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Arpita Patra 



Welcome to the second Half 
of the Course J  

Course Homepage: http://drona.csa.iisc.ernet.in/~arpita/Cryptography15.html  

Katz & Lindell: Introduction to Modern Cryptography, 2nd Edition, CRC Press. 
 
Buy one, a great book.  



Evaluation Policy (2nd Half) 

Use it for a better 
cause than grading: 

Enhance our learning process  

Nurture qualities of a good cryptographer  

Scribe 
(5%) 

Chalk & Talk 
(10%) 

Assignments 
(20%) 

Final Exam 
(15%) 
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Four Pillars of Evaluation  

2 students / 
lecture 

2 sessions / week: 
Friday 8-9:30 am 

1 evaluation /  
three weeks 1 evaluation 



Let’s start the exciting Journey of 
Cryptography 

Well, you have already started. 

Let’s see where we stand so far  and where we are heading to  



Why Cryptography? 

Tool to control access to information; tool to enforce policies who can learn/
influence information   

Ethical Cryptographer: Protect Good from Bad 



Crypto: Past and Present 

Message Communication 

Until 1970s After 1970s and Until Now 

Authenticated Message Communication 

E-cash 

Activism with Safety 

Secure Information Retrieval  

E-election, E-auction 

Secure Storage, Disk encryption 

Secure outsourcing to  Cloud 

……….and the list goes on 

All these fall under the purview of 
Cryptography 

Cryptography: Study of mathematical techniques for securing digital 
information, systems and distributed computation against adversarial 

attacks 



Crypto Zoo 
Real life Applications: Including previous ones    

Assumptions: Number Theoretic/crude assumptions like AES/DES are secure 
PRF schemes, SHA 3 secure hash function etc.    

Primitives: 

SPRP 
Key Agreement 

Multiparty Computation  

Homomorphic Encryption  
Deniable Encryption Functional Encryption 

Oblivious Transfer 
Commitment Schemes 

Zero Knowledge Proofs 
Public Key Encryption 

M
AC 

Digital Signature 

H
ash Functions 

One way Function O
ne way perm

utation 

PRG 

PRF 

PRP 

Secret Sharing 

Blind Signature 

SPRP 

Key Agreement 

Key Derivation 

Obfuscation 

Leakage Resilient Crypto 

Stream Cipher 

Block Cipher 

Slide Idea courtesy: Manoj Prabhakaran 



Impagliazzo’s Crypto World: 
Crytomania & Minicrypt 

Minicrypt assumes One way Function (OWF) exists and encompasses 
all that can be built from OWF: Symmetric Key Cryptography, 
Signatures, Commitments…. 

Cryptomania assumes Oblivious Transfer (OT) exists and 
encompasses all that can be built from OT:  Almost everything that 
you can imagine in crypto 

A big chunk of Cryptomania will be covered in my next course CSA 
E0 312 “Secure Computation” – Aug-Dec’15 

 



Three Key Principles of Modern Crypto 

•  Principle 1: 

•  Principle 2: 

•  Principle 3: 

Ø  Formulation of rigorous and precise definition of security capturing 
requirement. Just having intuition is not enough. 

Ø  Rely on well-studied assumption. 

Ø  Construct scheme with rigorous proof of security 

 Perfect security 



Our lookout in this course 

Secure Message Communication Message Authentication/Integrity 

Symmetric/Private/
Shared Key Setting 

Asymmetric/Public 
Key Setting 

Hash Function – How to compress a message  
Key Agreement – How to agree on a key 

>> How to construct a formal definition 
>> Various Formal Security Definitions 
>> Constructions and Security Proof  



  Secure Communication in Private Key 
Setting 

•  Secret key k shared in advance (by “some” mechanism) 

k k 
?? 

m 

•  m is the plain-text 

Encryption Decryption 
m c 

•  c is the cipher-text (scrambled message) 

m 

•  Symmetry: same key used for encryption and decryption 



  Syntax of SKE 

1.  Key-generation Algorithm (Gen()): 

2. Encryption Algorithm (Enck(m)); m from {0,1}*: 

3. Decryption Algorithm (Deck(c)): 

Ø  MUST be a Randomized algorithm 

Ø  Outputs a key k chosen according to some probability distribution 
determined by the scheme; 

Ø  Deterministic/Randomized algorithm 

Ø  c ß Enck(m) when randomized and c:=Enck(m)  when deterministic 

Ø  Usually deterministic  

Ø  Outputs m:= Deck(c) 



  Syntax of SKE 
•  Any cipher defines the following three space (sets): 

Ø  Set of all possible keys output by algorithm Gen 

1.  Key space (     ): 

Ø  Usually Gen selects a key k uniformly at random from  

2.  Plain-text (message) space (      ): 
Ø  Set of all possible “legal” message (i.e. those supported by Enc) 

3.  Cipher-text space (     ): 
Ø  Set of all cipher-texts output by algorithm Enc 

Ø  The sets       and       together define the set  

•  Any cipher is defined by specifying (Gen, Enc, Dec) and  



  Towards Defining Security of SKE 
Two components of a security definition: 

Break: 

Threat: >> Who is your threat?  
>> Who do you want to protect from?  
>> Cultivate your enemy a.k.a adversary in crypto language. 
>> Look out in practical scenarios /  be an adversary 
>> Unless you know your adv, no hope of defeating him 

>> What are you afraid of losing?  
>> What do you want to protect? 
>> If you don’t know what to protect then how to do you   
    when or if you are protecting it? 
>> Means different for different task 



  Threat Model 
How powerful  

 Perfect/Shannon Security 

Unbounded Powerful Computationally Bounded 

Computational Security 

Key as large as the message 

Fresh key for every encryption 

A small key will do 

Key reuse is permitted. 

What are his capabilities?  

How powerful computationally?  

               Pr [M = m | C = c] = Pr [M = m] ∀ m, c    
 
Posteriori probability that 

m is encrypted in c 

a priori probability that m 
will be sent 

Guarantee: “The SKE cannot be broken with 
probability better than 2-80 in 200 yrs with the 
fastest supercomputer. (But can be broken in 

theory) 

Two relaxations: 
    >> Bounded Adversary 
    >> Probability of sucess 



  Computational Security of SKE 

Computational security --- two relaxations to perfect-security 

1.  Bounded resource/ efficient adversaries 

2.   Adversaries can break the scheme with some very small 
probability, which is so small that we do not bother 

Is it necessary to incorporate these two relaxations ?  

YES Absolutely! 
Will see towards the end of this class 



Making “Efficient” and “Very Small” Precise– 
Asymptotic Approach 

>>   Security parameter n --- publicly known (part of the scheme) 

Running time of the users Running time of the attacker Success probability of the attacker 

Functions of a security parameter n 

>> Typically it is the size of secret-key (ex: n = 128, 256, etc) 

1. “Feasible” /“Efficient” / “Probabilistic Poly time (PPT)” means : 

Ø   running time is O(nc) for some constant c 

2. “ Very Small” / “negligible”  means those f(n) : 

Ø  “eventually becomes 0”, “grows slower than any inverse poly” 

Ø  for every constant c, there exists some N, such that f(n) < n–c , for 
all n > N 

 

Our SKE cannot be broken with probability better than 2-n  by 
adversary with n10 running time. 

 

Ex: 2-n 
Recall the properties of 

negl functions 



Choosing n Carefully is Very Essential 

A designer claims that an adversary running for n3 minutes can 
break his scheme with probability 240 2-n 

Ø  240 2-n is negligible  --- hence secure scheme 

q  But what value of n to select while implementing ? 

Ø  If n ≤  40 then an adversary working for 403 minutes (6 weeks) 
can break the scheme with probability 1 --- completely useless 

Ø  n = 50 ?               : adversary working for 503 minutes (3 months) 
succeed with probability 1/1000  --- may be unacceptable 

Ø  n = 500: adversary working for 200 yrs can break the scheme 
with probability 2-460  --- definitely acceptable 



 n  = Knob 

min max 
 n  

Adv’s job becomes harder J 

User’s running time is also increasing L 



Concrete Approach 

>> Set the value of n 

>> Run users and adversary on specific machines 

No adversary running for 5 yrs on 4GHz Machine can 
break the scheme with probability better than 2-60 

Asymptotic Statement 

Concrete Statement 1 
Concrete Statement 2 

Concrete Statement n 

…
…

Asymptotic Approach 

Concrete Approach ý 
þ 



  Threat Model 
How powerful  

 Perfect/Shannon Security 

Unbounded Powerful Computationally Bounded 

Computational Security 

Key as large as the message 

Fresh key for every encryption 

A small key will do 

Key reuse is permitted. 

What are his capabilities?  

How powerful computationally?  



 Threat Model 

Weakest:  Ciphertext-only Attack 

k k 
?? 

Enc 
m c 

•  Attacker has access to a cipher-text (cipher-texts) 

•  Goal: to determine the underlying plain-text(s) 

•  Passive/Eavesdropper in nature 

Ø  Easy to mount 

If you are thinking this is the 
best attack that can be 

mounted. Time for you to 
retire. Adversary is way more 

smarter J 



  Threat Model 

>> Bounded Computing Power; Negligible error probability 
  
>> Ciphertext-only Attack 
 
>> Randomized Adversary 

Randomness is absolute necessity in Crypto; it is 
practical and Good guys use randomness often. Why not 
adversary? 

Good to be liberal in terms of giving more power to adversary 



  What constitutes your “Break”? 
Break: 

A1>>  Secret key ? 

 Then Enc(m) = m is secure 

A2>> Entire Message? 

Then Enc(m) leaking msb is secure m is your salary 

A3>> No additional info about the message  irrespective of prior information? 

Right Notion 

>> What are you afraid of losing?  
>> What do you want to protect? 
>> If you don’t know what to protect then how to do you   
    when or if you are protecting it? 
>> Means different for different crypto task 



Semantic Security Notion for SKE 

S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and 
System Sciences, 28(2): 270-299, 1984 

Captures the ciphertext does not give any additional information about the 
message to the adversary irrespective of prior knowledge about m. 

h(m): external info 
about m; history 
function 

f(m): additional partial 
information about m that 
adv wants to compute  



  Syntax of SKE 
1.  Key-generation Algorithm (Gen(1n)): 

2. Encryption Algorithm (Enck(m)); m from {0,1}*: 

3. Decryption Algorithm (Deck(c)): 

Ø  MUST be a Randomized algorithm 

Ø  Outputs a key k chosen according to some probability distribution 
determined by the scheme; |k| >= n 

Ø  Deterministic/Randomized algorithm 

Ø  c ß Enck(m) when randomized and c:=Enck(m)  when deterministic 

Ø  Usually deterministic  

Ø  Outputs m:= Deck(c) 

If (Gen, Enc, Dec)  is defined over message space {0,1}l(n) then fixed-length SKE 
For message of length l(n)  



Semantic Security 
Two worlds: In one adv gets ciphertext and in another it does not. If the 
difference between probabilities of guessing f(x) in the both worlds are negligibly 
apart, then semantic security is achieved. 

k 

Enc 
m 

Gen(1n) 

c ← Enck(m) h(m) 

guess about f(m) 

Π = (Gen, Enc, Dec) is semantically-secure in the presence of a eavesdropper if 
for every PPT A there exists a A’ such that for any Samp and PPT functions f and 
h: 

Pr [ A’(1n,|m|,h(m) =f(m)] - | | ≤ negl(n) 

h(m) 

guess about f(m) 

|m| 

Pr [ A(1n,c,h(m) =f(m)] 

Probability taken over  
>> uniform k,  
>> m output by Samp(1n),  
>> the randomness of A and 
>> the randomness of Enc 

A A’ 

Probability taken over 
>> m output by Samp(1n) and  
>> the randomness of A’ 

Computational version of 
Shannon’s definition 
of perfect-security 



Indistinguishability Based Definition 

Π = (Gen, Enc, Dec),        

I can break Π 
Let me verify 

m0, m1∈       , |m0|=|m1| 
(freedom to choose any pair) 

Gen(1n) 

b ← {0, 1} 

c ← Enck(mb) 

b’ ∈ {0, 1} 

(Attacker’s guess about encrypted message) 

b = b’ 

1 --- attacker won 

b ≠ b’ 
0 --- attacker lost 

        Eavesdropping indistinguishability experiment PrivK         (n) 
A, Π 

co 

 Π has indistinguishable encryptions in the presence of an eavesdropper or is co-secure if 
for every PPT  attacker A, there is a negligible function negl(n) such that 

Run time: Poly(n) 

Attacker A 

½ + negl(n) 

 

Pr PrivK     (n) 
A, Π 

co 
= 1 ≤ Probability is taken over the 

randomness used by A and the 
challenger 

Common Feature: Experiment- a game between a challenger and an adversary 

All Security Definitions will be in Ind style 
SEMANTIC Security ≈ IND Security 

(First Chalk & Talk Topic) 

Challenger 

PrivK         (n)  
A, Π 

co 



 Equivalent Formulation of Ind Definition 

Π = (Gen, Enc, Dec),       , n 

I can break Π 
Let me verify 

m0, m1∈       , |m0| = |m1| 
(freedom to choose any pair) 

Gen(1n) 

b ← {0, 1} 

c ← Enck(mb) 

b’ ∈ {0, 1} 
(Attacker’s guess about encrypted message) 

Game Output b = b’ 

1 --- attacker won 
b ≠ b’ 0 --- attacker lost 

Run time: Poly(n) 

Attacker A 

½ + negl(n) 

 

Pr PrivK     (n) 
A, Π 

co 
= 1 ≤ 

Intuition behind the definition ? 
    >> Attacker should behave in the same way irrespective of of m0 or m1 

>> What does same behavior mean ? --- Attacker just outputs a bit 

 >> Same behavior means that attacker  outputs 1  with al most the same probability in 
each case (irrespective of whether it sees an encryption of m0 or m1) 

Challenger 



 Equivalent Formulation 

PrivK     (n, b) : the eavesdropping experiment with mb selected by challenger 
A, Π 

co 

Output(PrivK     (n, b)) : output bit of the attacker during  
A, Π 

co 
           PrivK     (n, b))   

A, Π 

co 

 >> How to formalize that attacker’s strategy gives the same output in each case  

Π = (Gen, Enc, Dec) is CO-secure if for every PPT adversary A, there is a negligible function 
negl, such that : 

Pr[Output(PrivK     (n, 0)) = 1] 
A, Π 

co  
Pr[Output(PrivK     (n, 1)) = 1] 

A, Π 

co  
- | | ≤  negl(n) 

Π = (Gen, Enc, Dec) is co-secure if for every PPT adversary A, there is a negligible function 
negl, such that : 

½ + negl(n) 

 

Pr PrivK     (n) 
A, Π 

co 
= 1 ≤ 



Ingredient for  co-secure SKEs 
q  OTP ? But key as large as message 

q   Which symmetric-key primitive would serve our purpose? 
q  Pseudorandom Generators (PRGs) 

M. Blum, S. Micali. How to Generate Cryptographically 
strong sequences of pseudo-random bits. SIAM Journal of 
Computing, 13(4), 850-864, 1984 

q  Need Better solution- Shorter key for big message 

A. C.-C. Yao. Theory and Applications of Trapdoor Functions. 
FOCS, 80-91, 1982. 



    Pseudorandom string looks like a uniformly distributed string 

Random Strings/Pseudorandom Strings 

           “looking entity” runs in polynomial time 

“pseudorandom” or “random” ? 

Randomness/Pseudorandomness is a property of a distributions 
on strings 

0100010101010100010101010 

Random Generator / Pseudorandomgenerator is a property of a 
process/algorithm that generates strings according to the 
respective distributions. 



Pseudorandom Generators (PRGs) 

Algorithm G 

Deterministic 

s ∈R {0,1}n 

Seed / Secret Key 

A deterministic algorithm that “expands” a truly random short string  into a 
long pseudorandom string (that looks like a random string for a PPT 
Distinguishaer) 

G(s) ∈ {0,1}l(n) 

n : security parameter 

•  Requirements : 

1. Expansion : for every n, l(n) > n 

2. Pseudorandomness : G(s) “looks like” a truly random string  

Mathematical formulation of pseudorandomness ?  --- Indistinguishability game 

l() : expansion factor of G  



PRG Security 

PPT distinguisher D 

A string of length 
l(n) please 

U : uniform distribution over {0,1}l(n)  

b= 0 

b= 1 

G

Oracle 

y 
How I selected it ? 

G is a PRG if for every PPT D, there is a negligible function negl 
Pr [D(r) = 1] Pr [D(G(s)) = 1] -| | ≤ negl(n) 
r ∈R {0,1}l(n) s ∈R {0,1}n 

Probability taken over 
>> Random Choice of r 
>> the randomness of D 

Probability taken over 
>> Random Choice of s 
>> the randomness of D 

G: Probability distribution over {G(s): s ∈R {0,1}n}  

Challenger 



Is designing PRG easy? 

s ∈R {0,1}n G(s) = ss’ 

•  Is G a PRG? 

D 

y∈{0,1}n+1 

random or generated by G ? 

D outputs 1 

 y generated by G 

Pr [D(r) = 1] = ½  

-Pr [D(r) = 1] Pr [D(G(s)) = 1] | | = ½   

r ∈R {0,1}n+1 Pr [D(G(s)) = 1] = 1  s ∈R {0,1}n 

Non-negligible 

s’ = s1⊕s2⊕…⊕sn 

Expansion factor: n+1 

--- trivial to design a distinguisher D 

Is the final bit of y XOR 

of the preceding bits ? 
D outputs 0 

 y random 

•  With how much probability D distinguishes a random and pseudorandom string ? 

•  If y generated by G 

Ø  D outputs 1 with probability 1 

•  If y is truly random 

Ø  D outputs 1 with probability ½ 



Existence of PRG 
•  Do PRG exists ? 
•  OWF + hardcore bit à PRG 

Ø  Provably secure 

•  Several practical PRGs (Stream Ciphers) 

Ø  Not provably secure (but no good distinguishers 
found till now) 

Ø  High practical efficiency compared to provably-
secure PRGs 





Computational Security : Necessity of 
the Relaxations 

•   Practical crypto : many messages encrypted using a single short key 
•   Relaxation I : security only against efficient attackers  --- Why ?  

•   Let |    |  <   |     | •   Let the attacker launch a known-plaintext 
attack against the scheme 

(m1, c1), (m2, c2), …,     
(mt, ct): ci = Enck(mi) 

k1 

k2 

k3 

k ?  
k ?  

k ?  

•   Attacker can try 
decrypting each cipher-
text with all possible keys 
until it finds a matching key 

? Deck1 (ci) = mi, for all i  

---brute-force search  

•  O(|    |) time 

Yes 

Hurray : I got the key 

•   Need to bound the running 
time of the attacker to 
disallow it to carry brute-
force search attack 

k1 

k2 

k3 



Computational Security : Necessity of 
the Relaxations 

•   Practical crypto : many messages encrypted using a single short key 
•   Relaxation II : Attacker allowed to break the 

          scheme  with some very 
small probability 

--- Why ?  

•   Let |    |  <   |     | •   Attacker launches a known-plaintext attack  

(m1, c1), (m2, c2), …,     
(mt, ct): ci = Enck(mi) 

k1 

k2 

k3 

k ?  
k ?  

k ?  

? Deck2(ci) = mi, for all i  

--- O(1)  time 

Yes 

Hurray : my guess was correct 

•   Need to allow a very small 
probability of success 
without considering it a 
break 

•   Attacker randomly guess a 
key k ∈     and checks 
whether it is the matching 
key  

q  Probability : 1 / |     | 

k2 


