripherals/ampere-s-new-128-core-altra-

cpu-targets-intel-amd-in-the-cloud.

[46] 80 Core Processor. https://amperecomputing.

com/ampere-altra-industrys-first-80-core-server-

processor-unveiled/.

https://cloud.ibm.com/docs/openwhisk?topic=openwhisk-sequences
https://cloud.ibm.com/docs/openwhisk?topic=openwhisk-sequences
https://cloud.ibm.com/docs/openwhisk?topic=openwhisk-sequences
https://docs.aws.amazon.com/lambda/latest/dg/services-apigateway.html
https://docs.aws.amazon.com/lambda/latest/dg/services-apigateway.html
https://docs.aws.amazon.com/lambda/latest/dg/services-apigateway.html
https://docs.amazonaws.cn/en_us/lambda/latest/dg/configuration-memory.html
https://docs.amazonaws.cn/en_us/lambda/latest/dg/configuration-memory.html
https://docs.aws.amazon.com/step-functions/latest/dg/limits.html
https://docs.aws.amazon.com/step-functions/latest/dg/limits.html
https://docs.microsoft.com/en-in/azure/azure-functions/durable/durable-functions-overview?tabs=csharp#application-patterns
https://docs.microsoft.com/en-in/azure/azure-functions/durable/durable-functions-overview?tabs=csharp#application-patterns
https://docs.microsoft.com/en-in/azure/azure-functions/durable/durable-functions-overview?tabs=csharp#application-patterns
https://serverlesslibrary.net/
https://serverlesslibrary.net/
https://aws.amazon.com/blogs/compute/powering-hipaa-compliant-workloads-using-aws-serverless-technologies/
https://aws.amazon.com/blogs/compute/powering-hipaa-compliant-workloads-using-aws-serverless-technologies/
https://aws.amazon.com/blogs/compute/powering-hipaa-compliant-workloads-using-aws-serverless-technologies/
https://github.com/apache/openwhisk-composer
https://www.crn.com/news/components-peripherals/ampere-s-new-128-core-altra-cpu-targets-intel-amd-in-the-cloud
https://www.crn.com/news/components-peripherals/ampere-s-new-128-core-altra-cpu-targets-intel-amd-in-the-cloud
https://www.crn.com/news/components-peripherals/ampere-s-new-128-core-altra-cpu-targets-intel-amd-in-the-cloud
https://amperecomputing.com/ampere-altra-industrys-first-80-core-server-processor-unveiled/
https://amperecomputing.com/ampere-altra-industrys-first-80-core-server-processor-unveiled/
https://amperecomputing.com/ampere-altra-industrys-first-80-core-server-processor-unveiled/

[47] AMD Epyc 7002 series. https://www.amd.com/en/

processors/epyc-7002-series.

[48] Ran Ribenzaft. What AWS Lambda’s performance stats
reveal, April 2019. https://thenewstack.io/what-aws-
lambdas-performance-stats-reveal/.

[49] Serverless data processing with aws step functions.
https://medium.com/weareservian/serverless-data-

processing-with-aws-step-functions-an-example-

6876e9bea4c0.

[50] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Go-
har Chaudhry, Paul Batum, Jason Cooke, Eduardo Lau-
reano, Colby Tresness, Mark Russinovich, and Ricardo
Bianchini. Serverless in the Wild: Characterizing and
Optimizing the Serverless Workload at a Large Cloud
Provider. In 2020 USENIX Annual Technical Confer-

ence (USENIX ATC 20), 2020.

[51] Simon Shillaker and Peter Pietzuch. Faasm: Lightweight
isolation for efficient stateful serverless computing. In
2020 USENIX Annual Technical Conference (USENIX

ATC 20), 2020.

[52] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin,
Johann Schleier-Smith, Jose M. Faleiro, Joseph E. Gon-
zalez, Joseph M. Hellerstein, and Alexey Tumanov.
Cloudburst: Stateful Functions-as-a-Service. In Interna-

tional Conference on Very Large Data Bases, 2020.

[53] AWS Step Functions pricing. https://aws.amazon.com/
s3/pricing/.

[54] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O.
Duarte, Michael Sammler, Peter Druschel, and Deepak
Garg. ERIM: Secure, Efficient In-process Isolation with
Protection Keys (MPK). In USENIX Security Sym-

posium, 2019. Tool available at: https://gitlab.mpi-
sws.org/vahldiek/erim/-/tree/master/.

[55] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and
Susan L. Graham. Efficient software-based fault isola-
tion. In ACM Symposium on Operating Systems Princi-

ples, 1993.

[56] Chenggang Wu, Jose Faleiro, Yihan Lin, and Joeseph M.
Hellerstein. Anna: A KVS for Any Scale. In 2018

IEEE 34th International Conference on Data Engineer-

ing (ICDE), 2018.

https://www.amd.com/en/processors/epyc-7002-series
https://www.amd.com/en/processors/epyc-7002-series
https://thenewstack.io/what-aws-lambdas-performance-stats-reveal/
https://thenewstack.io/what-aws-lambdas-performance-stats-reveal/
https://medium.com/weareservian/serverless-data-processing-with-aws-step-functions-an-example-6876e9bea4c0
https://medium.com/weareservian/serverless-data-processing-with-aws-step-functions-an-example-6876e9bea4c0
https://medium.com/weareservian/serverless-data-processing-with-aws-step-functions-an-example-6876e9bea4c0
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/pricing/
https://gitlab.mpi-sws.org/vahldiek/erim/-/tree/master/
https://gitlab.mpi-sws.org/vahldiek/erim/-/tree/master/

	Introduction
	Function Interaction and State Isolation
	Financial Industry Regulation
	ML Prediction Service
	Healthcare Analytics
	Function Interaction Patterns in FaaS Workflows
	Threat Model

	Design Considerations
	Implementation of Faastlane
	Minimizing Function Interaction Latency
	Isolation for Sensitive Data
	Putting It All Together

	Evaluation
	Function Interaction Latency
	End-to-End Application Performance
	Dollar-cost of Application Execution
	Scalability with Multiple Containers

	Related Work
	Conclusion

