
Lecture 2: Greedy Algorithms

23rd January, 2015

1 Set Cover

The input to the set cover problem is a set system (U,S) where U is a universe of n elements and
S is a collection of m subsets of U . Each subset S ∈ S has a non-negative cost c(S) associated
with it. A set cover is a sub-collection (S1, . . . , St) of S such that each element in U appears in at
least one set Si. The set cover problem is to find one with the minimum total cost.

The greedy algorithm is as follows.

• Initialize the set of uncovered elements X = U .

• While X = ∅:

– Pick the set S ∈ S which minimizes c(S)
|S∩X| .

– X = X \ S.

A piece of notation: for any positive integer n define Hn := 1 + 1/2 + 1/3 + · · ·+ 1/n. This is
called the nth harmonic number. It is known that lnn ≤ Hn < Hn + 1. We now show that the
above algorithm is a Hn-factor approximation algorithm. Let S∗1 , . . . , S

∗
` be the optimal set cover.

Let Xt be the set of uncovered elements jsut before the tth set was picked by the algorithm. We
know that

c(St) ≤ |St ∩Xt| ·
c(S∗i)

|S∗i ∩Xt|
for all 1 ≤ i ≤ ` such that S∗i ∩Xt 6= ∅. (1)

We now use the following fact: if a1, b1, . . . , a`, b` be a collection of 2` positive reals. Then,

min
i=1,··· ,`

ai
bi
≤
∑`

i=1 ai∑`
i=1 bi

We apply the above inequality to (1). We then make three observations: first, the sum of numerators
is ≤ OPT , second, the sum of the denominators is ≤ |Xt| since the S∗i ’s form a set cover, and lastly,
just by definition, |St ∩Xt| = |Xt| − |Xt+1|. Together, we get

c(St) ≤ OPT ·
|Xt| − |Xt+1|
|Xt|

Now we add over all t to get
∑

t c(St) ≤ OPT ·Hn. Why?

1

1.1 A Different Analysis

We now describe a different analysis of the algorithm. It will give a stronger result – it will prove
that the above algorithm is an HK-factor approximation algorithm where K = maxS∈S |S|, is the
maximum size of a set in S. This will follow via a “charging” argument; many weeks later we will
come back to this charging in a slightly different context.

When the greedy algorithm picks a set St at time instant t, assign a charge αj = c(St)/|St∩Xt|
to all elements j which are covered at this instant. That is, all elements in St∩Xt. Recall Xt is the
set of uncovered elements before St was picked. It should be clear that the cost of the sets picked
by the greedy algorithm is precisely

∑
j∈U αj .

Now we upper bound this sum. Again, let (S∗1 , . . . , S
∗
`) be the optimal set cover. Take any set S∗i

and order the elements in the order they are covered by the greedy algorithm breaking ties arbitrarily.
Let p = |S∗i | ≤ k. Now consider an element j in the q ≤ pth position in this order. We wish to upper
bound αj . Note that right before the instant t that the greedy algorithm covered j, there was exactly
(p−q+1) elements of S∗i that were uncovered. In particular, αj = c(St)/|St∩Xt| ≤ c(S∗i)/(p−q+1).
Thus, for every set S∗i we have

∑
j∈S∗

i

αj ≤ c(S∗i)

p∑
q=1

1

p− q + 1
≤ c(S∗i)HK

Adding over all sets in the optimal set cover gives
∑

j∈U αj ≤ OPT ·HK .

1.2 Submodular Set Cover

A function f defined over subsets of a universe V is called submodular iff for all A ⊆ B ⊆ V and
i /∈ B,

f(A ∪ i)− f(A) ≥ f(B ∪ i)− f(B)

A set function is monotone if f(A) ≤ f(B) whenever A ⊆ B.
In the submodular set cover problem, we are given a universe V , oracle access to a monotone

submodular function f , a cost function c : V → R≥0, and a target parameter R. The goal is to find
the minimum cost subset W ⊆ V such that f(W) ≥ R.

This problem generalizes set cover. But also captures many other problems. We looked at the
following source location problem: given a directed graph G with all arcs having capacity say 1
unit, a sink t and a collection of possible sources V = {s1, . . . , sk} with costs c1, . . . , ck. The goal
is to find a minimum cost collection of sources S which together can send flow at least R units to
the sink t.

The greedy algorithm for the submodular set cover is the following.

• Initialize W = ∅.

• While f(W) < R, pick u ∈ V \W which maximizes cu
f(W∪u)−f(W) .

W = W ∪ u.

In the exercises, you will be asked to analyze the above algorithm.

2

2 Greedy Maximization

Till now we have seen greedy algorithms for minimization problems. We now look at an algorithm
for a maximization problem.

2.1 Constrained Submodular Maximization

Recall what a submodular function f is. We want to solve the following problem: given an integer
k, find a set S with |S| ≤ k which maximizes f(S). For this talk, we assume f is monotone, that
is, for any A ⊆ B we have f(A) ≤ f(B).

Here is the natural sounding greedy algorithm.

• Initialize X = ∅.

• Repeat k times: Pick element i which maximizes f(X ∪ i)− f(X). X = X ∪ i.

• Return X.

Analysis. Let Xi be the set the algorithm maintains after step i. So the algorithm returns Xk.
Let the optimal set be O. By the greedy property, we have

f(Xi+1)− f(Xi) ≥ f(Xi ∪ o)− f(Xi), for all i, for all o ∈ O

If we average over all o ∈ O, we get

f(Xi+1)− f(Xi) ≥
1

k

∑
o∈O

(f(Xi ∪ o)− f(Xi)) (2)

≥ 1

k
(f(Xi ∪O)− f(Xi)) (3)

≥ 1

k
(f(OPT)− f(Xi)) because of monotonicity. (4)

(3) is a result of submodularity. To see this, suppose O = {o1, . . . , ok} in any order. Because of
submodularity, we have

f(Xi ∪ oj)− f(Xi) ≥ f(Xi ∪ {o1, . . . , oj})− f(Xi ∪ {o1, . . . , oj−1})

If we add the two sides for all j, the LHS is the RHS of (2) (without the scaling factor of k) while
the RHS telescopes to the RHS of (3).
To rewrite (4), we get

f(Xi+1) ≥
1

k
f(OPT) +

(
1− 1

k

)
f(Xi)

A little bit of math shows that

f(Xk) ≥ f(OPT)
1

k

(
1 +

(
1− 1

k

)
+ · · ·+

(
1− 1

k

)k−1
)

+

(
1− 1

k

)k

f(∅)

≥ f(OPT)
(

1− (1− 1/k)k
)

since f(∅) ≥ 0. Using the fact that (1 − 1/k)k < 1/e where e = 2.71..., we get that the greedy
algorithm is a (1− 1/e)-factor appoximation algorithm.

3

	Set Cover
	A Different Analysis
	Submodular Set Cover

	Greedy Maximization
	Constrained Submodular Maximization
	Unconstrained Submodular Maximization

