
E0 249: Approximation Algorithms Spring 2015

Lecture 9: Mar 6, 2015
Lecturer: Deeparnab Chakrabarty Scribe: Saravanan K

9.1 Cuts in Graphs

In this lecture we will discuss some of the problems related to cuts in graphs. Basically, given a graph
G(V,E), cuts form a subset F ⊂ E such that, the graph G\F contains a set of disconnected partitions. Let
us see three minimization problems related to cuts in graphs. They are

1. Minimum s-t cut problem
2. Multiway cut problem
3. Minimum Multicut problem

Notation: Given a graph G(V,E) with edge costs ce ≥ 0, ∀e ∈ E. Then the cost of F ⊆ E is the sum
of costs of all edges in F . That is, cost of F =

∑
e∈F ce.

First let us define the above problems. Then in the following sections we will discuss several approximation
algorithms for these problems.

1. Minimum s-t cut problem: Given a graph G(V,E) defined with costs ce ≥ 0 for all e ∈ E, with two
fixed vertices s, t ∈ V . Then the minimum s-t cut is a subset F ∈ E of minimum cost such that, s and t are
disconnected in G\F .

It is known that the maximum flow from s to t, which equals the minimum s, t cut, can be solved in
polynomial time [1]. Here, we will use another argument (using Randomized Rounding) to prove that the
minimum s− t cut problem has a polynomial time 1-factor approximation algorithm, or in other words, an
exact algorithm.

2. Multiway cut problem: Given a graph G(V,E) defined with capacities ce ≥ 0 for all e ∈ E, and a set
of vertices {s1, s2, · · · , sk} ⊆ V . The multiway cut is a subset F ∈ E of minimum cost such that, in G\F ,
si and sj are disconnected, for all 1 ≤ i, j ≤ k.

On careful observation, we note that when k = 2, multiway cut problem generalizes the minimum s-t
cut problem. It has been proved [2] that when k is fixed (i.e., for constant k), this problem can be solved in
polynomial time for planar graphs. However when k is not fixed, the multiway cut problem is known to be
APX-HARD.

3. Minimum Multicut problem: Given a graph G(V,E) defined with capacities ce ≥ 0 for all e ∈ E,
with a set of pairs {(s1, t1), (s2, t2), · · · , (sk, tk)}. Then the minimum multicut is a subset F ⊆ E of minimum
cost such that, in G\F , there exists no path from si to ti for all 1 ≤ i ≤ k.

When k = 1, minimum multicut problem becomes the minimum s-t cut problem. The minimum multicut
problem is known to be APX-HARD[3].

Definitions :

1. Class APX : The set of all optimization problems that belongs to the class NP having constant
factor approximation algorithms belongs to the class APX.

2. Class APX-HARD : The set of all problems that have a PTAS reduction from every problem in
APX belongs to the class APX-HARD.

9-1

9-2 Lecture 9: Mar 6, 2015

9.2 1 - factor approximation for minimum s-t cut :

9.2.1 Linear Program

Let us define the variables xe, for all edges e ∈ E. Let Pst be the set of all paths from s to t. Then, we can
write LP relaxation for the minimum s-t cut problem by

min
∑
e∈E

ce · xe

subject to
∑
e∈P

xe ≥ 1, ∀P ∈ Pst

Xe ≥ 0

However, the set of all paths from s to t is exponential in size, implies that there are exponential number
of constraints. Therefore we intend to define a new LP for this problem.

Let d(u, v) be the length of the shortest path from u to v. Then we write a new LP relaxation for
minimum s-t cut problem as

min
∑
e∈E

ce · xe

d(u, v) ≤ xu,v ∀(u, v) ∈ E (*)

d(u,w) ≤ d(u, v) + d(v, w) ∀u, v, w ∈ V (triangle inequality)

d(s, t) ≥ 1

Also by definition, we can verify that for a fixed set of xe’s, the above three inequalities must always be
true. Proving the equivalence of this linear program to the previous linear program is left as an exercise. In
compact we write this new LP as

min
∑
e∈E

ce · xe

dx(s, t) ≥ 1

From now on the above notation is consistently followed throughout the lecture.

9.2.2 Algorithm

After solving the LP, we perform the following steps to compute our F . The algorithm is as follows

1. Sample r from (0, 1) (assume uniform random distribution).
2. Find S = {v|d(s, v) ≤ r}.
3. Output F = δ(S), (where δ(S) is the set of all edges having exactly one end point in S).

Observation 2: F is a valid cut (that is, s ∈ S and t /∈ S).
This is because of the fact that d(s, s) = 0, d(s, t) ≥ 1 and 0 < r < 1.

Observation 1: If xe’s are integral, then our algorithm gives the ideal output.
Proof: In this case all the edges that have xe = 1 belongs to the set F . Hence by the definition of our LP
we observe that the cost of F is minimized. That is, min

∑
e∈E ce · xe = min

∑
e:xe=1 ce · xe = minF .

Lecture 9: Mar 6, 2015 9-3

9.2.3 Analysis

The expectation of F is given by

E[c(F)] =
∑

ce Pr[e ∈ F] (9.1)

For a fixed edge e = (u, v) (without loss of generality we assume d(s, u) ≤ d(s, v), u 6= s and v 6= s), the
probability that e belongs to F is given by,

Pr[e ∈ F] = Pr
r∼Unif(0,1)

[u ∈ S, v /∈ S]

= Pr
r∼Unif(0,1)

[d(s, u) ≤ r < d(s, v)] (∵ S = {v|d(s, v) ≤ r})

≤ d(s, v)− d(s, u)

1
≤ d(u, v) using triangle inequality

≤ xuv using (*)

Using the above in (6.1) we get

E[c(F)] ≤
∑
e∈E

ce · xe

= LP

≤ OPT

Hence we state: the minimum s-t cut problem can be solved using a 1-factor approximation algorithm
(meaning that, a polynomial time algorithm).

9.3 2-factor approximation for multiway cut

9.3.1 Linear Program

Similar to the minimum s-t cut problem, here is the LP relaxation for the multiway cut problem.

min
∑
e∈E

ce · xe

dx(si, sj) ≥ 1 : ∀i 6= j

9.3.2 Algorithm

Here we will analyze two similar algorithms (ALG 1 and ALG 2). In the former, we will obtain a (k − 1)-
factor approximation. While in the later, we will achieve a 2-factor approximation. The algorithms are as
follows,

1. In ALG 1 : Sample r from (0, 1)
In ALG 2 : Sample r from (0, 1/2)

2. Find Si = {v | d(si, v) ≤ r} , for all i ∈ [k]

3. Output F =
⋃k−1
i=1 δ(Si)

9-4 Lecture 9: Mar 6, 2015

9.3.3 Analysis

ALG 1 : Here we sample r from (0, 1).
For a fixed edge e, the probability that e belongs to F is given by

Pr
r

[e ∈ F] = Pr
r

[∃i | e ∈ δ(Si)]

≤
k−1∑
i=1

Pr
r

[e ∈ δ(Si)]

≤
k−1∑
i=1

xe
1

= (k − 1) · xe

Hence the expectation of cost of F is,

E[c(F)] =
∑
e∈E

ce · Prr[e ∈ F]

≤
∑
e∈E

ce · (k − 1) · xe

= (k − 1)
∑
e∈E

ce · xe

= (k − 1) · LP

Therefore, when r is chosen from (0, 1), we obtain a (k − 1) factor approximation for ALG 1.
Now we will show that, ALG 2 is a 2-factor approximation, where we choose uniformly r from (0, 1/2).

ALG 2 : Here we sample r from (0, 1/2). Here we claim that there exists no vertex v such that v ∈ Si and
v ∈ Sj , for some i 6= j. Suppose if such a vertex exists, then from step 2 of algorithm, we get d(si, v) ≤ r
and d(sj , v) ≤ r implying d(si, sj) ≤ d(si, v) + d(sj , v) ≤ 2r < 1, which is a contradiction to LP (i.e.,
d(si, sj) ≥ 1). Therefore, for every vertex u, we let Su be the unique set in which u could possibly belong
(that is, it is the set defined by the unique terminal su with d(u, su) < 1/2.)
Fix an e = (u, v). We want to upper bound the probability that e belongs to F . If su = sv = s, then the only
terminal which can separate u and v is s. Assuming, d(s, u) ≤ d(s, v), we get the Prr[e ∈ F] = Prr[d(s, u) ≤
r < d(s, v)] ≤ 2d(u, v).

Now suppose su 6= sv. The probability e is cut is now the probability u ∈ Su or v ∈ Sv. This is because
we know v /∈ Su (since su and sv are different), and similarly u /∈ Sv. So,

Pr
r

[e ∈ F] = Pr
r

[u ∈ Su or v ∈ Sv]

≤ Pr
r

[u ∈ Su] + Pr
r

[v ∈ Sv]

= Pr
r

[d(su, u) ≤ r] + Pr
r

[d(sv, v) ≤ r] (using above claim)

=
(1/2)− d(su, u)

1/2
+

(1/2)− d(sv, v)

1/2

= 2(1− [d(su, u) + d(sv, v)])

≤ 2 · d(u, v) (∵ d(su, u) + d(u, v) + d(v, sv) ≥ d(su, sv) ≥ 1)

≤ 2 · xe using (∗)

Lecture 9: Mar 6, 2015 9-5

Now,

E[c(F)] ≤ 2 ·
∑
e∈E

ce · xe

≤ 2 · LP
≤ 2 ·OPT

Therefore we conclude our analysis by stating : the above algorithm is a 2-factor approximation for the
multiway cut problem.

9.4 O(log k) factor approximation for multicut

9.4.1 Linear Program

Similar to previous problems, LP relaxation for multicut problem is given by

min
∑
e∈E

ce · xe

dx(si, ti) ≥ 1 : ∀i ∈ [k]

9.4.2 Algorithm

1. Sample r from (0, 1/2).
2. Sample a random permutation σ of {1, 2, · · · , k}.
3. Find Si = {v | d(si, v) ≤ r} \

⋃
j<σi

Sj .

4. Output F =
⋃k
i=1 δ(Si).

Here j <σ i means that j comes before i in the permutation σ. We note that while picking Si’s we
remove all the vertices that has already been picked by Sj ’s (where j <σ i). In other words, we say that
there exists no edge e ∈ F such that e ∈ Sa and e ∈ Sb (for some a 6= b). We note that thisis a multicut. To
see this we need to show that no Si contains an (sj , tj) pair. Suppose it did – then d(si, sj) ≤ r < 1/2 and
d(si, tj) < 1/2 implying d(sj , tj) < 1 contradicting the LP constraint.

9.4.3 Analysis

Fix an edge (u, v). Let us define

αi = min{d(si, u) , d(si, v)}
and βi = max{d(si, u) , d(si, v)}

9-6 Lecture 9: Mar 6, 2015

Note that βi − αi ≤ d(u, v) for all i. Now, the probability that e ∈ F is given by

Pr
r,σ

(u, v) ∈ F] = Pr
r,σ

[∃i | exactly one of u or v is in Si]

≤
k∑
i=1

Pr
r,σ

[exactly one of u or v is in Si]

=

k∑
i=1

Pr
r,σ

[(αi ≤ r ≤ βi) and ∀j <σ i : (r < αj)]

≤
k∑
i=1

Pr
r,σ

[(αi ≤ r ≤ βi) and ∀j <σ i : (αi < αj)] (∵ αi ≤ r)

≤
k∑
i=1

Pr
r

[(αi ≤ r ≤ βi)] · Pr
σ

[∀j <σ i : (αi < αj)]

≤
k∑
i=1

βi − αi
1/2

· 1

i

≤
k∑
i=1

2 · d(u,v)
i

= 2 · d(u,v) ·Hk

Now,

E[c(F)] ≤ min
∑
e∈E

ce · Prr,σ[e ∈ F]

≤ 2Hk ·
∑
e∈E

ce · du,v

≤ 2Hk ·
∑
e∈E

ce · xe using (∗)

= 2Hk · LP
≤ 2Hk ·OPT
≤ O(log k) ·OPT

Hence the above algorithm is a O(log k)-factor approximation for the multicut problem.
Now, let us go back to the multiway cut problem, where we design a new algorithm for a new LP

relaxation with an approximation factor of 1.5.

9.5 1.5 factor approximation for multiway cut

Recall the multiway cut problem where we minimize the cost of F such that inG\F , si and sj are disconnected
for all i, j ∈ [k]. We have seen the below LP relaxation.

min
∑
e∈E

ce · xe

dx(si, sj) ≥ 1 : ∀i 6= j

For all vertices v ∈ V , let us define variables v : Xv = (Xv
1 , X

v
2 , · · · , Xv

k) such that,
∑k
i=1X

u
i = 1 and

Lecture 9: Mar 6, 2015 9-7

Xu
i ≥ 0. Using these variables we write

min
1

2
·

∑
(u,v)∈E

cu,v

k∑
i=1

|Xu
i −Xv

i |

∀u :

k∑
i=1

Xu
i = 1

∀i ∈ [k] : XSi
i = 1

∀i ∈ [k], u ∈ V : Xu
i ≥ 0

However the above is not a linear program, because of the non-linearity of absolute value functions.
Hence we define variables yuvi , ∀(u, v) ∈ E, i ∈ [k] and write a new LP relaxation as follows

min
1

2

∑
(u,v)∈E

cu,v

k∑
i=1

yuvi ≤ OPT

∀u, v : yuvi ≥ Xu
i −Xv

i

∀u, v : yuvi ≥ Xv
i −Xu

i

∀u :

k∑
i=1

Xu
i = 1

∀i ∈ [k] : XSi
i = 1

∀i ∈ [k], u ∈ V : Xu
i ≥ 0

Claim: For each edge e(u, v) ∈ E we can add (k−2) new vertices (say u1, u2, · · · , uk−2) such that Xu and
Xv differ in at most 2 coordinates.
Proof: For a fixed edge (u, v) let Xu = (Xu

1 , X
u
2 , · · · , Xu

k) and Xv = (Xv
1 , X

v
2 , · · · , Xv

k) be the coordinate
vectors.

1. Find a coordinate (say Xm) such that Xu
m ≥ Xv

m.
2. Find another coordinate (say Xn) such that Xu

n +Xu
m −Xv

m ≤ 1.
3. Add a vertex (say u1) between u and v such that, Xu1

m = Xv
m ; Xu1

n = Xu
n +Xu

m−Xv
m and Xu1

i = Xu
i

for all other Xi’s.

Now u and u1 differ in at most two coordinates (they are Xm, Xn). Also u1 and v differ in at most (k−1)
coordinates (other than Xm). On careful observation, we note that using the same steps (for (u1, v))) we
can add one more vertex u2 (between u1 and v) such that, u2 and v differ in at most (k − 2) coordinates.
By recursively proceeding, we find that by adding (k − 2) new vertices (between u and v), every pair of
adjacent vertices differ by at most [k − (k − 2)] = 2 coordinates. This suffices the proof of claim.
Henceforth in our analysis, we assume that for all edges (u, v) ∈ E, Xu and Xv differ in at most 2 coordinates.

9.5.1 Algorithm :

Now we design an algorithm to find the set F by using the solution obtained from the above LP. The
algorithm is as follows :

1. Sample a random permutation σ from {1, 2, · · · , k}.
2. Sample r randomly from (0,1].
3. Find Si := {v |Xv

i ≥ r} \ ∪j<σi Sj , for all i ∈ [k].
4. Output F = ∪ki=1δ(Si)

9-8 Lecture 9: Mar 6, 2015

9.5.2 Analysis :

Let e(u, v) ∈ E be an edge such that Xu = (u1, u2, · · · , uk) and Xv = (u1 − δ, u2 + δ, u3, u4, · · · , uk).
By our algorithm we say, for coordinates 3, 4, · · · , k, the sets S3, S4, · · · , Sk will either pick both u and v or
pick none of the vertices in {u, v}. Therefore for the fixed edge e(u, v), the probability that (u, v) ∈ F is
given by

Pr
r,σ

[(u, v) ∈ F] ≤ Pr
r,σ

[S1 cuts (u, v)] + Pr[S2 cuts (u, v)] (9.2)

Till certain point, let us assume

u2 + δ ≥ u1 (Assumption 9.3)

Case (i) Suppose 1 <σ 2 :
If S1 cuts (u, v) then u1 − δ ≤ r ≤ u1 (by algorithm definition). Therefore,

Pr
r

[S1 cuts (u, v)] ≤ X1
u −X1

v

1
= δ

Also, S2 cuts (u, v) only if neither of u of v are in S1 and u2 ≤ r ≤ u2 + δ. Therefore,

Pr
r

[S2 cuts (u, v)] ≤ Pr
r

[(S1 ‘spares’ u and v and S2 cuts (u, v)]

= Pr
r

[r ≥ u1 and u2 ≤ r ≤ u2 + δ]

≤ Pr
r

[u2 + δ ≥ u1 and u2 ≤ r ≤ u2 + δ]

= Pr
r

[u2 ≤ r ≤ u2 + δ] (by assumption 9.3)

≤ δ

From (9.2) we get,

Pr
r

[(u, v) ∈ F | 1 <σ 2] ≤ δ + δ = 2δ (9.3)

Case (ii) Suppose 2 <σ 1:
Similar to Case (i), we get

Pr
r

[S2 cuts (u, v)] = Pr
r

[u2 ≤ r ≤ u2 + δ]

=
δ

1
= δ

Similarly,

Pr
r

[S1 cuts (u, v)] = Pr
r

[S1 not cutting (u, v) and S2 cuts (u, v)]

= Pr
r

[r > u2 + δ and u1 − δ ≤ r ≤ u1]

= 0 (by (9.3), u2 + δ < r ≤ u1 never occurs)

From (9.2) we get,

Pr
r

[(u, v) ∈ F | 2 <σ 1] ≤ δ + 0 = δ (9.4)

Lecture 9: Mar 6, 2015 9-9

On careful observation, we note that Prσ[1 <σ 2] = 1/2 and Prσ[1 <σ 2] = 1/2. Therefore under the
assumption that u2 + δ ≥ u1 we get,

Pr
r,σ

[(u, v) ∈ F] = (1/2) · (Pr
r,σ

[(u, v) ∈ F | (1 <σ 2)] + Pr
r,σ

[(u, v) ∈ F | (2 <σ 1)])

≤ (1/2) · (2δ + δ)

=⇒ Pr
r,σ

[(u, v) ∈ F] ≤ 3δ

2
(**)

The above probability is true when assumption 9.3 is true (that is, u2 + δ ≥ u1). Next we analyze the
case where we assume u2 + δ < u1. On careful observation, we note that the same analysis works for the
new assumption. This is because of the symmetric nature of the coordinates X1 and X2. Here we get,

Pr
r

[(u, v) ∈ F | (1 <σ 2)] ≤ δ

and Pr
r

[(u, v) ∈ F | (1 <σ 2)] ≤ 2δ

Therefore under the assumption that u2 + δ < u1, we get

Pr
r,σ

[(u, v) ∈ F] = (1/2) · (Pr[(u, v) ∈ F | (1 <σ 2)] + Pr[(u, v) ∈ F | (2 <σ 1)])

≤ (1/2)δ + 2δ

=⇒ Pr
r,σ

[(u, v) ∈ F] ≤ 3δ

2
(***)

From (∗∗) and (∗ ∗ ∗) we state: for a fixed edge e(u, v) , the probability that e ∈ F is given by

Pr
r,σ

[(u, v) ∈ F] ≤ 3δ

2
(9.5)

Hence, the expectation of the cost of F is

E[c(F)] =
∑

e(u,v)∈E

ce · Pr
r,σ

[e(u, v) ∈ F]

≤ (3/2).(1/2)
∑

e(u,v)∈E

ce · 2δ using (9.5)

≤ (3/2).(1/2)
∑

e(u,v)∈E

ce ·
k∑
i=1

(Xu
i −Xv

i) (∵ only two coordinates differ, by at most δ)

=⇒ E[c(F)] ≤ (3/2).cost[LP] ≤ (3/2).OPT

Thus based on the above analysis, we observed that the algorithm provides a 1.5 - factor approximation
for solving the multiway cut problem.

References

[1] Ford, L. R.; Fulkerson, D. R., Maximal flow through a network, Canadian Journal of
Mathematics 8:399-404, 1956

[2] E. Dahlhaus, D.S Johnson, C.H. Papadimitriou,P.D. Seymour and M. Yannakakis,
The Complexity of Multiterminal Cuts, SIAM Journal on Computing, 1994

[3] Erik D. Demaine, Dotan Emanuel, Amos Fiat and Nicole Immolica, Correlation Clus-
tering in General Weighted Graphs, Theoretical Computer Science, 2006

[4] http://en.wikipedia.org/wiki/APX

