
Lecture 6: Randomized Rounding

6th Feb, 2015

In this lecture, we look at randomized approximation algorithms. Since these algorithms are
randomized, the solutions of these algorithms will be random variables.

Definition 1. For a minimization problem, an α-approximate randomized algorithm returns a
feasible solution S of expected cost Exp[c(S)] ≤ αOPT . For a maximization problem, an α-
approximate randomized algorithm returns a feasible solution S of expected value Exp[v(S)] ≥
OPT/α.

Often, a slightly weaker definition is used.

Definition 2. For a minimization problem, an α-approximate randomized algorithm returns a
solution S such that Pr[S is feasible ∧ c(S) ≤ αOPT] > δ, where δ could be as small as 1

poly(n) .
For a minimization problem, an α-approximate randomized algorithm returns a solution S such

that Pr[S is feasible ∧ c(S) ≥ OPT/α] > δ, where δ could be as small as 1
poly(n) .

Note that if an algorithm with parameter δ existed, then one can boost it to get an algorithm
for parameter (1− ε) as well. We will explore this connection more in the exercises.

Randomized rounding for Set cover. In randomized rounding, one interprets the fractional
value returned by the LP as probabilities with which the elements should be picked in the solution.
Then one has to take care of various consistency issues. Let us illustrate with the set cover example.

min
m∑
i=1

c(Si)xi

subject to
∑
i:j∈Si

xi ≥ 1 ∀j ∈ U

0 ≤ xi ≤ 1 ∀i = 1 . . .m

Here is the randomized algorithm.

1. Sample each set i independently with probability pi = min(1, lnn · xi).

2. For each element j uncovered in step 1, pick the set S(j) = arg minSi:j∈Si c(S).

Clearly, the algorithm returns a feasible solution. We now argue that the expected cost of the
solution is small. First an easy observation

1

Claim 1. For any element j, we have c(S(j)) ≤ LP .

Proof. Since
∑

i:j∈Si
xi ≤ 1, we have

LP ≥
∑
i:j∈Si

c(Si)xi ≥ c(S(j))
∑
i:j∈Si

xj ≥ c(S(j)).

The algorithms cost ALG = ALG1 + ALG2 where ALGi is the cost of the sets picked in step
i. Note that both of these are random variables and can be expressed thus.

ALG1 =
m∑
i=1

c(Si)Xi

where Xi ∈ {0, 1} is the indicator variable of whether set Si is sampled in Step 1 or not. We
know that Exp[Xi] = Pr[Xi = 1] = pi = min(1, lnxi). And so,

Exp[ALG1] ≤ lnnLP.

Now observe that
ALG2 =

∑
j∈U

c(S(j))Yj

where Yj is the indicator variable of whether j is left uncovered or not in the first step. Exp[Yj] =
Pr[Yj = 1] =

∏
i:j∈Si

(1− pi). Now if pi = 1 for any i with j ∈ Si, then Exp[Yj] = 0. Therefore, we
get

Exp[Yj] ≤ exp(−
∑
i:j∈Si

pi) = exp(− lnn
∑
i:j∈Si

xi) ≤ 1/n.

Therefore, we get (using the claim above)

Exp[ALG2] ≤ LP

Together, we get the theorem

Theorem 1. The algorithm described above is a (1 + lnn)-approximate randomized algorithm.

Maximum Independent Set (MIS) problem. In a graph, an independent set is a subset S
of vertices such that there is no edge (u, v) with both end points in S. The MIS problem asks us
to pick an independent set of the largest size.

Here is an LP relaxation for the problem.

max
∑
v∈V

xv

subject to xu + xv ≤ 1 ∀(u, v) ∈ E
0 ≤ xv ≤ 1 ∀v ∈ V

We now describe an algorithm which is a O(
√
m)-approximation, where m is the number of

edges.

2

1. If LP < 2
√
m, return any singleton vertex and exit.

2. Sample independently vertex v with probability pv = xv/
√
m to get a set S.

3. For each violated edge e = (u, v) with both end points in S, delete both the points from S.
(It would’ve sufficed to delete any one, but as we show this overzealousness doesn’t hurt.)

Once again, it is clear that the solution returned is an independent set. Also note that if LP < 2
√
m,

a singleton vertex is a 2
√
m-approximate solution. So we may assume otherwise. Let ALG be the

number of vertices in this returned solution. As before, note

Exp[ALG] =
∑
v∈V

Xv −
∑

(u,v)∈E

2Zuv

where Xv is the indicator variable for the event that v is picked in S and Zuv is the indicator
variable that both u, v ∈ S. Now, Exp[Xv] = xv/

√
m and so the first term is precisely LP/

√
m.

Also note

Pr[Zuv = 1] = pupv =
xuxv
m
≤ x2

u + x2
v

2m
≤ xu + xv

2m
≤ 1/2m.

The first inequality is AM-GM, the second follows since xu ≤ 1 for all u, and the last is the LP
constraint. Therefore, the second term in the expression for Exp[ALG] is at most 1. Now since
LP ≥ 2

√
m, we get Exp[ALG] ≥ LP

2
√
m

.

Theorem 2. The above theorem is a 2
√
m-approximation algorithm.

Minimizing congestion in routing The input is a directed graph with k pairs of vertices de-
noted as (s1, t1), . . . , (sk, tk). The goal is to pick a collection of k paths from si to ti for each i,
such that the congestion of the solution is minimized. The congestion of a collection of paths is
the maximum over all edges, the number of paths it appears in.

The LP is the following

min c

subject to
∑

p∈P :e∈p
fp ≤ c ∀e ∈ E

∑
p∈Pi

fp = 1 ∀i = 1 . . .m

fp ≥ 0

Pi is the set of (si, ti)-paths.
The above LP has exponentially many vertices. Observe, however, a bfs would have only

polynomially many fp’s > 0. In the next lecture, we will discuss a way to obtain such a sparse
solution in polynomial time. In the exercises, we will discuss an alternate route to obtain a solution
to the above LP. For the time being, assume we have such a solution. Throwing out all p such
that fp = 0, we assume |Pi| is polynomially bounded. The randomized rounding algorithm is the
following.

3

• Independently, for each i, pick one path p ∈ Pi with probability fp by rolling a |Pi|-sided dice
(recall,

∑
p∈Pi

fp = 1.)

Obviously, it is a feasible solution. We need to argue about congestion. Fix an edge e. For each
i, there is at most one path p ∈ Pi which contains it. For an i for which such a path exists, let Xi be
the rv indicating whether that path p ∈ Pi is chosen. The congestion on edge e is precisely

∑
iXi.

The expected congestion on edge e is µe = Exp[
∑

iXi] =
∑

p:e∈P fp ≤ c. Thus in expectation,
each edge has congestion what the LP suggests.

To argue about high probability, we need to apply the Chernoff bound (Fact5) which is stated
later. Therefore, for any edge e, the probability that the total congestion exceeds (1 + δ)c is at
most

exp (−c ((1 + δ) ln(1 + δ)− δ))

Now if (1 + δ) = 6 lnn/ ln lnn, using the fact that c ≥ 1 one can verify that this expression is at
most 1/n3. Since the number of edges is at most n2, we get the desired result via an union bound.

GAP revisited

Recall the GAP problem from two classes ago. We have m machines and n jobs; each job j has
a profit of pij if allocated on machine i and puts a load wij on it. Each machine has an upper
bound of Bi on the total load assigned on it. The goal is to find an assignment which maximizes
profit. We saw a 2-approximation via a certain natural LP, and in the exercises we ask to prove
that the integrality gap of the LP is also at most 1/2. Now we show a different LP, called the
configuration LP in the literature and use it to give a better approximation algorithm.

Configuration LP This LP will have lots of variables, but not too many constraints. In this
class, we cannot show how to solve it in polynomial time and this will have to wait till next lecture.
So we will just believe this LP can be solved.

For every machine i, let Fi denote the collection of subsets of jobs S such that
∑

j∈S wij ≤ Bi.
That is, Fi is the collection of plausible sets of jobs which can be feasibly assigned to machine i.
These feasible sets are called configurations. In the configuration LP, there is a variable xi,S for
every machine i and every set S ∈ Fi. There are two types of constraints: one which states that
every machine gets exactly one configuration, and the second which states that each job participates
in at most one configuration. Below pi(S) is the shorthand for

∑
j∈S pij . Mathematically, the LP

is the following.

max
m∑
i=1

∑
S∈Fi

pi(S)xi,S

subject to
∑
S∈Fi

xi,S = 1 ∀i ∈ {1, . . . ,m}

m∑
i=1

∑
S∈Fi:j∈S

xi,S ≤ 1 ∀j ∈ {1, . . . , n}

0 ≤ xi,S ∀i = 1 . . .m,∀S ∈ Fi

4

As mentioned above, the number of variables in the LP are exponentially many. However, note
that the number of non-trivial constraints are only (n + m). If you recall last time’s lecture, this
implies that in any basic feasible solution, and in particular in the optimum bfs, the number of
strictly positive xi,S is at most (n+m). It is probably not clear how to find such a sparse solution
– we will come to this in the next lecture. For the time being assume we can get an optimum
solution with xi,S > 0 for a certain polynomially many values. We now use this to give a e/e − 1
approximation.

The algorithm is the following.

• Each agent i, independently, is tentatively assigned jobs from one set S ∈ Fi with proba-
bility xi,S (recall,

∑
S∈Fi

xi,S = 1).

• A job j may be tentatively assigned to many machines. It is assigned to the machine i with
the highest pij among the machines which it tentatively is assigned to.

Theorem 3. The above algorithm is an e
e−1 -approximation algorithm.

Proof. For every job j and machine i, define yij :=
∑

S∈Fi:j∈S xi,S . The probability job j is
tentatively assigned to machine i is

∑
S∈Fi:j∈S xi,S = yij . The constraints of the LP gives us∑

i yij ≤ 1 for all jobs j. Finally, the objective value of the LP is

∑
i

∑
S∈Fi

xi,S∑
j∈S

pij

 =
∑
j

∑
i

pij
∑

S∈Fi:j∈S
xi,S =

∑
i,j

pijyij

Fix a job j. Rename the machines such that p1j ≥ p2j ≥ · · · ≥ pmj . Let us calculate the
probability that machine i gets assigned job j. For this to happen, none of the machines 1 to (i−1)
should tentatively ask for job j and machine i should ask for job j. The probability that this occurs
is precisely yij(1− y1j)(1− y2j) · · · (1− yi−1,j). Therefore, the total profit that is obtained from job
j is precisely

p1jy1j + p2jy2j(1− y1j) + · · ·+ pnjynj
∏
i<n

(1− yij) (1)

Claim 2. The expression in (1) is at least (1− 1/e) ·
∑n

i=1 pijyij.

Proof. In class, we did the verification for pij = 1 case which is nothing but the equality Note that

y1j + y2j(1− y1j) + · · ·+ ynj
∏
i<n

(1− yij) = 1−
∏
i≤n

(1− yij) (2)

≥ 1− exp(−
n∑
i=1

yij) (3)

≥ (1− 1/e)
n∑
i=1

yij (4)

(3) follows since 1 − x ≤ e−x, and (4) follows since 1 − e−t ≥ (1 − 1/e)t for all 0 ≤ t ≤ 1. To see
the latter, consider f(t) = 1 − e−t − (1 − 1/e)t and note that f ′(t) = e−t − 1 + 1/e and so f is
increasing upto some point and then decreases from there on. So it suffices to check the inequality
at the extremes 0, 1 and one can check it is true.

5

Now note that we didn’t use n anywhere in the above inequality, that is, in general the following
is true.

y1j + y2j(1− y1j) + · · ·+ ynj
∏
i<k

(1− yij) ≥ (1− 1/e)
k∑
i=1

yij (5)

Now multiply the kth inequality by (pkj − pk+1,j) (with pn+1,j defined to be 0), and add them all
up. This implies the claim. To see this, note that the coefficient of yij in the RHS is precisely
(pij − pi+1,j) + (pi+1,j − pi+2,j) + · · ·+ (pn−1,j − pnj) + pnj which telescopes to pij . The coefficient
of yij

∏
t<i(1− ytj) is also, for the same reason, pij .

The claim immediately implies the theorem.

6

Some Probabilistic Facts.

Fact 1 (Linearity of Expectation). Let X1, . . . , Xn be random variables and let X :=
∑n

i=1Xi.
Then, Exp[X] =

∑n
i=1 Exp[Xi].

Fact 2 (The Union Bound). Given n events E1, . . . , En, the probability that one of them occurs is
at most the sum of their probabilities.

Pr[E1 ∨ E2 ∨ · · · ∨ En] ≤
n∑
i=1

Pr[Ei]

Fact 3 (Chebyshev’s Inequality). For any random variable X,

Pr[|X −Exp[X]| ≥ t] ≤ Var[X]
t2

Fact 4 (Markov’s Inequality). Let X be a non-negative random variable. Then

Pr[X ≥ t] ≤ Exp[X]
t

Fact 5 (Chernoff Bound). X1, · · · , Xn be n independent {0, 1} random variables with Pr[Xi =
1] = pi. Let X :=

∑n
i=1Xi and let µ =

∑n
i=1 pi = Exp[X]. Then for any L ≤ µ ≤ U ,

Pr[X > (1 + δ)U] ≤
(

eδ

(1 + δ)(1+δ)

)U

Pr[X < (1− δ)L] ≤
(

e−δ

(1− δ)(1−δ)

)L
Useful versions of the above:

• For any δ > 0,
Pr[X > (1 + δ)µ] ≤ exp(−µδ2/3)

Pr[X < (1− δ)µ] ≤ exp(−µδ2/2)

• For t > 0,
Pr[|X − µ| > t] ≤ 2 exp(−2t2/n)

• For t > 4µ,
Pr[X > t] ≤ 2−t

7

