Lecture 2: Greedy Algorithms

23rd January, 2015

1 Set Cover

The input to the set cover problem is a set system (U,S) where U is a universe of n elements and
S is a collection of m subsets of U. Each subset S € S has a non-negative cost ¢(S) associated
with it. A set cover is a sub-collection (S,...,S;) of S such that each element in U appears in at
least one set S;. The set cover problem is to find one with the minimum total cost.

The greedy algorithm is as follows.
e Initialize the set of uncovered elements X = U.

e While X = ():

c(5)

— Pick the set S € S which minimizes Kok

~- X=X\S&.

A piece of notation: for any positive integer n define H, :=1+1/2+1/3+---+ 1/n. This is
called the nth harmonic number. It is known that Inn < H,, < H, + 1. We now show that the
above algorithm is a H,-factor approximation algorithm. Let S7,...,S; be the optimal set cover.
Let X; be the set of uncovered elements jsut before the tth set was picked by the algorithm. We
know that

S*
c(Sy) < |Se N Xyl - _elSi) for all 1 < ¢ < /¢ such that S; N X, # 0. (1)
157 N Xy
We now use the following fact: if a1,b1,...,ag, by be a collection of 2¢ positive reals. Then,

We apply the above inequality to . We then make three observations: first, the sum of numerators
is < OPT, second, the sum of the denominators is < | X;| since the S}’s form a set cover, and lastly,
just by definition, |S; N X;| = | X¢| — | Xi+1|. Together, we get

| X — | X1

c(Sy) < OPT -
5= i

Now we add over all t to get >, ¢(S;) < OPT - H,,. Why?



1.1 A Different Analysis

We now describe a different analysis of the algorithm. It will give a stronger result — it will prove
that the above algorithm is an Hg-factor approximation algorithm where K = maxges |S|, is the
maximum size of a set in §. This will follow via a “charging” argument; many weeks later we will
come back to this charging in a slightly different context.

When the greedy algorithm picks a set S; at time instant ¢, assign a charge a; = ¢(S¢) /]S N X¢|
to all elements j which are covered at this instant. That is, all elements in S; N X;. Recall X; is the
set of uncovered elements before S; was picked. It should be clear that the cost of the sets picked
by the greedy algorithm is precisely » jeu Q-

Now we upper bound this sum. Again, let (ST, ...,S;) be the optimal set cover. Take any set S}
and order the elements in the order they are covered by the greedy algorithm breaking ties arbitrarily.
Let p = |S}| < k. Now consider an element j in the ¢ < pth position in this order. We wish to upper
bound «;. Note that right before the instant ¢ that the greedy algorithm covered j, there was exactly
(p—q+1) elements of S that were uncovered. In particular, a; = ¢(S)/|S:NX¢| < ¢(SF)/(p—q+1).
Thus, for every set S we have

p

1
- < * — < NH
Z*aj_dsz)zp_qﬂ_c(sz) K
JES; q=1

Adding over all sets in the optimal set cover gives > ..., a; < OPT - Hg.

jeu
1.2 Submodular Set Cover

A function f defined over subsets of a universe V is called submodular iff for all A € B C V and
i ¢ B,

f(AUQ) = f(A) > f(BUi) - f(B)
A set function is monotone if f(A) < f(B) whenever A C B.

In the submodular set cover problem, we are given a universe V', oracle access to a monotone
submodular function f, a cost function c: V' — R>, and a target parameter R. The goal is to find
the minimum cost subset W C V' such that f(W) > R.

This problem generalizes set cover. But also captures many other problems. We looked at the
following source location problem: given a directed graph G with all arcs having capacity say 1
unit, a sink ¢ and a collection of possible sources V' = {sy,..., s} with costs ¢1,...,cx. The goal
is to find a minimum cost collection of sources S which together can send flow at least R units to
the sink .

The greedy algorithm for the submodular set cover is the following.

o Initialize W = ().

e While f(W) < R, pick w € V'\ W which maximizes SR
W =W Uu.

In the exercises, you will be asked to analyze the above algorithm.



2 Greedy Maximization

Till now we have seen greedy algorithms for minimization problems. We now look at an algorithm
for a maximization problem.
2.1 Constrained Submodular Maximization

Recall what a submodular function f is. We want to solve the following problem: given an integer
k, find a set S with |S| < k which maximizes f(.5). For this talk, we assume f is monotone, that
is, for any A C B we have f(A) < f(B).

Here is the natural sounding greedy algorithm.
e Initialize X = 0.
e Repeat k times: Pick element ¢ which maximizes f(X Ui) — f(X). X = X U1.
e Return X.

Analysis. Let X; be the set the algorithm maintains after step i. So the algorithm returns Xp.
Let the optimal set be O. By the greedy property, we have

f(Xiv1) — f(Xi) > f(XiUo) — f(X;), foralli, foralloeO

If we average over all o € O, we get

i)~ f(X) = 2 3 (F(X:Uo) — F(X0) 2)
0€0
> L (f(X:U0) - f(X) 3)
> % (f(OPT) — f(X;)) because of monotonicity. (4)
is a result of submodularity. To see this, suppose O = {o01,...,0%} in any order. Because of

submodularity, we have

f(Xl U Oj) — f(Xl) > f(Xz U {01, ce Oj}) - f(XZ U {017 .. ,Oj_l})

If we add the two sides for all j, the LHS is the RHS of (without the scaling factor of k) while
the RHS telescopes to the RHS of .
To rewrite , we get

1
FXewn) 2 L1OPT)+ (1= 1) £06)
A little bit of math shows that

(X)) > f(OPT)% <1+ <1 — /1) +-o+ (1 - ]t)]“) + <1 — i)kf((b)

> f(OPT) (1~ (1-1/k))

since f() > 0. Using the fact that (1 — 1/k)* < 1/e where e = 2.71..., we get that the greedy
algorithm is a (1 — 1/e)-factor appoximation algorithm.



	Set Cover
	A Different Analysis
	Submodular Set Cover

	Greedy Maximization
	Constrained Submodular Maximization
	Unconstrained Submodular Maximization


