
Cryptography 

Lecture 12  
 
 

Arpita Patra 



q  In PK setting, privacy is provided by PKE 

Digital Signatures 

q   Integrity/authenticity is provided by digital signatures (counterpart of MACs in PK world) 

q  Definition: A Digital signature scheme Π consists of three PPT algorithms (Gen, Sign, Vrfy): 

Gen 
1n pk, sk ∈ {0, 1}n 

Ø  pk: public key (verification key) 

Ø  sk: private key (signing key) 

Sign 
m∈ {0, 1}* σ 

sk 

Ø  Usually Randomized 

Ø  σ is signature for m 

Vrfy 
m, σ b ∈ {0, 1}  

pk 

Ø  b = 0 → invalid signature 

Ø  b = 1 → valid signature 

q  (pk, sk) plays a different “role” compared to public-key encryption 

q  Correct ness: Except with a negligible probability over (pk, sk) output by Gen(1n), we require the 
following for every (legal) plaintext m 

Vrfypk(m, Signsk(m)) = 1 

q  Signatures cannot be obtained by “reversing” a public-key encryption scheme 

Ø  Randomized Ø  Deterministic 

>> sk – signature generation  (whereas pk was used for ciphertext generation) 
>> pk – public verification of the signature (whereas sk was used for decryption) 



Digital Signatures : Security 
q  Goal: we want to prevent a situation like the following: 

sk pk 

m1 = (“My Lord how are you ?”)   σ1 = Signsk(m1)     

m2 = (“Ravana is misbehaving with me”)    σ2 = Signsk(m2) 

Π = (Gen, Sign, Vrfy) 



Digital Signatures : Security 
q  Goal: we want to prevent a situation like the following: 

sk pk 

Π = (Gen, Sign, Vrfy) 

m’1 = (“Ravana is not that bad”)   σ’1 = Signsk(m’1) 

m’2 = (“I am fine here”)   σ’2 = Signsk(m’2) 

q  How to model the above requirement via security experiment ? --- Experiment Sig-forge        (n) A, Π 

I can forge Π 

PPT Attacker A 

Let me verify Gen(1n) 

m1, …, mq 

(m*, σ*) 

b = 1 if Vrfypk(m*, σ*) ≠ 0 and (m*, σ*) ∉ {(mi, σi)} 
Π is existentially-unforgeable/CMA if for every PPT A: 

negl(n) 
 

Pr Sig-forge      (n) =1 
A, Π 

≤ 

σ1, …, σq σi  ← Signsk(mi) 

b = 0 otherwise 

pk 



MAC vs Digital Signature 

- Key distribution has to be done apriori. 

- In multi-verifier scenario, a signer/prover 
need to hold one secret key for every 
verifier  

+ Better suited for open environment (Internet) 
where two parties have not met personally but 
still want to communicate securely (Internet 
merchant & Customer) 

MAC Digital Signature 

+ No such assumption needed! 

+ One signer can setup a single public-key/secret 
key and all the verifiers can use the same public key 

- Well-suited for closed organization 
(university, private company, military). Does 
not work for open environment (Internet 
Merchant)  

+ Very fast computation. Efficient 
Communication. Only way to do auth in 
resource-constrained devices such as 
mobile, RFID, ATM cards etc 

- Orders of magnitude slower than Private-key. 
Heavy even for desktop computers while 
handling many operations at the same time  

+ Public Verifiability & Transferability - NO Public Verifiability & Transferability 

Not completely correct! Relies on the fact that 
there is a way to send the public key in an 
authenticated way to the verifiers 

+ Non-repudiation (cannot deny to anyone) - NO Non-repudiation (cannot deny only to 
the person holding the key) 



Some Results on Digital Signatures 

q  Feasibility Results for DS: Unlike PKE (which needs more assumption than HF/OWF), DS 
can be constructed just based on HF (in fact just from OWF) [Rompel STOC’90] 

q  DS Schemes in Practice: 

>> Digital Signature Algorithm (DSA)- DL + HF- Digital Signature Standard (DSS)    

>> RSA-FDH (Full Domain Hash) - RSA Assumption + HF – PKCS #1 v2.1  



Digital Certificates and Public-key Infrastructure (PKI)   
Public-key World 

My public-key is pkS 

Is pkS indeed a genuine 
public-key of Sita ? 

Sita Rama 

(pkS, skS) 



Digital Certificates and Public-key Infrastructure (PKI)   

My public-key is pkS 

Sita Rama 

Trusted Authority 

(pkM, skM) 

Knows that the public-
key of             is pkM

 

(pkS, skS) 

certM→S = SignskM
(“Sita’s public key is pkS”) 

(After verification) 

certM → S 

pkS is a genuine public key if and only if 

VrfypkM
(“Sita’s public key is pkS”, certM→S”) = 1 

PKI 

q  Several types of PKI used in practice 

Ø  Single CA, multiple CA, PGP, etc 

q  Public keys of CA are pre-configured in web browsers 

Ø  Programmed to verify the certificates issued by those CAs 



Putting It All Together – TLS (Transport Layer Security) 

Server Client 

https://mail.google.com 

Handshake protocol 

Authenticated Key Exchange 

Authenticated Private Communication        
(Using keys established by handshake protocol) 

Record-layer protocol 

(Public-key crypto) 

(Private-key crypto) 



Putting It All Together – SSL/TLS 
(The Handshake Protocol) 

Server 

Client 

(pk1, sk1)
 (pk2, sk2) (pk3, sk3) (pk4, sk4) 

CA1 CA2 CA3 CA4 

pk1, pk2, pk3, pk4 
(pre-configured) 

(pkS, skS) 

cert2→ S 

Certifying that pkS is the 
public key of the server 



Putting It All Together – SSL/TLS 
(The Handshake Protocol) 

(pk1, sk1)
 (pk2, sk2) (pk3, sk3) (pk4, sk4) 

CA1 CA2 CA3 CA4 

pk1, pk2, pk3, pk4 
(pre-configured) 

(pkS, skS) 

cert2→ S 

Random nonce NC 

Supported ciphersuites (hash functions, block ciphers, etc), NC 

Random nonce NS 

Corresponding ciphersuites,  NS, pkS,  

cert2→ S 

Vrfypk2
(pkS, cert2→S)   =   1 

? 

(c, pmk)  ← EncapspkS(1n)  
mk:= KDF(pmk, Nc, Ns) 

kC, k’C, kS, k’S:= PRG(mk) 

c 

τC := Macmk(transcript) 

pmk:= DecapsskS
(c) 

mk:= KDF(pmk, Nc, Ns) 

kC, k’C, kS, k’S:= PRG(mk) 

Vrfymk(transcript, τC)   =   1 
? 

τS := Macmk(transcript’) 

Vrfymk(transcript’, τS)   =   1 
? 

transcript transcript’ 

Agreed symmetric keys 



Putting It All Together – SSL/TLS 
(The Record-layer Protocol) 

kC, k’C, kS, k’S 

Authenticated communication 

kC, k’C, kS, k’S 

(kS, k’S) 

Authenticated communication 

(kC, k’C) 



Public Key Cryptography 

Whitfield Diffie, Martin E. Hellman: 
New directions in cryptography. 
IEEE Transactions on Information Theory 22(6): 
644-654 (1976) 



What We have seen and not seen? 

Secure + 
Authenticated 

Message 
Communication 

Cryptography 

Secure (multi-
party) Computation 

Electronic election, auction, 
private information retrieval, 
Outsourcing computation to 
cloud, Privacy-preserving data 
m in i ng , s i gna l p rocess i ng , 
bioinformatics etc. etc. 

Disc encryption, cloud storage,  

Secure Storage 

Leakage Resilient 
Cryptography 

Takes into account the side 
channel information. 

N o n - c o m m i t t i n g E n c r y p t i o n , 
Deniable Encryption, Id-based 
Encrypt ion , Attr ibute-based 
Encryption, Functional Encryption 
Homographic Encryption, Fully 
Homomorphic Encryption  

Special Purpose 
Encryption Schemes 

F i n d i n g f l a w s / a t t a c k s /
insecurities. 
 
Side-channels 
  

Cryptanalysis 

Blind Signatures, Group 
Signature, Signcryption 

Special Purpose 
Digital Signatures 



Crypto Zoo 

Oblivious Transfer 

Commitment Schemes 

Zero Knowledge Proofs 

MAC 

Hash Functions 

One way Function 

One way permutation 

PRG PRF 

Secret Sharing 

SPRP 

Public Key Encryption 

Minicrypt: SKC, Digital 
Signatures 

S R 
(x0,x1) σ 

xσ 

Cryptomania: Everything that 
u can design in Crypto 

We will get Cryptomaniac next semester with 
course on Secure Computation 

Choice is yours; whether u want to confine 
yourself in Minicrypt or u want turn to a 
Cryptomaniac. 



Course on Secure Computation 

>> Oblivious Transfer 

>> Commitment Schemes 

>> Zero Knowledge Proofs 

>> Secret Sharing 

>> Threshold Encryption 

>> Secure Computation in 
various setting 

>> Secure Computation 
of Practical Problems- 
Set Intersection, 
Genomic Computation 

>> Byzantine Agreement 
& Broadcast 

Primitives Definition Paradigms 

>> Real World- Ideal World 
Paradigm 

>> Universal Composability (UC) 
Paradigm 

Proof Paradigms 

>> Black-box Reduction 

>> Non-black-box reduction 

>> Random-Oracle Model 
(ROM) 

Ø  Modeled as a random oracle (a truly random function from X → K) 

Ø  Access to H is via oracle calls 

v  To compute H(a), call oracle with a, who returns a random value 
from co-domain as the output --- once a value is associated as 
H(a), the association remains fixed for future instances 

Ø  Calls to the oracle are private 

v  If attacker has not queried for H(a), then H(a) remains 
uniformly random for the attacker 

Ø  For many constructions based on HF 



Concluding Remarks 





El Gamal like KEM 

Encapspk(1n) 
c = gy  for random y  

k = H(hy) = H(gxy.)  

(c,k) 

Decsk(c) 
k = H(cx )= H(gxy ) 

Gen(1n) 
(G, o, q, g)  

h = gx. For random x 

pk= (G,o,q,g,h,H), sk = x 

DDH 
(Strongest Diffie-Hellman 
Assumption; hard to distinguish 
gxy from a  random group element 
even given gx, gy)  
 
            +  
 
“Regular” H 
(Regular => The number of 
elements from G that maps to k is 
approximately the same for all k)   

CPA-secure KEM + 
COA-secure SKE => 
CPA-secure PKE @ 
COA-secure SKE 

Security 1 Security 2 Security 3 

CDH 
(Weaker than DDH; hard to 
compute gxy even given gx, gy)  
 
            +  
 
H is “Random Oracle”  
(Random => H behaves like an ideal 
random function)   

HDH- Hash Diffie-Hellman  
(Weaker than DDH but stronger 
than CDH when Hash function is 
implemented using known practical 
ones; hard to distinguish H(gxy) 

from a  random string {0,1}m even 
given gx, gy) where H: {0,1}* -> 
{0,1}m 

 
            +  
 
No assumption on H. It is 
incorporated in the above 


