
CSA E0 249: Approximation Algorithms March 27, 2015

Lecture 12

Instructor: Arnab Bhattacharyya Submitted by: Ajith S and Dheeraj Ram

1 Graph Colouring

Chromatic number χ(G) of a graph denotes the smallest number of colors needed to color
the vertices of a graph G so that no two neighboring vertices receive the same color. χ(G)
is hard to approximate upto n1−ε ∀ε > 0.

1.1 Min-K Colouring Problem

We know that, to find the colouring, given G and χ(G) is an NP-Hard problem. So our aim
is to find the least number of colors, with which we can color the graph. Given a graph G
and χ(G) = k, we have to find a proper colouring in polynomial time, with smallest number
of colours (It is NP-Hard to colour a 3-colourable graph with 4 colours). Obviously, every
n-vertex graph can be colored with n colors. But this is a simple way of using significantly
fewer colors, namely, O(

√
n) (Wigdersons trick):

1. If G is 3-colorable, then the neighborhood of a vertex is bipartite and thus it can be
2-colored (fast).

2. So, given a parameter ∆, by repeatedly coloring maximum-degree vertices and their
neighbors, we can use O(n/∆) colors and reduce the maximum degree below ∆.

3. A graph with maximum degree ∆ can easily be colored by ∆ + 1 colors (greedy
algorithm give each vertex a color not used by its neighbors).

4. Combining these two methods and setting ∆ :=
√
n, we can color every 3-colorable

G with O(
√
n) colors.

This barrier (O(
√
n)) was finally broken using SDP by Karger et al. [KMS 98]: O(n0.25)

colors suffice this is what we are now going to present. (Current best is O(n0.2072) was
obtained by Chlamtac [Chl07], who used an SDP relaxation at a higher level of the Lasserre
hierarchy).

1.1.1 Lovasz θ function - θ(G)

Consider the following SDP.

minimize t

subject to vi.vj , ∀(i, j) ∈ E
vi.vi = 1, ∀i
vi ∈ Rn

12-1

Let θ(G) be the solution from the above SDP Problem.

Theorem 1 θ(G) ≤ − 1

χ(G)− 1

This immediately implies, χ(G) ≤ 1− 1

θ(G)
. So W (G) ≤ θ(G) ≤ χ(G) where W(G) is the

maximum clique number of the graph G.

Proof We use the method of proof by Mathematical Induction.

Basis step: Let G have three vertices. If all are connected (triangle), then the three
vectors will be oriented in such a way that the angle between any two vectors is 120◦. So
cos(120) ≤ − 1

3−1 , which is true. If only two are connected, we will get χ(G) as 2, and two
vectors points to opposite directions (180◦), still satisfying the theorem.

Inductive step: We assume the theorem holds good for k vertex graph G. So v1, v2, . . . , vk
such that ∀i 6= j, vi.vj ≤ − 1

k−1 . We have to prove that for a k+1 vertex graph, v′1, v
′
2, . . . , v

′
k+1

s.t. v′i, v
′
j ≤ − 1

k .

Define v′k+1 = (0, 0, .., 1) and 1 ≤ i ≤ k : v′i = (
√

1− 1
k2
∗ vi,− 1

k).

Here we can see that |v′i| =
√

(1− 1
k2

)v2
i + (−1

k)2 = 1

Also,

v′i.v
′
j = (1− 1

k2
)vi.vj +

1

k2

≤ (1− 1

k2
)(
−1

k − 1
) +

1

k2

=
−1

k − 1
+

1

k2
(

1

k − 1
+ 1)

=
−1

k − 1
+

1

k2

k

k − 1

=
1

k − 1
(
1

k
− 1)

=
−1

k

So in polynomial time, given 3 coloured graph G, we can find v1, ..vn ∈ R such that
vi.vj ≤ −1

2 ∀(i, j) ∈ E.

12-2

Figure 1: Spherical Clustering in KMS Algorithm [1]

1.2 KMS Algorithm and Analysis

We use a spherical cap to cluster vectors in this algorithm, as shown in the figure 1.

KMS Algorithm

First, we calculate the following.

• Choose vector g = (g1, ..gn) where gi are normal and independent.

• I = {vi : vi.g ≥ s} (s will be decided later)

• I0 = {v ∈ I : no neighbour of v is in I}

Lemma 2 If G has max-degree ≤ ∆, then E[|I0|] ≥ Ω(n

∆
1
3

)

1. Set ∆ = n
3
4

2. Use Wigderson’s trick to reduce max degree to n
3
4 using n

1
4 colours.

3. Repeatedly use above lemma n
1
4 times.

If the above claim is true, then it is clear that all the vertices will be covered after n
1
4

iterations of the algorithm. So now we come to the proof of the lemma.

12-3

Figure 2: Normal Distribution

Proof We know that the Gaussian structure is spherically symmetric. So, without loss
of generality, we can rotate the whole sphere in a way where v1 = (1, 0, 0 . . . 0). Now,
Pr[vi.g ≥ s] = Pr[g1 ≥ s] = N (s)

where N (s) is the area of the Normal Distribution from x = s to x = inf. The density

function ϕ(x) =
1√
2π
e

−x2

2

So N (s) =

∫ ∞
s

ϕ(x)dx

≈ 1

s
e

−s2

2

We use the fact that N (ks) ≈ (N (s))k
2
. Let u be any neighbour of v.

Pr [v /∈ I0 | v ∈ I] ≤ ∆.Pr [u.g ≥ s | v.g ≥ s]

12-4

From SDP u.v ≤ −1
2 . So if v = (0, 1, 0, . . . 0), u can be at most at an angle of 120◦. Let’s

assume u = (
√

3
2 ,
−1
2 , 0, . . . 0).

Pr [u.g ≥ s | v.g ≥ s] ≤ Pr

[√
3

2
g1 −

1

2
g2 ≥ s | g2 ≥ s

]

= Pr

[√
3

2
g1 ≥

3

2
s

]
= Pr

[
g1 ≥

√
3s
]

≤ N (s)3.

Now we got

Pr [v /∈ I0 | v ∈ I] ≤ ∆ · N (s)3

and,

Pr [v ∈ I] = N (s).

So,
Pr [v ∈ I0] ≥ (1−∆ · N (s)3) · N (s)

Choose s such that N (s)3 =
1

2 ·∆
. Now,

Pr [v ∈ I0] ≥ 1

2
· N (s)

= Ω(∆
−1
3)

So we get E[|I0|] ≥ Ω(n

∆
1
3

) by applying Union Bound. This completes the proof of the claim.

12-5

2 MaxCut - A New Rounding Approach

This section describes a ”generic” rounding technique, which attains the integrality gap, up
to any given additive constant ε > 0, for a wide class of semidefinite relaxations of constraint
satisfaction problems. Assuming the Unique Games Conjecture, this rounding technique
almost achieves the best approximation factor attainable by any polynomial time algorithm,
for every class of constraint satisfaction problems (Raghavendra [Rag08], Raghavendra and
Steurer [RS09b]).

2.1 Miniatures for MaxCut

Here we show Raghavendras rounding technique on the GoemansWilliamson semidefinite
relaxation for MaxCut. Let G be an input graph for MaxCut with vertex set {1, 2, . . . , n},
and let (v1, . . . , vn) be an optimal SDP solution for it. This means that the vi are unit vec-

tors maximizing
∑

{i,j}∈E

1− vT
i vj

2
.

In the rounding algorithm, we build a miniature of the input instance, which is a small
graph Ĝ plus a sequence (v̂1, . . . , v̂n̂) of unit vectors. The graph in the miniature is weighted.
Let Opt(G,w) denote the maximum weight of a cut in (G,w). The semidefinite relaxation
is now:

SDP(G,w) := max

 ∑
{i,j}∈E

wij
1− vT

i vj

2
: ||v1|| = · · · = ||vn|| = 1


Let

Gap := sup
G,w

SDP(G,w)

Opt(G,w)

be the worst-case integrality gap of the semidefinite relaxation, over all weighted graphs.
So the miniature is a weighted n̂-vertex graph (Ĝ, ŵ) plus a sequence v̂1, . . . , v̂n̂ of unit vec-
tors. The miniature is so small that the maximum cut of (Ĝ, ŵ) can be computed exactly
by brute force. The number n̂ of vertices is a constant, depending on ε.

Claim 3 SDP (Ĝ, ŵ) ≥ SDP (G) − ε|E|

Proof

Alg = Opt (Ĝ, ŵ) ≥ SDP (Ĝ, ŵ) · Gap
≥ Gap · (SDP(G) − ε|E|)
≥ Gap · (Opt(G) − ε|E|)
≥ Opt · Gap · (1 − 2ε)

12-6

Figure 3: Rounding via a miniature [1]

Two Lemmas for Miniature Builders

The first lemma tells us that unit vectors in Sd−1 can be ”discretized” up to a given error
δ > 0.

Lemma 4 For every d and every δ ∈ {0, 1}, there exists a set N ⊆ Sd−1 that is δ-dense in

Sd−1 (that is, for every x ∈ Sd−1 there exists z ∈ N with ||x− z|| < δ), and |N | ≤
(

3

δ

)d

Proof We build N = {p1, p2, . . . } by a ”greedy algorithm”: We place p1 to Sd−1 arbi-
trarily, and having already chosen p1, . . . , pi−1, we place pi to Sd−1 so that it has distance
at least δ from p1, . . . , pi−1. This process finishes as soon as we can no longer place the next
point, i.e., the resulting set is δ-dense. To estimate the number of points produced in this

way, we observe that the balls of radius
δ

2
centered at the pi have disjoint interiors and are

contained in the ball of radius 1 +
δ

2
≤ 3

2
around 0. Thus, the sum of volumes of the small

balls is at most the volume of the large ball, and this gives the lemma.

Let Φ be a ”normalized random linear map” defined as Φ : Rn → Rd. We choose d
independent standard n-dimensional Guassian vectors γ1, . . . , γd ∈ Rn, and set Φ(v) :=
1√
d

(
γT1 v, . . . , γ

T
d v
)
.

Lemma 5 (Dimension Reduction). Let u, v ∈ Rn be unit vectors, let Φ be the random
linear map as above, and let t ≥ 0. Then, for a sufficiently large constant C,

Prob
[
|uTv − Φ(u)TΦ(v)| ≥ t

]
≤ C

dt2

12-7

Proof It suffices to prove for u = v; the general case then follows using the equation uTv =
1

2

(
||u||2 + ||v||2 − ||u− v||2

)
. Let X := Φ(v)TΦ(v) = ||Φ(v)||2. Then X =

1

d

∑d
i=1 Z

2
i , with

Zi := γTi v. The Zi are standard normal and independent, with Var [Zi] = E
[
Z2
i

]
= 1. So

E [X] = 1.

By using Chebyshev inequality : Prob [|X − E [X] | ≥ t] ≤ Var [X] /t2, where Var =

E
[
X2
]
− E [X]2 is the variance. By independence, Var [X] =

1

d2

∑d
i=1 VarZ

2
i . We want

to see that each Var
[
Z2
i

]
is bounded by a constant. A direct calculation (integration) gives

Var
[
Z2
i

]
= 2. So Var [X] =

2

d
and the lemma follows.

Building the miniature

Fix δ > 0 and choose d̂ sufficiently large in terms of δ. the vectors v̂i of the miniature

will live in Rd̂. Fix a δ-dense set N̂ in Sd̂−1 according to lemma 4 with size n̂ := |N̂ |,
denoting the number of vertices in the miniature graph Ĝ. Choose a random linear map

Φ : Rn → Rd̂, as in lemma 5 and set v∗i := Φ(vi), i = 1, 2, . . . ,n.
Let us say that Φ fails on the vertex i if ||v∗i || /∈ [1− δ, 1 + δ]. Similarly, Φ fails on an
edge {i, j} if it fails on i or j or if |(v∗i)Tv∗j − vT

i vj| > δ. Let F ⊆ E be the set of edges
where Φ fails. By lemma 5 we have E [|F |] ≤ δ|E|. So by Markov’s inequality, |F | ≤ 2δ|E|
with probability at least

1

2
. We repeat the random choice of Φ until |F | ≤ 2δ|E| holds; the

expected number of repetitions is at most 2.

Let G∗ be the graph obtained from G by discarding all vertices and edges where Φ fails.
Next discretize the vectors v∗i : For every i ∈ V (G∗), we choose v∗∗i ∈ N̂ at distance at most

2δ from v∗i . (This is possible since each v∗i is at most δ away from the sphere Sd̂−1, and

N̂ is δ-dense in Sd̂−1.) Finally, we fold the graph G∗ so that all vertices with the same
vector v∗∗i are identified into the same vertex. The miniature graph (Ĝ, ŵ) is the result of
this folding.

Explicitly:

• The vertices of Ĝ are 1, 2, . . . , n̂.

• Let v̂1, . . . , v̂n̂ be the points of N̂ listed in some fixed order. These will form the
feasibe SDP solution for the miniature.

• The edges of Ĝ are obtained from the edges of G∗; i.e., {ı̂, ̂} is an edge if there is an
edge {i, j} ∈ E(G∗) such that v∗∗i = v̂ı̂ and v∗∗j = v̂̂.

• The weight of such an edge {ı̂, ̂} is the number of edges {i, j} that got folded onto
{ı̂, ̂}:

ŵı̂̂ := |
{
{i, j} ∈ E(G∗) : v∗∗i = v̂ı̂, v

∗∗
j = v̂̂

}
|

12-8

Figure 4: Folding Procedure [1]

Let us analyze the algorithm backwards. The folding loses nothing; the value equals∑
{i,j}∈E(G∗)

(
1− (v∗∗i)T v∗∗j

)
/2. (here we need to be slightly careful with vertices i, j that

get folded to the same vertex ı̂ of Ĝ, since there is no edge corresponding to {i, j} in Ĝ - but
for such i, j we have (v∗∗i)T v∗∗j = 1, and so they do not contribute to the SDP value). The

discretization, replacing v∗i by v∗∗i , changes each of the relevant scalar products (v∗i)T v∗j by
at most O(δ) (additive error), and thus the objective function changes by no more than
O(δ · |E|.

Similarly, for each non-failed edge {i, j}, replacing the original vi and vj by the Φ-
images v∗i , v

∗
j changes the scalar product vT

i vj by at most δ, and again, the total change
in the objective function is O(δ · |E|. Finally, the number of failed edges is at most 2δ|E|,
and discarding these may decrease the objective function by at most this much. Hence,
SDP(Ĝ, ŵ) ≥ SDP(G)−O(δ) · |E| ≥ SDP(G)− ε|E|.

The miniature is finished and its size is bounded by a constant, and we can compute
Opt(Ĝ, ŵ) by brute force. A cut in (Ĝ, ŵ) of weight s can be unfolded to a cut in G∗ with s
edges, and hence to a cut with at least s edges in G. This finishes the rounding algorithm.

Theorem 6 For every fixed ε > 0, and for every input graph G, the above rounding algo-
rithm computes a cut of size at least

1

(1 + ε)Gap
· Opt(G),

in expected polynomial time.

12-9

Here is a summary of the rounding algorithm:

Algorithm 1: Rounding via miniatures for MaxCut

Input: G and an optimal SDP solution v1, . . . , vn
1 (Dimension reduction) Map the vectors vi into Rd using the random Gaussian map

Φ. Repeat until only at most a small fraction of the edges fail.
2 Discard the failed vertices and edges.
3 Discretize the remaining vectors to vectors of a fixed δ-dense set.
4 Fold the graph, lumping together vertices with the same discretized vector.
5 Compute a maximum cut in the resulting constant-size graph.
6 Unfold back to a cut in the original graph

References

[1] Bernd Gartner and Jiri Matousek. Approximation Algorithms and Semidefinite
Programming. Springer, 2012.

12-10

	Graph Colouring
	Min-K Colouring Problem
	Lovasz function - (G)

	KMS Algorithm and Analysis

	MaxCut - A New Rounding Approach
	Miniatures for MaxCut

