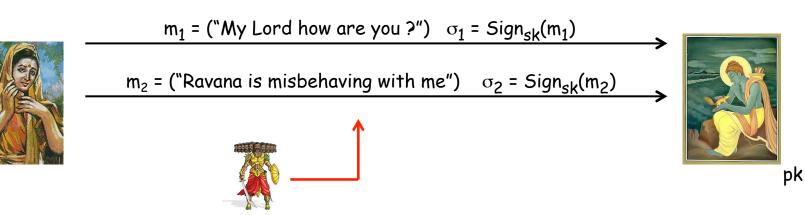

Cryptography

Lecture 12

Arpita Patra

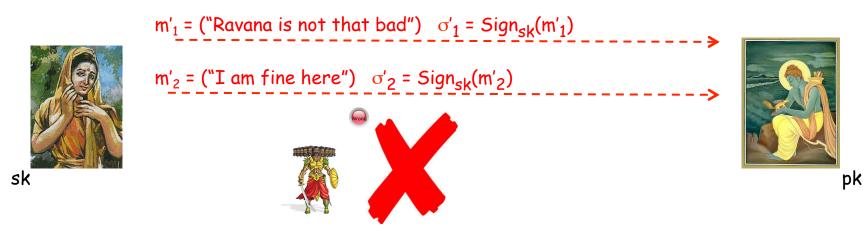
Digital Signatures

- □ In PK setting, privacy is provided by PKE
- □ Integrity/authenticity is provided by digital signatures (counterpart of MACs in PK world)
- **Definition:** A Digital signature scheme Π consists of three PPT algorithms (Gen, Sign, Vrfy):

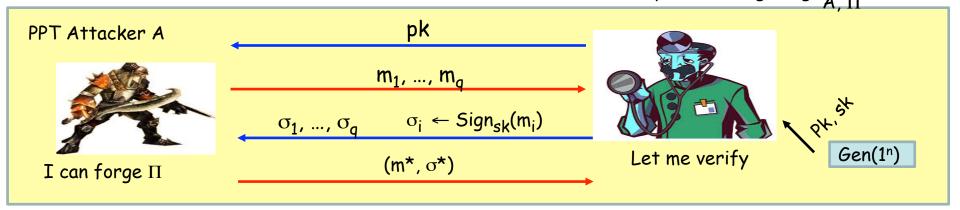


- (pk, sk) plays a different "role" compared to public-key encryption
 >> sk signature generation (whereas pk was used for ciphertext generation)
 >> pk public verification of the signature (whereas sk was used for decryption)
- □ Signatures cannot be obtained by "reversing" a public-key encryption scheme
- Correct ness: Except with a negligible probability over (pk, sk) output by Gen(1ⁿ), we require the following for every (legal) plaintext m

Digital Signatures : Security


Goal: we want to prevent a situation like the following: $\Pi = (Gen, Sign, Vrfy)$

sk



Digital Signatures : Security

Goal: we want to prevent a situation like the following: $\Pi = (Gen, Sign, Vrfy)$

 \Box How to model the above requirement via security experiment? --- Experiment Sig-forge_{A II} (n)

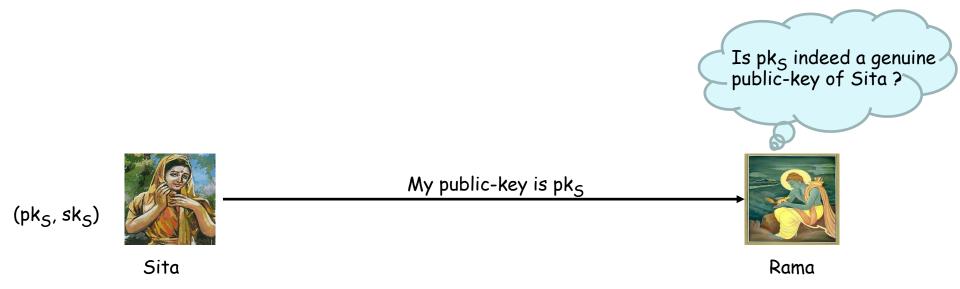
 $\Pi \text{ is existentially-unforgeable/CMA if for every PPT A:} \qquad b = 1 \text{ if } Vrfy_{pk}(m^*, \sigma^*) \neq 0 \text{ and } (m^*, \sigma^*) \notin \{(m_i, \sigma_i)\} \\ Pr \left(Sig-forge_{A, \Pi} (n) = 1 \right) \leq negl(n) \\ b = 0 \text{ otherwise}$

MAC vs Digital Signature

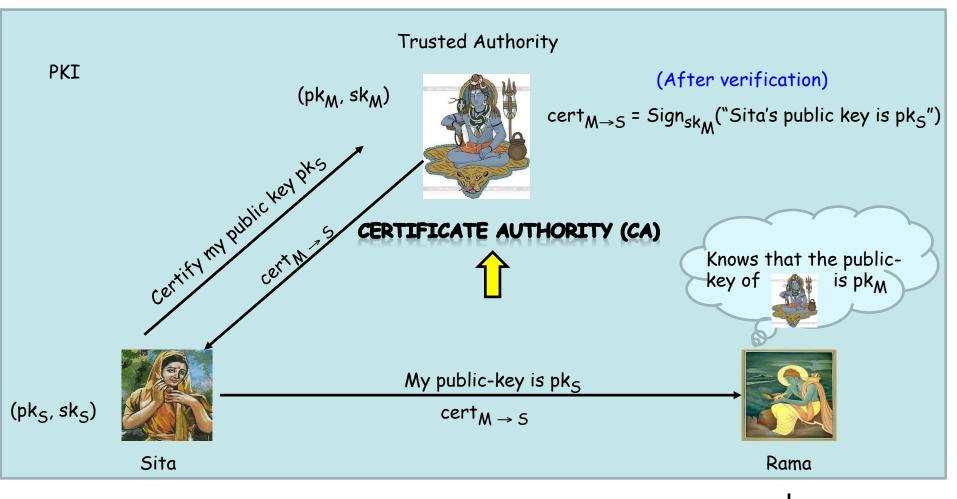
MAC	Digital Signature
- Key distribution has to be done apriori.	Not completely correct! Relies on the fact that there is a way to send the public key in an authenticated way to the verifiers
- In multi-verifier scenario, a signer/prover need to hold one secret key for every verifier	+ One signer can setup a single public-key/secret key and all the verifiers can use the same public key
- Well-suited for closed organization (university, private company, military). Does not work for open environment (Internet Merchant)	+ Better suited for open environment (Internet) where two parties have not met personally but still want to communicate securely (Internet merchant & Customer)
 Very fast computation. Efficient Communication. Only way to do auth in resource-constrained devices such as mobile, RFID, ATM cards etc 	- Orders of magnitude slower than Private-key. Heavy even for desktop computers while handling many operations at the same time
- NO Public Verifiability & Transferability	+ Public Verifiability & Transferability
 NO Non-repudiation (cannot deny only to the person holding the key) 	+ Non-repudiation (cannot deny to anyone)

Some Results on Digital Signatures

Feasibility Results for DS: Unlike PKE (which needs more assumption than HF/OWF), DS can be constructed just based on HF (in fact just from OWF) [Rompel STOC'90]

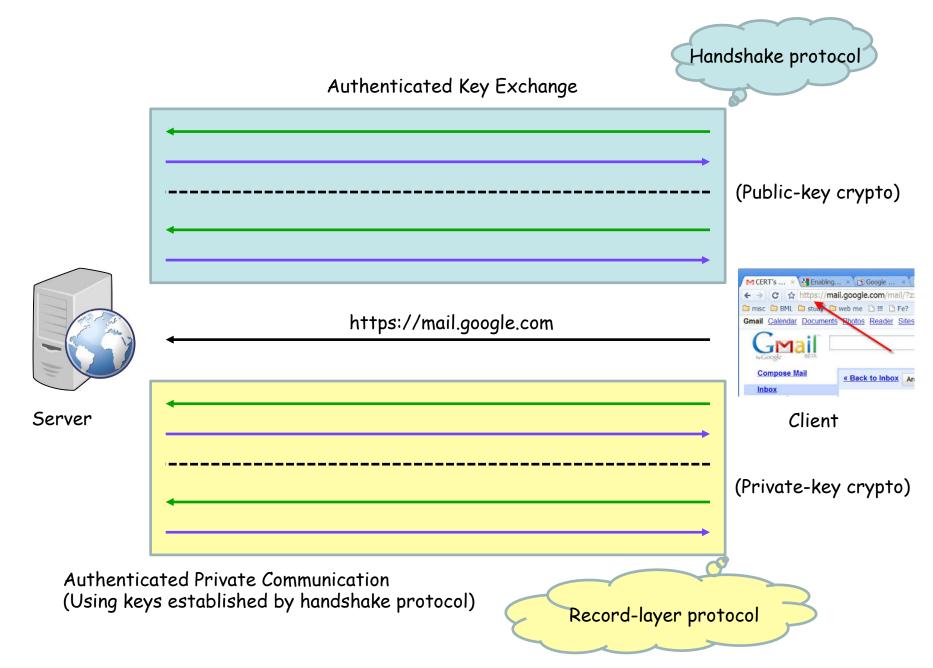

□ DS Schemes in Practice:

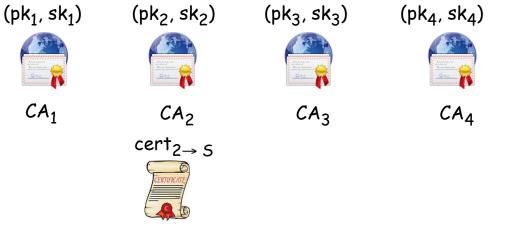
>> RSA-FDH (Full Domain Hash) - RSA Assumption + HF - PKCS #1 v2.1


>> Digital Signature Algorithm (DSA)- DL + HF- Digital Signature Standard (DSS)

Digital Certificates and Public-key Infrastructure (PKI)

Public-key World

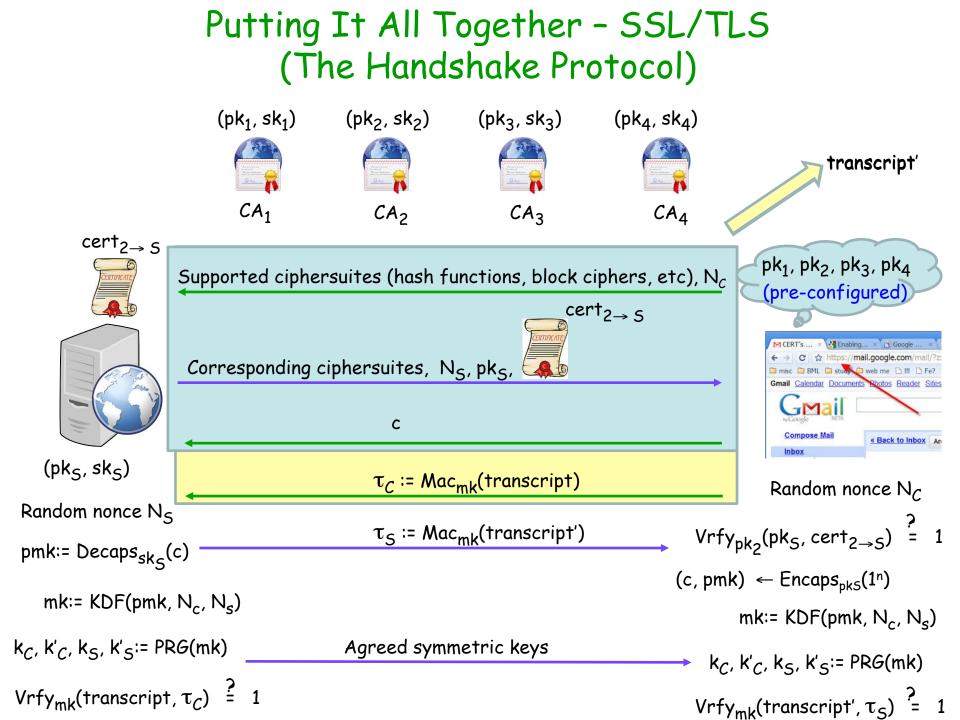

Digital Certificates and Public-key Infrastructure (PKI)

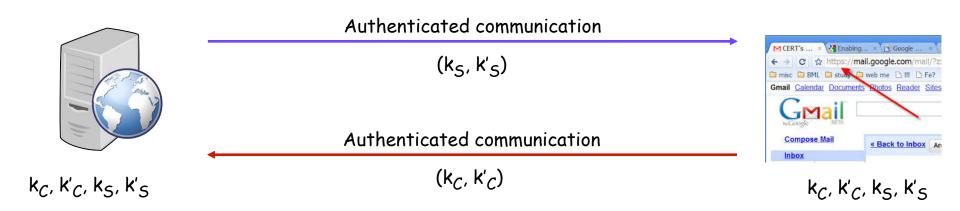

- □ Several types of PKI used in practice
 - Single CA, multiple CA, PGP, etc
- Public keys of CA are pre-configured in web browsers
 - Programmed to verify the certificates issued by those CAs

pk_S is a genuine public key if and only if Vrfy_{pk_M} ("Sita's public key is pk_S ", $cert_{M \to S}$ ") = 1

Putting It All Together - TLS (Transport Layer Security)

Putting It All Together - SSL/TLS (The Handshake Protocol)


Certifying that pk_S is the public key of the server


Server (pk_S, sk_S)

Putting It All Together - SSL/TLS (The Record-layer Protocol)

Public Key Cryptography

Whitfield Diffie, <u>Martin E. Hellman</u>: New directions in cryptography. IEEE Transactions on Information Theory 22(6): 644-654 (1976)

What We have seen and not seen?

Cryptanalysis

Finding flaws/attacks/ insecurities.

Side-channels

Secure (multiparty) Computation

Electronic election, auction, private information retrieval, Outsourcing computation to cloud, Privacy-preserving data mining, signal processing bioinformatics etc. etc.

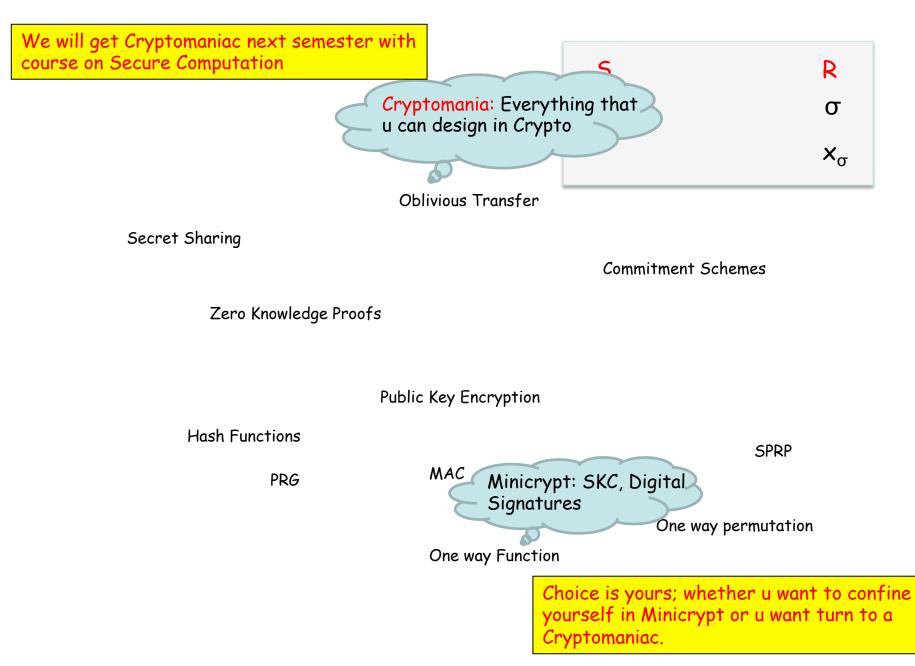
Leakage Resilient Cryptography

Takes into account the side channel information.

Special Purpose Encryption Schemes

Non-committing Encryption, Deniable Encryption, Id-based Encryption, Attribute-based Encryption, Functional Encryption Homographic Encryption, Fully Homomorphic Encryption Secure + Authenticated Message Communication

Special Purpose Digital Signatures


Blind Signatures, Group Signature, Signcryption

Secure Storage

Disc encryption, cloud storage,

Cryptography

Crypto Zoo

Course on Secure Computation

Primitives	Definition Paradigms	Proof Paradigms
» Oblivious Transfer	» Real World- Ideal World Paradigm	» Black-box Reduction
» Commitment Schemes	» Universal Composability (UC)	» Non-black-box reduction
» Zero Knowledge Proofs	Paradigm	» Random-Oracle Model (ROM)
» Secret Sharing	 For many constructions based on HF Modeled as a random oracle (a truly random function from X → K) 	
>> Threshold Encryption	Access to H is via oracle calls	
» Secure Computation in various setting	 To compute H(a), call oracle with from co-domain as the output H(a), the association remains fix Calls to the oracle are private 	once a value is associated as
» Secure Computation of Practical Problems- Set Intersection,	 If attacker has not queried for H(a), then H(a) remains uniformly random for the attacker 	
Genomic Computation		
» Byzantine Agreement & Broadcast		

Concluding Remarks

El Gamal like KEM

Gen(1 ⁿ) (G, o, q, g) h = g ^{x.} For random x pk= (G,o,q,g,h,H), sk =	CPA-secure KEM + COA-secure SKE => CPA-secure PKE @ COA-secure SKE	$ec_{sk}(c)$ k = H(c ^x) = H(g ^{xy})
Security 1	Security 2	Security 3
CDH (Weaker than DDH; hard to compute g ^{xy} even given g ^x , g ^y) + H is "Random Oracle" (Random => H behaves like an ideal random function)	HDH- Hash Diffie-Hellman (Weaker than DDH but stronger than CDH when Hash function is implemented using known practical ones; hard to distinguish $H(g^{xy})$ from a random string $\{0,1\}^m$ even given g^x, g^y) where H: $\{0,1\}^* \rightarrow$ $\{0,1\}^m$ + No assumption on H. It is incorporated in the above	DDH (Strongest Diffie-Hellman Assumption; hard to distinguish g ^{xy} from a random group element even given g ^x , g ^y) + "Regular" H (Regular => The number of elements from G that maps to k is approximately the same for all k)