Cryptography

Lecture 11

Arpita Patra

Generic Results in PK World

CCA Security
Bit Encryption \rightarrow Many-bit Encryption \quad Bit Encryption \rightarrow Many-Bit Encryption
Π CPA-secure KEM
$\Pi^{\text {SKE }}$ COA-secure SKE
Π ССA-secure KEM
$\Pi^{\text {SKE }}$ CCA-secure SKE
$\rightarrow \quad \Pi^{\text {Hyb }}$ CCA-secure

Constructions for PK World

CPA Security

CCA Security

PKE Instantiation: DDH based EI Gamal

KEM Instantiation: HDH based variation of EI Gamal

Variant El Gamal KEM
PRG-based SKE

Instantiation: DDH + CR Hash based CramerShoup Scheme (first ever CCA secure under standard assumption)

KEM Instantiation: ODH based (the same) variation of El Gamal

Variant EIGamal KEM
CPA-secure SKE + SCMA MAC $\quad \Pi^{H y b}$ CCA-secure

CCA Security for KEM

1 --- attacker won
(Attacker's guess about encapsulated key)
I can break Π

Game Output

Π is CPA-secure if for every PPT attacker A, the probability that A wins the experiment is at most negligibly better than $\frac{1}{2}$

$$
\operatorname{Pr}\left(\operatorname{KEM}^{c c a}(n)=1\right) \leq \frac{1}{2}+\operatorname{negl}(n)
$$

EI Gamal like KEM

$\operatorname{Gen}\left(1^{n}\right)$
$(G, 0, q, g)$
$h=g^{\times} \cdot$ For random x
pk $=(G, 0, q, g, h)$, sk $=x$
$E n c_{p k}(m)$
$c_{1}=g^{y}$ for random y
$c_{2}=h^{y} . m$
$c=\left(c_{1}, c_{2}\right)$

$$
\begin{aligned}
& \operatorname{Dec}_{s k}(c) \\
& c_{2} /\left(c_{1}\right)^{x}=c_{2} \cdot\left[\left(c_{1}\right)^{x}\right]^{-1}
\end{aligned}
$$

Security: DDH Assumption

```
Gen(1n)
(G,o, q, g)
h= g}\times\mathrm{ . For random }
pk= (G,o,q,g,h,H),sk=x
```


Encaps $_{\text {pk }}\left(1^{n}\right)$

$c=g^{y}$ for random y
$k=H\left(h^{y}\right)=H\left(g^{x y}.\right)$
(c,k)

- No Multiplication, hashing

```
Decaps
k=H(cx)=H(gxy)
```


EI Gamal like KEM

$\operatorname{Gen}\left(1^{n}\right)$
$(G, 0, q, g)$
$h=g^{\times}$. For random x
pk $=(G, 0, q, g, h, H)$, sk $=x$

```
Encapspk(1n)
c= gy for random y
k=H(hy)=H(gy.)
(c,k)
```

```
Dec
k=H(cx)=H(\mp@subsup{g}{}{xy})
```


ODH (Oracle Diffie-Hellman) Assumption

ODH problem is hard relative to $(G, 0)$ and hash function $H: G \rightarrow\{0,1\}^{m}$ if for every PPT A, (it is hard to distinguish $H\left(g^{\star x}\right)$ from a random string $\{0,1\}^{m}$ even given g^{\star}, g^{y} AND an oracle $O_{y}(X)$: $=H\left(X^{y}\right)$;
anything other than g^{x} can be quired)):
$\left|\operatorname{Pr}\left[A^{0}().\left(G, 0, q, g, g^{x}, g^{y}, H\left(g^{x y}\right)\right)=1\right]-\operatorname{Pr}\left[A^{0 \gamma Y(.)}\left(G, 0, q, g, g^{x}, g^{y}, r\right)=1\right]\right| \leq n e g \mid()$
ODH assumption is just the belief that there exist a group and hash function H so that the above is true.

It is stronger than HDH.

Theorem: ODH assumption holds $\rightarrow \Pi$ is a CCA-secure KEM

Construction of Hybrid CCA-secure PKE

CCA Secure $\Pi^{\text {SKE }}-\quad$ CPA Secure $\Pi^{\text {SKE }}+$ Strong CMA Secure $\Pi^{\text {MAC }}$
CCA Secure Π - Oracle Function assumption (ODH)

DHIES (Diffie-Hellman Integrated Encryption Scheme)- - ISO/IEC 18033-2

DHIES- - ISO/IEC 18033-2

CCA Secure $\Pi^{\text {SKE }} \quad$ CPA Secure $\Pi^{\text {SKE }}+$ Strong CMA Secure $\Pi^{\text {MAC }}$
CCA Secure Π - Number theoretic assumption + Hash Function (ODH)

DHIES (Term Paper)

Michel Abdalla, Mihir Bellare, Phillip Rogaway:
The Oracle Diffie-Hellman Assumptions and an Analysis of DHIES. CT-RSA 2001: 143-158

Cramer-Shoup Cryptosystem

Ronald Cramer, Victor Shoup:
A Practical Public Key Cryptosystem Provably Secure Against Adaptive Chosen Ciphertext Attack. CRYPTO 1998: 13-25

Cramer-Shoup Cryptosystem- Route map

Another Look at DDH Assumption/ An alternative Formulation

CCA1 Secure Scheme

+ Collision-Resistant Hash Function
CCA Secure Scheme

Another Look at DDH

($G, 0, q, g$) - Group of Prime Order q

$$
\begin{array}{cc}
\mid \operatorname{Pr}\left[A\left(g, g^{x}, g^{y}, g^{x y}\right)=1\right] & - \\
\left(g_{0}, g_{1}, g_{0}^{y}, g_{1}^{y}\right) & \left.\operatorname{Pr}\left[A\left(g, g^{x}, g^{y}, g^{z}\right)=1\right] \quad \mid \leq \operatorname{neg}()\right) \\
\left.g_{1}, g_{0}^{y}, g_{1}^{1^{\prime}}\right)
\end{array}
$$

$$
\left|\operatorname{Pr}\left[A\left(g_{0}, g_{1}, g_{0}{ }^{r}, g_{1}^{r}\right)=1\right] \quad-\quad \operatorname{Pr}\left[A\left(g_{0}, g_{1}, g_{0}{ }^{r}, g_{1}^{r^{\prime}}\right)=1\right]\right| \leq \operatorname{neg}()
$$

Randomization Function

Case II ($g_{0}, g_{1}, h_{0}=g_{0}{ }^{r}, h_{1}=g_{1}{ }^{r^{\prime}}$):
Claim: An all powerful adv A can guess v with probability at most $1 /|G|$, even given ($\left.g_{0}, g_{1}, h_{0}, h_{1}, u\right)$.
Proof: A can compute r, r^{\prime}, α (where $g_{1}=g_{0}{ }^{\alpha}$) and discrete log of u (say R)

$$
\begin{align*}
& u=g_{0}{ }^{R}=\left(g_{0}{ }^{x} \cdot g_{1}{ }^{y}\right)=g_{0}{ }^{x+\alpha y} \quad \longrightarrow \quad x+\alpha y=R---(1) \tag{1}\\
& v=h_{0} x \cdot h_{1} y=g_{0}{ }^{r x} \cdot g_{1} r^{r y}=g_{0} r x+\alpha r^{r} y \\
& r x+\alpha r^{\prime} y \text { is linearly independent of } x+\alpha y
\end{align*}
$$

For every guess R^{\prime} of this value $r x+\alpha r^{\prime} y$, there exist a pair of unique values for x, y satisfying equation (1)
$E n c_{p k}(m)$
Random r from Z_{q}

$$
\begin{aligned}
& h_{0}=g_{0}{ }^{r}, h_{1}=g_{1}{ }^{r} \\
& c=u^{r} \cdot m=v \cdot m \quad(\text { Way2) } \\
& \left(h_{0}, h_{1}, c\right)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Dec}_{\text {sk }=(x, y)}\left(h_{0}, h_{1}, c\right) \\
& v=h_{0} x \cdot h_{1}{ }^{y} \text { (Way1) } \\
& m=c / v
\end{aligned}
$$

Theorem. If DDH is hard, then Π is a CPA-secure scheme.
Proof: Assume Π is not CPA-secure

$$
A, p(n): \quad \operatorname{Pr}\binom{\operatorname{PubK}_{A, \Pi}^{c p a}(n)}{A, \Pi}>\frac{1}{2}+1 / p(n)
$$

DDH or non-DDH tuple?

$\left(G, 0,9, g_{0}, g_{1}, h_{0}, h_{1}\right)$
Random (x, y) from Z_{q}

$$
u=g_{0}{ }^{x} \cdot 9_{1}{ }^{y}
$$

$c=h_{0}{ }^{x} \cdot h_{1}{ }^{y} \cdot m_{b}$
cpa
Let us run Pubk (n)

$E n c_{p k}(m)$
Random r from Z_{q}

$$
\begin{aligned}
& h_{0}=g_{0}{ }^{r}, h_{1}=g_{1}{ }^{r} \\
& c=u^{r} \cdot m=v \cdot m \quad \text { (Way2) } \\
& \left(h_{0}, h_{1}, c\right)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Dec}_{\text {sk }=(x, y)}\left(h_{0}, h_{1}, c\right) \\
& v=h_{0} x \cdot h_{1}{ }^{y} \text { (Wa y1) } \\
& m=c / v
\end{aligned}
$$

Theorem. If DDH is hard, then Π is a CPA-secure scheme.
Proof: Assume Π is not CPA-secure

$$
A, p(n): \quad \operatorname{Pr}\binom{\operatorname{PubK}_{A, \Pi}^{c p a}(n)}{A, \Pi}>\frac{1}{2}+1 / p(n)
$$

DDH Tuple
$\left(G, 0, q, g_{0}, g_{1}, \xrightarrow{\left.h_{0}=g_{0}{ }^{r}, h_{1}=g_{1}{ }^{r}\right)}\right.$

Random (x, y) from Z_{q}

$$
\begin{aligned}
& u=g_{0} x \cdot g_{1} y^{y} \\
& h_{0} x \cdot h_{1} y=g_{0} r x \cdot g_{1}^{r y}=u^{r} \\
& c=h_{0} x \cdot h_{1}^{y} \cdot m_{b}
\end{aligned}
$$

cpa
Let us run Pubk (n)
A, Π
$p k=\left(G, o, q, g_{0}, g_{1}, u\right)$

$\operatorname{Gen}\left(1^{n}\right)$
$\left(G, 0, q, g_{0}, g_{1}\right)$
Random (x, y) from Z_{q}
$u=g_{0} x \cdot g_{1}{ }^{y}$
$\operatorname{pk}=\left(G, 0, q, g_{0}, g_{1}, u\right)$, sk $=(x, y)$
$E n c_{p k}(m)$
Random r from Z_{q}

$$
\begin{aligned}
& h_{0}=g_{0}{ }^{r}, h_{1}=g_{1}{ }^{r} \\
& c=u^{r} \cdot m=v \cdot m \quad \text { (Way2) } \\
& \left(h_{0}, h_{1}, c\right)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Dec}_{s k=(x, y)}\left(h_{0}, h_{1}, c\right) \\
& v=h_{0} x \cdot h_{1}{ }^{y}(\text { Way } 1) \\
& m=c / v
\end{aligned}
$$

Theorem. If DDH is hard, then Π is a CPA-secure scheme.
Proof: Assume Π is not CPA-secure

$$
A, p(n): \quad \operatorname{Pr}\binom{\operatorname{PubK}^{c p a}(n)=1}{A, \Pi}>\frac{1}{2}+1 / p(n) \quad \operatorname{Pr}\binom{\operatorname{PubK}^{c p a}(n)=1}{A, \bar{\Pi}}=\frac{1}{2}
$$

\square

$$
u=9_{0}{ }^{x} \cdot 9_{1}{ }^{y}
$$

$$
h_{0}{ }^{x} \cdot h_{1}{ }^{y} \text { is uniformly }
$$ random element $c=h_{0}{ }^{x} \cdot h_{1}{ }^{y} \cdot m_{b}$

$E n c_{p k}(m)$
Random r from Z_{q}

$$
h_{0}=g_{0}{ }^{r}, h_{1}=g_{1}{ }^{r}
$$

$$
c=u^{r} \cdot m=v \cdot m \quad(\text { Way2 })
$$

$$
\left(h_{0}, h_{1}, c\right)
$$

$$
\begin{aligned}
& \operatorname{Dec}_{s k=(x, y)}\left(h_{0}, h_{1}, c\right) \\
& v=h_{0} x \cdot h_{1}{ }^{y}(\text { Way } 1) \\
& m=c / v
\end{aligned}
$$

Theorem. If DDH is hard, then Π is a CPA-secure scheme.
Proof: Assume Π is not CPA-secure

Why NOT EI Gamal?
$\operatorname{Gen}\left(1^{n}\right)$
($G, 0, q, 9$)
Random x from $Z_{q}, \quad h=g^{x}$
pk $=\left(G, 0, q, g_{0}, h\right), s k=x$
$E n c_{p k}(m)$
$c_{1}=g^{y}$ for random y
$c_{2}=g^{x y} . m$

$$
\begin{aligned}
& \operatorname{Dec}_{\text {sk }}(c) \\
& c_{2} /\left(c_{1}\right)^{x}=c_{2} \cdot\left[\left(c_{1}\right)^{x}\right]^{-1}
\end{aligned}
$$

Theorem. If DDH is hard, then Π is a CPA-secure scheme.
Proof: Assume Π is not CPA-secure

Is the Scheme CCA secure?

$$
\begin{aligned}
& \operatorname{Dec}_{\text {sk }}=(x, y)\left(h_{0}, h_{1}, c\right) \\
& v=h_{0} x \cdot h_{1}{ }^{y}(\text { Way } 1) \\
& m=c / v
\end{aligned}
$$

It is malleable. Not CCA Secure

Is the Scheme CCA1 secure?
$\operatorname{Gen}\left(1^{n}\right)$
$\left(G, 0, q, g_{0}, g_{1}\right)$
Random (x, y) from Z_{q}
$u=g_{0} \times \cdot g_{1} y^{y}$
$\operatorname{pk}=\left(G, 0, q, g_{0}, g_{1}, u\right)$, sk $=(x, y)$
($G, 0, q, g_{0}, g_{1}$)
Random (x, y) from Z_{q}

$$
\begin{aligned}
& u=90^{x} \cdot g_{1}{ }^{y} \\
& \text { pk }=\left(G, 0, q, g_{0}, g_{1}, u\right), \text { sk }=(x, y)
\end{aligned}
$$

$E n c_{\text {pk }}(m)$
Random r from Z_{q}

$$
\begin{aligned}
& h_{0}=g_{0}{ }^{r}, h_{1}=g_{1}{ }^{r} \\
& c=u^{r} \cdot m=v \cdot m \quad \text { (Way2) } \\
& \left(h_{0}, h_{1}, c\right)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Dec}_{s k=(x, y)}\left(h_{0}, h_{1}, c\right) \\
& v=h_{0}{ }^{x} \cdot h_{1}{ }^{y}(\text { Way } 1) \\
& m=c / v
\end{aligned}
$$

Theorem. If DDH is hard, then Π is a CPA-secure scheme.
Proof: Assume Π is not CPA-secure

Is the Scheme CCA1 secure?

$\operatorname{Gen}\left(1^{n}\right)$
$\left(G, 0, q, g_{0}, g_{1}\right)$
$\operatorname{Random}(x, y)$ from Z_{q}
$u=90^{x} \cdot g_{1}{ }^{y}$
pk $=\left(G, 0, q, g_{0}, g_{1}, u\right)$, sk $=(x, y)$

$$
\begin{aligned}
& \operatorname{Dec}_{\text {sk }=(x, y)}\left(h_{0}, h_{1}, c\right) \\
& v=h_{0} x \cdot h_{1}{ }^{y}(\text { Way } 1) \\
& m=c / v
\end{aligned}
$$

Claim. Just one decryption query is enough for an unbounded powerful adversary A_{u} to know x, y and guess b with probability 1 .

Proof: A_{u} can compute discrete log of $u \& g_{1}$, say $R \& \alpha$

$$
u=90^{R}=\left(90^{x} \cdot 9_{1} y\right)=90^{x+\alpha y} \quad \longrightarrow \quad x+\alpha y=R \quad--(1)
$$

A_{u} need another (linearly) independent equation on x and y to recover them. Can Decryption Query help?

Is the Scheme CCA1 secure?

$$
\begin{aligned}
& \operatorname{Gen}\left(1^{n}\right) \\
& \left(G, 0, q, g_{0}, g_{1}\right) \\
& \text { Random }(x, y) \text { from } Z_{q} \\
& u=g_{0} x \cdot g_{1} y^{y} \\
& \text { pk }=\left(G, 0, q, g_{0}, g_{1}, u\right), \text { sk }=(x, y)
\end{aligned}
$$

$E n c_{\text {pk }}(m)$
Random r from Z_{q}

$$
\begin{aligned}
& h_{0}=g_{0}{ }^{r}, h_{1}=g_{1}{ }^{r} \\
& c=u^{r} \cdot m=v . m \quad \text { (Way2) } \\
& \left(h_{0}, h_{1}, c\right)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Dec}_{s k=(x, y)}\left(h_{0}, h_{1}, c\right) \\
& v=h_{0} x \cdot h_{1}{ }^{y}(\text { Way } 1) \\
& m=c / v
\end{aligned}
$$

Claim. Just one decryption query is enough for an unbounded powerful adversary to know x, y and guess b with probability 1.

Proof: A_{u} can compute discrete log of $u \& g_{1}$, say $R \& \alpha$

$$
\begin{equation*}
u=g_{0}{ }^{R}=\left(g_{0}^{x} \cdot g_{1}^{y}\right)=90^{x+\alpha y} \quad \longrightarrow \quad x+\alpha y=R \tag{1}
\end{equation*}
$$

A_{u} need another (linearly) independent equation on x and y to recover them. Can Decryption Query help?

Is the Scheme CCA1 secure?
$\operatorname{Gen}\left(1^{n}\right)$
$\left(G, 0, q, g_{0}, g_{1}\right)$
Random (x, y) from Z_{q}
$u=g_{0} \times \cdot g_{1} y^{y}$
$\operatorname{pk}=\left(G, 0, q, g_{0}, g_{1}, u\right), s k=(x, y)$
($G, 0, q, g_{0}, g_{1}$)
Random (x, y) from Z_{q}

$$
\begin{aligned}
& u=g_{0} \times \cdot g_{1}^{y} \\
& \mathrm{pk}=\left(G, 0, q, g_{0}, g_{1}, u\right), s k=(x, y)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Dec}_{\text {sk }=(x, y)}\left(h_{0}, h_{1}, c\right) \\
& v=h_{0}{ }^{x} \cdot h_{1}^{y} \quad(\text { Way } 1) \\
& m=c / v
\end{aligned}
$$

Claim. Just one decryption query is enough for an unbounded powerful adversary to know x, y and guess b with probability 1.

Proof: A_{u} can compute discrete \log of $u \& g_{1}$, say $R \& \alpha$

$$
\begin{equation*}
u=g_{0}{ }^{R}=\left(90^{x} \cdot g_{1}^{y}\right)=90^{x+\alpha y} \quad \longrightarrow \quad x+\alpha y=R \tag{1}
\end{equation*}
$$

A_{u} need another (linearly) independent equation on x and y to recover them. Can Decryption Query help?

$$
\begin{equation*}
c / m=v=g_{0}^{R^{\prime}}=\left(h_{0} x \cdot h_{1} y\right)=9_{0}{ }^{r x+r^{\prime} \alpha y} \longrightarrow r x+r^{\prime} \alpha y=R^{\prime} \tag{2}
\end{equation*}
$$

(linearly) independent $)^{-}$
Solving (1) \& (2) gives the secret key (x, y)
$\operatorname{Gen}\left(1^{n}\right)$
$\left(G, o, q, g_{0}, g_{1}\right)$
Random (x, y) from Z_{q}
$u=g_{0} x . g_{1}{ }^{y}$
pk $=\left(G, 0, q, g_{0}, g_{1}, u\right), s k=(x, y)$
$E n c_{p k}(m)$
Random r from Z_{q}

$$
h_{0}=g_{0}{ }^{r}, h_{1}=g_{1}{ }^{r}
$$

$$
c=u^{r} \cdot m=v \cdot m \quad(\text { Way2 })
$$

$$
\left(h_{0}, h_{1}, c\right)
$$

$$
\begin{aligned}
& \operatorname{Dec}_{s k=(x, y)}\left(h_{0}, h_{1}, c\right) \\
& v=h_{0} x \cdot h_{1}{ }^{y}(\text { Way } 1) \\
& m=c / v
\end{aligned}
$$

Theorem. If DDH is hard, then Π is a CPA-secure scheme.
Theorem. If DDH is hard, then Π is
Proof: Assume Π is not CPA-secure

CCA1 Scheme
$\operatorname{Gen}\left(1^{n}\right)$
$\left(G, o, q, g_{0}, g_{1}\right)$
Random $\left(x, y, x^{\prime}, y^{\prime}\right)$ from Z_{q}
$u=g_{0} g_{1} g_{1}^{y} \quad e=g_{0} x^{\prime} g_{1^{y^{\prime}}}$
pk $=\left(G, 0, q, g_{0}, g_{1}, u, e\right), s k=\left(x, y, x^{\prime}, y^{\prime}\right)$
$E n c_{p k}(m)$

$$
\begin{aligned}
& \operatorname{Dec}_{s k=\left(x, y, x^{\prime}, y^{\prime}\right)}\left(h_{0}, h_{1}, c, f\right) \\
& f=h_{0} x^{x^{\prime}} h_{1} y^{\prime}(\text { Way } 1) ? ? \\
& v=h_{0}{ }^{x} h_{1}{ }^{y}(\text { Way } 1) \\
& m=c / v
\end{aligned}
$$

Claim. An unbounded powerful adversary computes (x, y) except with neg. probability.
Therefore it can guess bit b with probability no better than $\frac{1}{2}+$ negl(.).
Proof: A_{u} can compute discrete log of u, e g_{1}, say $R, S \& \alpha$

$$
\begin{aligned}
& u=g_{0}{ }^{R}=\left(9_{0}{ }^{x} g_{1} y^{\prime}\right)=90^{x+\alpha y} \longrightarrow x+\alpha y=R-(1) \\
& e=g_{0}{ }^{s}=\left(9_{0}{ }^{x^{\prime}} g_{1} y^{\prime}\right)=90^{x^{\prime}+\alpha y^{\prime}} \longrightarrow x^{\prime}+\alpha y^{\prime}=S-(2)
\end{aligned}
$$

What if A_{u} can guess f so that $f=h_{0} x^{\prime} h_{1^{y^{\prime}}}$?? Do you see the disaster???????

$$
\begin{array}{lll}
f=g_{0} S^{\prime}=\left(h_{0} x^{\prime} h_{1} y^{\prime}\right)=g_{0}{ }^{r x+r^{\prime} \alpha y} \\
c / m=v=g_{0}^{R^{\prime}}=\left(h_{0} x \cdot h_{1}{ }^{y}\right)=g_{0}{ }^{r x+r^{\prime} \alpha y} \quad \longrightarrow \quad r x^{\prime}+r^{\prime} \alpha y^{\prime}=S^{\prime}--(3) \quad \text { (linearly) independent of (2) } \tag{4}\\
r x+r^{\prime} \alpha y=R^{\prime}--(4) \quad \text { (linearly) independent of (1) }
\end{array}
$$

Solving (1) \& (4) gives the secret key (x, y)

$$
\operatorname{Pr}\binom{\operatorname{PubK}^{c p a}(n)=1}{A_{u}, \bar{\Pi}}=1
$$

Security Proof of CCA1 Scheme

$\operatorname{Gen}\left(1^{n}\right)$
$\left(G, 0, q, g_{0}, g_{1}\right)$
Random $\left(x, y, x^{\prime}, y^{\prime}\right)$ from Z_{q}
$u=g_{0}{ }^{x} g_{1} y^{y} \quad e=g_{0} x^{\prime} g_{1} y^{\prime}$
pk $=\left(G, 0, q, g_{0}, g_{1}, u, e\right), s k=\left(x, y, x^{\prime}, y^{\prime}\right)$

Claim. An unbounded powerful adversary computes (x, y) except with neg. probability. Therefore it can guess bit b with probability no better than $\frac{1}{2}+$ negl(.).

Proof: A_{u} can compute discrete log of $u \& g_{1}$, say $R \& \alpha$
$u=g_{0}{ }^{R}=\left(g_{0} g_{g_{1}}\right)=9 g_{0} \times+a y \longrightarrow$ Yes! It does. A knows its chosen value in the first
$e=g_{0}{ }^{5}=\left(g_{0}{ }^{\times} 9_{1} \gamma^{\prime}\right)=g_{0}{ }^{x+\alpha y} \longrightarrow D Q$ is NOT a possibility. Next time it can guess f
What is the prob of A_{u} guessing f :
$E n c_{p k}(m)$
Random r from Z_{q}
$h_{0}=g_{0}{ }^{r}, h_{1}=g_{1}{ }^{r}$
$c=u^{r} . m=v . m ; f=e^{r}$ (Way2)
$\left(h_{0}, h_{1}, c, f\right)$

$$
\begin{aligned}
& \operatorname{Dec}_{\text {sk }=\left(x, y, x^{\prime}, y\right)}\left(h_{0}, h_{1}, c, f\right) \\
& f=h_{0^{x}} h_{1^{\prime}}(\text { Way } 1) ? ? \\
& v=h_{0} \times h_{1}{ }^{y}(\text { Way } 1) \\
& m=c / v
\end{aligned}
$$

Recall that $h_{0}{ }^{x^{\prime}} h_{1}{ }^{y^{\prime}}$ is uniformly random for A_{u} even given ($\left.g_{0}, g_{1}, h_{0}=g_{0}{ }^{r}, h_{1}=g_{1} r^{r^{\prime}}, e\right)$ \square
$\operatorname{Pr}\left[A_{u}\right.$ succeeds in first $\left.D Q\right]=1 /|G|---$ negligible

But A_{u} can make polynomials many attempts say, t many.

Does getting rejected in the first DQ help in succeeding second DQ?

Security Proof of CCA1 Scheme

$\operatorname{Gen}\left(1^{n}\right)$
$\left(G, 0, q, g_{0}, g_{1}\right)$
Random $\left(x, y, x^{\prime}, y^{\prime}\right)$ from Z_{q}
$u=g_{0}{ }^{x} g_{1} y^{y} \quad e=g_{0} x^{\prime} g_{1} y^{\prime}$
pk $=\left(G, 0, q, g_{0}, g_{1}, u, e\right), s k=\left(x, y, x^{\prime}, y^{\prime}\right)$
$\mathrm{Enc}_{\mathrm{pk}}(m)$
Random r from Z_{q}
$h_{0}=g_{0}{ }^{r}, h_{1}=g_{1}{ }^{r}$
$c=u^{r} . m=$ v.m ; $f=e^{r}$ (Way2)
$\left(h_{0}, h_{1}, c, f\right)$
$\operatorname{Dec}_{\text {sk }=\left(x, y, x^{\prime}, y^{\prime}\right)}\left(h_{0}, h_{1}, c, f\right)$
$f=h_{0}{ }^{x^{\prime}} h_{1} y^{\prime}$ (Way1) ??
$v=h_{0}{ }^{x} h_{1}{ }^{y}$ (Way1)
$m=c / v$

Claim. An unbounded powerful adversary computes (x, y) except with neg. probability. Therefore it can guess bit b with probability no better than $\frac{1}{2}+$ negl(.).

Proof: A_{u} can compute discrete \log of $u \& g_{1}$, say $R \& \alpha$

$$
\begin{aligned}
& u=9_{0}{ }^{R}=\left(90^{x} 9_{1}{ }^{y}\right)=90^{x+\alpha y} \longrightarrow x+\alpha y=R \quad-- \text { (1) } \\
& e=g_{0}{ }^{s}=\left(g_{0} x^{\prime} g_{1} 1^{\prime}\right)=g_{0} x^{x^{\prime}+\alpha y^{\prime}} \longrightarrow \quad x^{\prime}+\alpha y^{\prime}=S \quad-\text { (2) }
\end{aligned}
$$

What is the prob of A_{u} guessing f so that $f=h_{0} x^{\prime} h_{1} y^{\prime}=g_{0}{ }^{r x+\alpha r^{\prime} y}$ in his SECOND DQ
$\operatorname{Pr}\left[A_{u}\right.$ succeeds in second $\left.D Q\right]=1 /(|G|-1)-$ negligible

Security Proof of CCA1 Scheme

$\operatorname{Gen}\left(1^{n}\right)$
$\left(G, 0, q, g_{0}, g_{1}\right)$
Random $\left(x, y, x^{\prime}, y^{\prime}\right)$ from Z_{q}
$u=g_{0}{ }^{x} g_{1} y^{y} \quad e=g_{0} x^{\prime} g_{1} y^{\prime}$
pk $=\left(G, 0, q, g_{0}, g_{1}, u, e\right), s k=\left(x, y, x^{\prime}, y^{\prime}\right)$
$E n c_{p k}(m)$
Random r from Z_{q}
$h_{0}=g_{0}{ }^{r}, h_{1}=g_{1}{ }^{r}$
$c=u^{r} . m=v . m ; f=e^{r}$ (Way)
$\left(h_{0}, h_{1}, c, f\right)$

$$
\begin{aligned}
& \operatorname{Dec}_{s k}=\left(x, y, x^{\prime} y^{\prime}\right)\left(h_{0}, h_{1}, c, f\right) \\
& f=h_{0} x^{\prime} h_{1}^{y^{\prime}}(\text { Way } 1) ? ? \\
& v=h_{0}{ }^{x} h_{1}{ }^{y}(\text { Way } 1) \\
& m=c / v
\end{aligned}
$$

Claim. An unbounded powerful adversary computes (x, y) except with neg. probability. Therefore it can guess bit b with probability no better than $\frac{1}{2}+$ negl(.).

Proof: A_{u} can compute discrete \log of $u \& g_{1}$, say $R \& \alpha$

$$
\begin{aligned}
& u=g_{0}^{R}=\left(g_{0} \times g_{1} y^{\prime}\right)=9_{0}{ }^{x+\alpha y} \quad \longrightarrow \quad x+\alpha y=R--(1) \\
& e=g_{0}^{s}=\left(g_{0}{ }^{\prime} 9_{1} y^{\prime}\right)=9_{0}{ }^{x^{\prime}+\alpha y^{\prime}} \longrightarrow \quad x^{\prime}+\alpha y^{\prime}=S--(2)
\end{aligned}
$$

What is the prob of A_{u} guessing f so that $f=h_{0}{ }^{x^{\prime}} h_{1}{ }^{y^{\prime}}=g_{0}{ }^{\text {rx }}+\alpha r^{\prime} y$ in his $t^{t h} D Q$ (t is the upper bound on the number of DQs)
$\operatorname{Pr}\left[A_{u}\right.$ succeeds in $\left.t^{\text {th }} D Q\right]=1 /(|G|-t)-$ negligible
$\operatorname{Pr}\left[A_{\mu}\right.$ succeeds in one of $\left.+D Q s\right]$ $\leq \dagger /(|G|-t)$ - negligible

Is the Scheme CCA-secure?

$\operatorname{Gen}\left(1^{n}\right)$
$\left(G, 0, q, g_{0}, g_{1}\right)$
Random $\left(x, y, x^{\prime}, y^{\prime}\right)$ from Z_{q}
$u=g_{0}{ }^{x} g_{1} y^{y} \quad e=g_{0} x^{\prime} g_{1} y^{\prime}$
pk $=\left(G, 0, q, g_{0}, g_{1}, u, e\right), s k=\left(x, y, x^{\prime}, y^{\prime}\right)$
$E n c_{p k}(m)$
Random r from Z_{q}
$h_{0}=g_{0}{ }^{r}, h_{1}=g_{1}{ }^{r}$
$c=u^{r} . m=v . m ; f=e^{r}$ (Way2)
$\left(h_{0}, h_{1}, c, f\right)$

$$
\begin{aligned}
& \operatorname{Dec}_{s k=\left(x, y, x^{\prime}, y^{\prime}\right)}\left(h_{0}, h_{1}, c, f\right) \\
& f=h_{0} x^{x^{\prime}} h_{1}^{y^{\prime}}(\text { Way } 1) ? ? \\
& v=h_{0}{ }^{x} h_{1}{ }^{y}(\text { Way } 1) \\
& m=c / v
\end{aligned}
$$

Claim. Just one DQ in post-challenge phase is enough for an unbounded powerful adversary to compute (x, y) completely and guess bit b with probability 1.

Proof: A_{u} can compute discrete log of $u \& g_{1}$, say $R \& \alpha$

$$
\begin{aligned}
& u=9_{0}{ }^{R}=\left(90^{x} 9_{1}{ }^{y}\right)=90^{x+\alpha y} \longrightarrow x+\alpha y=R \quad-- \text { (1) } \\
& e=g_{0}{ }^{s}=\left(g_{0} x^{\prime} g_{1} 1^{\prime}\right)=g_{0} x^{x^{\prime}+\alpha y^{\prime}} \longrightarrow \quad x^{\prime}+\alpha y^{\prime}=S \quad-\text { (2) }
\end{aligned}
$$

What is the prob of A_{u} guessing f so that $f=h_{0} x^{x^{\prime}} h_{1} y^{\prime}=g_{0}{ }^{r x+\alpha r^{r} y}$ in his $t^{t h} D Q$ (t is the upper bound on the number of DQs)
$\operatorname{Pr}\left[A_{u}\right.$ succeeds in $\left.\dagger^{\text {th }} D Q\right]=1 /(|G|-t)-$ negligible
$\operatorname{Pr}\left[A_{\mu}\right.$ succeeds in one of $\left.+D Q s\right]$ $\leq \dagger /(|G|-t)$ - negligible

D	$\mathrm{pk}=\left(G, 0, q, g_{0,} g_{1}, u, e\right)$	A_{4}
$\begin{aligned} & \text { Random }\left(x, y, x^{\prime}, y^{\prime}\right) \text { from } Z \quad D Q:\left(h_{0}=g_{0}{ }^{r}, h_{1}=g_{1} r^{r^{\prime}}, c, f\right) \\ & u=g_{0}{ }^{x} g_{1}{ }^{y} \quad e=g_{0}{ }^{x^{\prime}} g_{1^{y^{\prime}}} \quad 2 \end{aligned}$		
$f=h_{0}{ }^{x^{\prime}} h_{1^{\prime}}$?? If yes, the send m	m	

Is the Scheme CCA-secure?

```
Gen(1n)
(G,0,q, go,g1)
Random ( }x,y,\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime}\mathrm{ ) from }\mp@subsup{Z}{q}{
```



```
pk=(G,0,q, go, g},u,e),sk=(x,y,\mp@subsup{x}{}{\prime},\mp@subsup{y}{}{\prime}
```

$E n c_{p k}(m)$
Random r from Z_{q}
$h_{0}=g_{0}{ }^{r}, h_{1}=g_{1}{ }^{r}$
$c=u^{r} . m=v . m ; f=e^{r}$ (Way)
$\left(h_{0}, h_{1}, c, f\right)$

$$
\begin{aligned}
& \operatorname{Dec}_{s k}=\left(x, y, x^{\prime}, y^{\prime}\right)\left(h_{0}, h_{1}, c, f\right) \\
& f=h_{0} x^{\prime} h_{1} y^{\prime}(\text { Way } 1) ? ? \\
& v=h_{0}{ }^{x} h_{1}{ }^{y}(\text { Way } 1) \\
& m=c / v
\end{aligned}
$$

Claim. Just one DQ in post-challenge phase is enough for an unbounded powerful adversary to compute (x, y) completely and guess bit b with probability 1.

Proof: A_{u} can compute discrete log of $u \& g_{1}$, say $R \& \alpha$

$$
\begin{aligned}
& u=g_{0}^{R}=\left(g_{0}{ }^{x} g_{1} y^{y}\right)=g_{0}{ }^{x+\alpha y} \longrightarrow \\
& e=g_{0}{ }^{s}=\left(g_{0}{ }^{x^{\prime}} g_{1} y^{y^{\prime}}\right)=g_{0}{ }^{x^{\prime}+\alpha y^{\prime}} \longrightarrow
\end{aligned}
$$

We are now considering the case wh

$$
f^{\star}=g_{0} s^{\star}=\left(h_{0}^{x^{\prime}} h_{1} y^{\prime}\right)=g_{0}{ }^{r x+r^{\prime} \alpha y}
$$

We need to ensure A_{u} can not make illegal $D Q$ and get DO service even after seeing the challenge ciphertext.
Increase the no. of variables???

Solving (2) \& (3) gives $\left(x^{\prime}, y^{\prime}\right)$
Now A_{u} can make illegal $D Q$ in post-challenge phase and still pass the verification and get m and discover (x, y)

$$
\begin{equation*}
\longrightarrow r x^{\prime}+r^{\prime} \alpha y^{\prime}=S^{\star} \tag{3}
\end{equation*}
$$

(linearly) independent of (2)

$$
p k=\left(G, 0, q, g_{0}, g_{1}, u, e\right.
$$

$$
u=g_{0}{ }^{x} g_{1}^{y} e=g_{0}{ }^{x^{\prime}} g_{1^{\prime}}^{y^{\prime}}
$$

$$
m_{0}, m_{1} \in \mathcal{M},\left|m_{0}\right|=\left|m_{1}\right|
$$

$$
c=h_{0}{ }^{x} h_{1}{ }^{y} \cdot m_{b}
$$

$$
f=h_{0} x^{x^{\prime}} h_{1} y^{\prime}
$$

Is the Scheme CCA-secure?
$\operatorname{Gen}\left(1^{n}\right)$
$\left(G, 0, q, g_{0}, g_{1}\right)$
$\operatorname{Random}\left(x, y, x^{\prime}, y^{\prime}, x^{\prime \prime}, y^{\prime \prime}\right)$ from Z_{q}
$u=g_{0} g_{1} g^{y} \quad e=g_{0} x^{x^{\prime}} g_{1} 1^{y^{\prime}} k=g_{0} x^{x^{\prime \prime}} g_{1} 1^{y^{\prime \prime}}$
$\operatorname{pk}=\left(G, 0, q, g_{0}, g_{1}, u, e, k\right), s k=$
$\left(x, y, x^{\prime}, y^{\prime}, x^{\prime \prime}, y^{\prime \prime}\right)$
$E n c_{p k}(m)$
Random r from Z_{q}
$h_{0}=g_{0}{ }^{r}, h_{1}=g_{1}{ }^{r}$
$c=u^{r} . m=v . m ; f=e^{r} ; I=k^{r}$ (Way2)
$\left(h_{0}, h_{1}, c, f, l\right)$

$$
\begin{aligned}
& \operatorname{Dec}_{s k=\left(x, y, y^{\prime}, y^{\prime}, x^{\prime \prime}, y^{\prime \prime}\right)}\left(h_{0}, h_{1}, c, f, I\right) \\
& f=h_{0} x^{x^{\prime}} h_{1}^{y^{\prime}}(\text { Way } 1) ? ? \\
& I=h_{0} x^{\prime \prime} h_{1} y^{y^{\prime \prime}}(\text { Way } 1) ? ? \\
& v=h_{0}{ }^{x} h_{1}{ }^{y}(\text { Way } 1) \\
& m=c / v
\end{aligned}
$$

Does above help?
Proof: A_{u} can compute discrete \log of $u \& g_{1}$, say $R \& \alpha$

$$
\begin{align*}
& u=g_{0}{ }^{R}=\left(g_{0}{ }^{x} 9_{1}{ }^{\gamma}\right)=9 g^{x+\alpha y} \longrightarrow x+\alpha y=R-(1) \\
& e=g_{0}{ }^{s}=\left(g_{0}{ }^{x^{\prime}} g_{1} y^{\prime}\right)=g_{0} x^{\prime}+\alpha y^{\prime} \longrightarrow x^{\prime}+\alpha y^{\prime}=S \text { - (2) } f^{\star}=g_{0}{ }^{S^{\star}}=\left(h_{0} x^{\prime} h_{1} y^{\prime}\right)=g_{0}{ }^{r x^{\prime}+}+r^{\prime} \alpha y^{\prime} \longrightarrow r x^{\prime}+r^{\prime} \alpha y^{\prime}=S^{\star}-\text { (4) } \\
& k=g_{0}{ }^{\top}=\left(g_{0}{ }^{x^{\prime \prime}} g_{1} y^{\prime \prime}\right)=g_{0} x^{\prime \prime}+\alpha y^{\prime \prime} \longrightarrow x^{\prime \prime}+\alpha y^{\prime \prime}=T-(3) \mid r^{*}=g_{0}{ }^{\top *}=\left(h_{0} x^{x^{\prime \prime}} h_{1} y^{\prime \prime}\right)=g_{0}{ }^{r x^{\prime \prime}+r^{\alpha} \alpha y^{\prime \prime}} r x^{\prime \prime}+r^{\prime} \alpha y^{\prime \prime}=T^{*}- \tag{5}
\end{align*}
$$

We are now considering the case when D received a non-DDH tuple ($g_{0}, g_{1}, h_{0}^{*}, h_{1}^{*}$) and so $h_{0}^{*}=g_{0}{ }^{r}, h_{1}^{*}=g_{1}{ }^{r^{\prime}}$
Now A_{u} can make illegal $D Q$ in post-challenge phase and still pass the verification and get m and discover (x, y)

Adding more variable in the above way does not help.

Is the Scheme CCA-secure?
$\operatorname{Gen}\left(1^{n}\right)$
$\left(G, 0, q, g_{0}, g_{1}\right)$
$\operatorname{Random}\left(x, y, x^{\prime}, y^{\prime}, x^{\prime \prime}, y^{\prime \prime}\right)$ from Z_{q}
$u=g_{0} g_{1} g^{y} \quad e=g_{0} x^{x^{\prime}} g_{1} 1^{y^{\prime}} k=g_{0} x^{x^{\prime \prime}} g_{1} 1^{y^{\prime \prime}}$
$\operatorname{pk}=\left(G, 0, q, g_{0}, g_{1}, u, e, k\right), s k=$
$\left(x, y, x^{\prime}, y^{\prime}, x^{\prime \prime}, y^{\prime \prime}\right)$
$E n c_{p k}(m)$
Random r from Z_{q}
$h_{0}=g_{0}{ }^{r}, h_{1}=g_{1}{ }^{r}$
$c=u^{r} . m=v . m ; f=e^{r} k^{r}$ (Way2)
$\left(h_{0}, h_{1}, c, f\right)$

$$
\begin{aligned}
& \operatorname{Dec}_{s k}=\left(x, y, x^{\prime}, y^{\prime} x^{\prime \prime}, y^{\prime \prime}\right),\left(h_{0}, h_{1}, c, f\right) \\
& f=h_{0} x^{x^{\prime}+x^{\prime \prime}} h_{1}^{y^{\prime}+y^{\prime \prime}} ? ? \\
& v=h_{0}^{x} h_{1} y^{y} \quad \text { Way1) } \\
& m=c / v
\end{aligned}
$$

Does above help?
Proof:

$$
\left.\begin{aligned}
& u=g_{0}^{R}=\left(g_{0}{ }^{x} g_{1} y^{\prime}\right)=g_{0}{ }^{x+\alpha y} \longrightarrow x+\alpha y=R \quad-(1) \\
& e=g_{0}^{S}=\left(g_{0} x^{\prime} g_{1} 1^{\prime}\right)=g_{0} x^{x^{\prime}+\alpha y^{\prime}} \longrightarrow x^{\prime}+\alpha y^{\prime}=S-(2) \\
& k=g_{0}{ }^{\top}=\left(g_{0}{ }^{x^{\prime \prime}} g_{1} y^{\prime \prime}\right)=g_{0} x^{x^{\prime \prime}+\alpha y^{\prime \prime}} \longrightarrow x^{\prime \prime}+\alpha y^{\prime \prime}=T-(3)
\end{aligned} \right\rvert\, f^{\star}=g_{0} s^{\star}=\left(h_{0} x^{\prime}+x^{\prime \prime} h_{\left.1^{y^{\prime}+y^{\prime \prime}}\right)=g_{0}^{r\left(x^{\prime}+x^{\prime \prime}\right)+r^{\prime} \alpha\left(y^{\prime}+y^{\prime \prime}\right)} \longrightarrow}^{r\left(x^{\prime}+x^{\prime \prime \prime}\right)+r^{\prime} \alpha\left(y^{\prime}+y^{\prime \prime}\right)=S^{\star}-(4)}\right.
$$

From (2), (3) \& (4), A_{u} can compute $\left(x^{\prime}+x^{\prime \prime}\right)$ and $\left(y^{\prime}+y^{\prime \prime}\right)$ and that's enough to make an illegal DQ in postchallenge phase and still pass the verification and get m and discover (x, y).

Adding more variable in the above way does not help.

Is the Scheme CCA-secure?

$\begin{aligned} & \operatorname{Gen}\left(1^{n}\right) \\ & \left(G, o, q, g_{0}, g_{1}\right) \\ & \operatorname{Random}\left(x, y, x^{\prime}, y^{\prime}, x^{\prime \prime}, y^{\prime \prime}\right) \text { from } Z_{q} \\ & u=g_{0} g_{1} y^{y} \quad e=g_{0} x^{x^{\prime}} g_{1^{\prime}} \quad k=g_{0} x^{x^{\prime \prime}} g_{1^{\prime \prime}} \\ & \operatorname{pk}=\left(\begin{array}{l} \left(G, o, q, g_{0}, g_{1}, u, e, k, H\right), s k= \\ \left(x, y, x^{\prime}, y^{\prime}, x^{\prime \prime}, y^{\prime \prime}\right) \end{array}\right. \end{aligned}$	$E n c_{p k}(m)$ Random r from Z_{q} $\begin{aligned} & h_{0}=g_{0}{ }^{r}, h_{1}=g_{1}{ }^{r} \\ & c=u^{r} \cdot m=v . m ; f=e^{r} k^{\beta r} \\ & \beta=H\left(h_{0}, h_{1}, c\right) \\ & \left(h_{0}, h_{1}, c, f\right) \end{aligned}$	$\begin{aligned} & \operatorname{Dec}_{\text {sk }=\left(x, y, x^{\prime}, y^{\prime}, x^{\prime \prime}, y^{\prime \prime}\right)}\left(h_{0}, h_{1}, c, f\right) \\ & \beta=H\left(h_{0}, h_{1}, c\right) \\ & f=h_{0} x^{\prime}+\beta x^{\prime \prime} h_{1} y^{\prime}+\beta y^{\prime \prime} ? ? \\ & v=h_{0} x h_{1} y^{y} \\ & m=c / v \end{aligned}$

Does above help?
Proof:

$$
\begin{aligned}
& u=g_{0}{ }^{R}=\left(g_{0}{ }^{x} g_{1}{ }^{y}\right)=g_{0}{ }^{x+\alpha y} \longrightarrow x+\alpha y=R \quad \text { - (1) } \\
& e=g_{0}{ }^{s}=\left(g_{0}{ }^{\prime} g_{1} y^{\prime}\right)=g_{0}{ }^{x^{\prime}+\alpha y^{\prime}} \longrightarrow x^{\prime}+\alpha y^{\prime}=S \text { - (2) }
\end{aligned}
$$

$$
\begin{align*}
& f^{*}=g_{0}{ }^{s^{\prime}}=\left(h_{0} x^{x^{\prime}+\beta x^{\prime \prime}} h_{1} y^{\prime}+\beta y^{\prime \prime}\right)=g_{0}{ }^{r\left(x^{\prime}+\beta x^{\prime \prime}\right)+r^{\prime} \alpha\left(y^{\prime}+\beta y^{\prime \prime}\right)} \longrightarrow \\
& r\left(x^{\prime}+\beta x^{\prime \prime}\right)+r^{\prime} \alpha\left(y^{\prime}+\beta y^{\prime \prime}\right)=S^{\prime}- \tag{4}
\end{align*}
$$

From (2), (3) \& (4), A_{u} can compute ($x^{\prime}+\beta x^{\prime \prime}$) and ($y^{\prime}+\beta y^{\prime \prime}$) BUT......
.......to make an illegal $D Q$ in post-challenge phase A_{u} must find a collision for H i.e $\mathrm{h}_{0}^{\prime}, h_{1}^{\prime}$, c^{\prime} such that $\beta=H\left(h_{0}^{\prime}, h_{1}^{\prime}, c^{\prime}\right)$ because....
.......he is not allowed to submit the challenge ciphertext to DO

The Cramer-Shoup Cryptosystem

$\operatorname{Gen}\left(1^{n}\right)$
$\left(G, 0, q, g_{0}, g_{1}\right)$
Random $\left(x, y, x^{\prime}, y^{\prime}, x^{\prime \prime}, y^{\prime \prime}\right)$ from Z_{q}
$u=g_{0} x_{1} g_{1}^{y} \quad e=g_{0} x^{x^{\prime}} g_{1} y^{\prime} \quad k=g_{0} x^{x^{\prime \prime}} g_{1} y^{y^{\prime \prime}}$
$\operatorname{pk}=\left(\begin{array}{l}\left(G, 0, q, g_{0}, g_{1}, u, e, k, H\right), s k= \\ \left(x, y, x^{\prime}, y^{\prime}, x^{\prime \prime}, y^{\prime \prime}\right)\end{array}\right.$
$E n c_{p k}(m)$
Random r from Z_{q}
$h_{0}=g_{0}{ }^{r}, h_{1}=g_{1}{ }^{r}$
$c=u^{r} \cdot m=v . m ; f=e^{r} k^{\beta r}$
$\beta=H\left(h_{0}, h_{1}, c\right)$
$\left(h_{0}, h_{1}, c, f\right)$

$$
\begin{aligned}
& \operatorname{Dec}_{s k}=\left(x, y, x^{\prime}, y^{\prime}, x^{\prime \prime}, y^{\prime \prime}\right)\left(h_{0}, h_{1}, c, f\right) \\
& \beta=H\left(h_{0}, h_{1}, c\right) \\
& f=h_{0} x^{\prime}+\beta x^{\prime \prime} h_{1} y^{\prime}+\beta y^{\prime \prime} \quad ? ? \\
& v=h_{0}{ }^{x} h_{1} y^{y} \\
& m=c / v
\end{aligned}
$$

Theorem. If DDH is hard $+H$ is CR HF, then Π is a CCA-secure scheme.

Case I: If $\left(h_{0}, h_{1}, c\right)=\left(h^{*}, h_{1}{ }_{1}, c^{*}\right)$ and $f^{\star} \neq f \rightarrow D$ will reject

Case II: If $\left(h_{0}, h_{1}, c\right) \neq\left(h_{0}^{*}, h_{1}^{*}, c^{*}\right)$ and $f^{*}=f$ [i.e. $\left.H\left(h_{0}, h_{1}, c\right)=H\left(h_{0}^{*}, h_{1}^{*}, c^{*}\right)\right] \rightarrow A$ has found collision but since H is $C R$, this happens with negl probability

DDH or non-DDH tuple?

$$
\left(G, 0, q, g_{0}, g_{1}, h_{0}, h_{1}\right)
$$

$$
1 \text { if } b=b^{\prime}
$$

The Cramer-Shoup Cryptosystem

$E n c_{p k}(m)$
Random r from Z_{q}
$h_{0}=g_{0}{ }^{r}, h_{1}=g_{1}{ }^{r}$
$c=u^{r} \cdot m=v . m ; f=e^{r} k^{\beta r}$
$\beta=H\left(h_{0}, h_{1}, c\right)$
$\left(h_{0}, h_{1}, c, f\right)$

$$
\begin{aligned}
& \operatorname{Dec}_{s k=\left(x, y, x^{\prime}, y^{\prime}, x^{\prime \prime}, y^{\prime \prime}\right)}\left(h_{0}, h_{1}, c, f\right) \\
& \beta=H\left(h_{0}, h_{1}, c\right) \\
& f=h_{0} x^{\prime}+\beta x^{\prime \prime} h_{1} y^{\prime}+\beta y^{\prime \prime} \quad ? ? \\
& v=h_{0} x h_{1} y^{y} \\
& m=c / v
\end{aligned}
$$

Theorem. If DDH is hard $+H$ is CR HF, then Π is a CCA-secure scheme.

Case III: $\left.H\left(h_{0}, h_{1}, c\right) \neq H\left(h^{*}, h_{1}^{*}, c^{\star}\right)\right]$: There is a possibility that it is a valid ciphertext. But it can happen by sheer luck.
We can have four INDEPENDENT constraints on $x^{\prime}, y^{\prime} \cdot x^{\prime \prime} \cdot y^{\prime \prime}:(1) e(2) k$ (3) challenge cipher (4) DO => Breaking security
But before making DO query A had only three constraints and so finding an matching f for the DO can be donewith prob at most $1 /|G|$

DDH or non-DDH tuple?

$$
\begin{array}{cc}
\begin{array}{c}
\text { DDH or non-DDH tuple? } \\
\left(G, 0, q, g_{0}, g_{1}, h_{0}, h_{1}\right)
\end{array} & \begin{array}{c}
\text { Random }\left(x, y, x^{\prime}, y^{\prime}, x^{\prime \prime}, y^{\prime \prime}\right) \\
\text { Compute } u, e, k
\end{array} \\
c^{*}=h_{0}^{x} h_{1} y^{y} m_{b} \text { and } f^{*}
\end{array}
$$

1 if $b=b^{\prime}$
0 otherwise
$p k=\left(G, 0, q, g_{0}, g_{1}, u, e, k\right)$

$\left(h_{0}, h_{1}, c, f\right)$
Reject (if verification fails)
$m_{0}, m_{1} \in \mathcal{M},\left\|m_{0}\right\|=\left\|m_{1}\right\|$
$\left(h^{\star}, h^{\star}, c^{*}, f^{\star}\right)$
$\left(h_{0}, h_{1}, c, f\right)$
Reject (if verification fails)
$b^{\prime} \in\{0,1\}$

Public Key Summary

Primitives	Security Notions	Assumptions
PKE	CPA	>> Close Relatives of DL assumptions- CDH, DDH, HDH, ODH
	CCA	>> RSA Assumption (Padded RSA, RSA OAEP)
KEM	Adaptive Attack (Non-committing Encryption)	>> Factoring assumptions (Rabin Cryptosystem)
	Selective Opening Attack	>> Quadratic Residuacity Assumptions (Micali-Goldwasser) >> Decisional Composite Residuacity (DCR) Assumptions (Paillier)
Hybrid Encryption	(Deniable Encryption)	>> Lattice-based Assumptions LWE, LPN (Regev) Many more assumptions

Thank you!

