Cryptography
Lecture 12

Arpita Patra

Digital Signatures

O InPK setting, privacy is provided by PKE
O Intfegrity/authenticity is provided by digital signatures (counterpart of MACs in PK world)

O Definition: A Digital signature scheme II consists of three PPT algorithms (Gen, Sign, Vrfy):

n ek ske (O, 3) lSk lpk
me {0, 1} Sign _0) m, o Vrfy b e {0, 1;
> Randomized > Deterministic
> pk: public key (verification key) » Usually Randomized » b = 0 — invalid signature
> sk: private key (signing key) > o is signature for m > b =1— valid signature

Q (pk, sk) plays a different "role” compared to public-key encryption
>> sk - signature generation (whereas pk was used for ciphertext generation)

>> pk - public verification of the signature (whereas sk was used for decryption)

O Signatures cannot be obtained by "reversing” a public-key encryption scheme

Q Correct ness: Except with a negligible probability over (pk, sk) output by Gen(1"), we require the
following for every (legal) plaintext m

Vrfypk(m, Signg(m)) = 1

Digital Signatures : Security

QO Goal: we want to prevent a situation like the following: I1 = (Gen, Sign, Vrfy)

mq = ("My Lord how are you ?") o7 = Signg(m)

m, = ("Ravana is misbehaving with me") o, = Signg(m,)

Digital Signatures : Security

QO Goal: we want to prevent a situation like the following: II = (Gen, Sign, Vrfy)

m’; = ("Ravana is not that bad") o'y = Signg(m'y)

______________________________________ >
m’, = ("I am fine here") o', = Signg(m',) S
O How to model the above requirement via security experiment ? --- Experiment sig-for-geA - (n)
PPT Attacker A) pk
My, ..., Mg ,
. ' 3
) 01, vy Oq O; <= Slgnsk(mi) Q\l“
- Let me verif Gen(1")
I can forge 11 (m*, o™) X v

IT is existentially-unforgeable/CMA if for every PPT A1 [_ ¢ if Vrfypi(m*,) = 0 and (m*, o*) & {(m;, o)
b = 0 otherwise

P [ig- =1] = negl(n)
r | Sig forgeAIH(n)

MAC vs Digital Signature

MAC

Digital Signature

- Key distribution has to be done apriori.

- In multi-verifier scenario, a signer/prover
need to hold one secret key for every
verifier

- Well-suited for closed organization
(university, private company, military). Does
not work for open environment (Internet
Merchant)

+ Very fast computation. Efficient
Communication. Only way to do auth in
resource-constrained devices such as
mobile, RFID, ATM cards etc

- NO Public Verifiability & Transferability

- NO Non-repudiation (cannot deny only to
the person holding the key)

Not completely correct! Relies on the fact that
there is a way to send the public key in an
authenticated way to the verifiers

+ One signer can setup a single public-key/secret
key and all the verifiers can use the same public key

+ Better suited for open environment (Internet)
where two parties have not met personally but
still want to communicate securely (Internet
merchant & Customer)

- Orders of magnitude slower than Private-key.
Heavy even for desktop computers while
handling many operations at the same time

+ Public Verifiability & Transferability

+ Non-repudiation (cannot deny to anyone)

Some Results on Digital Signatures

O Feasibility Results for DS: Unlike PKE (which needs more assumption than HF/OWF), DS
can be constructed just based on HF (in fact just from OWF) [Rompel STOC'90]

O DS Schemes in Practice:

>> RSA-FDH (Full Domain Hash) - RSA Assumption + HF - PKCS #1 v2.1

>> Digital Signature Algorithm (DSA)- DL + HF- Digital Signature Standard (DSS)

Digital Certificates and Public-key Infrastructure (PKT)

Public-key World

Is pkg indeed a genuine
public-key of Sita ?

My public-key is pkg

(pks, sks)

Digital Certificates and Public-key Infrastructure (PKT)

Trusted Authority

PKI (After verification)
certpy_g = SignskM(“Si‘ra's public key is pks")
o/ CERTIFICATE AUTHORITY (CA)
Knows that the public-
My public-key is pkg
(pks, sks) certy - s
SEae i)
Sita
O Several types of PKI used in practice l

» Single CA, multiple CA, PGP, etc pks is a genuine public key if and only if

Q Public keys of CA are pre-configured in web browsers Vr'prkM(“SiTC"S public key is pks", certy_.s") = 1

» Programmed to verify the certificates issued by those CAs

Putting It All Together - TLS (Transport Layer Security)

Handshake protocol
Authenticated Key Exchange

https://mail.google.com

Client

(Private-key crypto)

Authenticated Private Communication

Using k tablished by handshak l
(Using keys established by handshake protocol) Record-layer protocol

Putting It All Together - SSL/TLS
(The Handshake Protocol)

(pky, skq) (pka, ska) (pk3, sk3) (pky. ska)

certo_. o
.
Certifying that pkg is the k. pKa. pK3, pky
PUb“C key Of the server (pr‘e_configured)
Server Compose Mail R e

(pks, sks)
Client

Putting It All Together - SSL/TLS
(The Handshake Protocol)

(pky. ski) (pka. sk2) (pk3, sk3) (pky. ska)
i =) iy = ;-" transcript’

CAI CAZ CA3 CA4
certo_. o

% Supported ciphersuites (hash functions, block ciphers, etc), N, Pk, Pka, Pks, Pkg
©

(pre-configured)
certo_. o

(e
MCERT's ... » \{§Enabing... % \(3/Google ... 1|
. . . € C mail.google.com
Corresponding ciphersuites, Ng, pkg, (85
- - > Gmail Calendar Documents™Rotos Reader
Cmail
C o

<t Compose Mail « Back to Inbox An
- Inbox

(pks, sks)

Random nonce Ng

. T := Macp(transcript)

Random nonce N¢

o ?
Tg := Mac,,(transcript’) . Vr'fypkz(pks, cert,_,g) = 1

pmk:= Decapsgy, S(c)
(c. pmk) < Encapss(1")

mk:= KDF(pmk, N., N,) mk:= KDF(pmk, N, N,)
= + WNeo Ng

ke Ke. Ks, K'g:= PRG(MkK) Agreed symmeftric keys

> ke, K, ks, K'gi= PRG(mMK)

: ?
Vrfymi(franscript, Te) = 1 Vrfy, . (transcript’, Ts) 7

Putting It All Together - SSL/TLS
(The Record-layer Protocol)

Authenticated communication
(ks, K's)

AUThenTiCGTed CommuniCGTion CCCCCCCCC i) « Back to Inbox An

ke kel ke, K¢ ks, K's

Public Key Cryptography

Whitfield Diffie, Martin E. Hellman:

New directions in cryptography.

TEEE Transactions on Information Theory 22(6):
644-654 (1976)

What We have seen and not seen?

Secure (multi-
party) Computation

Electronic election, auction,
private information retrieval,
Outsourcing computation to

cloud, Privacy-preserving da'ra Leakage Resilient

mining, signal processing Crvot h
bioinformatics etc. etc. ryptography

Cryptanalysis

Finding flaws/attacks/
insecurities. Takes into account the side

| channel information.
Side-channels

Secure +
. Authenticated Special Purpose
e SReE Message Digital Signatures

Encryption Schemes \ o
Eomiunication Blind Signatures, Group
Non-committing Encryption,
Deniable Encryption, Id-based

Encryption, Attribute-based
Encryption, Functional Encryption
Homographic Encryption, Fully 4 Secure Storage

omomorphic Encryption
Disc encryption, cloud storage,

Cryptography

Crypto Zoo

We will get Cryptomaniac next semester with
course on Secure Computation q R

Cryptomania: Everything that o
u can design in Crypto

Oblivious Transfer

Secret Sharing

Commitment Schemes

Zero Knowledge Proofs

Public Key Encryption

Hash Functions
SPRP

PRG MAC Minicrypt: SKC, Digital
Signatures
One way permutation

One way Function

Choice is yours; whether u want to confine
yourself in Minicrypt or u want turn to a
Cryptomaniac.

Course on Secure Computation

Primitives Definition Paradigms Proof Paradigms
>> Oblivious Transfer >> Real World- Ideal World >> Black-box Reduction
Paradigm

>> Commitment Schemes
>> Zero Knowledge Proofs

>> Secret Sharing

>> Threshold Encryption

>> Secure Computation in
various setting

>> Secure Computation
of Practical Problems-
Set Intersection,
Genomic Computation

>> Byzantine Agreement
& Broadcast

>> Non-black-box reduction
>> Universal Composability (UC)

Paradigm >> Random-Oracle Model

(ROM)

Y

For many constructions based on HF
Modeled as a random oracle (a truly random function from X — K)

A\

» Access to H is via oracle calls

% To compute H(a), call oracle with a, who returns a random value
from co-domain as the output --- once a value is associated as
H(a), the association remains fixed for future instances

> Calls to the oracle are private

% If attacker has not queried for H(a), then H(a) remains
uniformly random for the attacker

Concluding Remarks

hank\ou!

El Gamal like KEM

Gen(1n)

(6,0.9,9)
h = g For random x

pk=(6,09.9.h H), sk ="

CPA-secure KEM +
COA-secure SKE =>
CPA-secure PKE @
COA-secure SKE

‘Je‘csk(c)
(k= H(cx)= Higv)

Security 1

Security 2

Security 3

CDH
(Weaker than DDH; hard to
compute g*¥ even given g%, gY)

+

H is "Random Oracle”
(Random => H behaves like an ideal
random function)

HDH- Hash Diffie-Hellman
(Weaker than DDH but stronger
than CDH when Hash function is
implemented using known practical
ones; hard to distinguish H(g*)
from a random string {0,1}™ even
given g%, g¥) where H: {0,1}* ->
{0.1}m

+

No assumption on H. It is
incorporated in the above

DDH

(Strongest Diffie-Hellman
Assumption; hard to distinguish
g from a random group element
even given g%, g¥)

+

"Regular” H

(Regular => The number of
elements from G that maps to k is
approximately the same for all k)

