
Cryptography

Lecture 1

Arpita Patra

Welcome to the second Half
of the Course J

Course Homepage: http://drona.csa.iisc.ernet.in/~arpita/Cryptography15.html

Katz & Lindell: Introduction to Modern Cryptography, 2nd Edition, CRC Press.

Buy one, a great book.

Evaluation Policy (2nd Half)

Use it for a better
cause than grading:

Enhance our learning process

Nurture qualities of a good cryptographer

Scribe
(5%)

Chalk & Talk
(10%)

Assignments
(20%)

Final Exam
(15%)

Depth

Breadth

Presentation- Oral

Presentation- Written

Class Attentiveness

✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

Four Pillars of Evaluation

2 students /
lecture

2 sessions / week:
Friday 8-9:30 am

1 evaluation /
three weeks 1 evaluation

Let’s start the exciting Journey of
Cryptography

Well, you have already started.

Let’s see where we stand so far and where we are heading to

Why Cryptography?

Tool to control access to information; tool to enforce policies who can learn/
influence information

Ethical Cryptographer: Protect Good from Bad

Crypto: Past and Present

Message Communication

Until 1970s After 1970s and Until Now

Authenticated Message Communication

E-cash

Activism with Safety

Secure Information Retrieval

E-election, E-auction

Secure Storage, Disk encryption

Secure outsourcing to Cloud

……….and the list goes on

All these fall under the purview of
Cryptography

Cryptography: Study of mathematical techniques for securing digital
information, systems and distributed computation against adversarial

attacks

Crypto Zoo
Real life Applications: Including previous ones

Assumptions: Number Theoretic/crude assumptions like AES/DES are secure
PRF schemes, SHA 3 secure hash function etc.

Primitives:

SPRP
Key Agreement

Multiparty Computation

Homomorphic Encryption
Deniable Encryption Functional Encryption

Oblivious Transfer
Commitment Schemes

Zero Knowledge Proofs
Public Key Encryption

M
AC

Digital Signature

H
ash Functions

One way Function O
ne way perm

utation

PRG

PRF

PRP

Secret Sharing

Blind Signature

SPRP

Key Agreement

Key Derivation

Obfuscation

Leakage Resilient Crypto

Stream Cipher

Block Cipher

Slide Idea courtesy: Manoj Prabhakaran

Impagliazzo’s Crypto World:
Crytomania & Minicrypt

Minicrypt assumes One way Function (OWF) exists and encompasses
all that can be built from OWF: Symmetric Key Cryptography,
Signatures, Commitments….

Cryptomania assumes Oblivious Transfer (OT) exists and
encompasses all that can be built from OT: Almost everything that
you can imagine in crypto

A big chunk of Cryptomania will be covered in my next course CSA
E0 312 “Secure Computation” – Aug-Dec’15

Three Key Principles of Modern Crypto

•  Principle 1:

•  Principle 2:

•  Principle 3:

Ø  Formulation of rigorous and precise definition of security capturing
requirement. Just having intuition is not enough.

Ø  Rely on well-studied assumption.

Ø  Construct scheme with rigorous proof of security

 Perfect security

Our lookout in this course

Secure Message Communication Message Authentication/Integrity

Symmetric/Private/
Shared Key Setting

Asymmetric/Public
Key Setting

Hash Function – How to compress a message
Key Agreement – How to agree on a key

>> How to construct a formal definition
>> Various Formal Security Definitions
>> Constructions and Security Proof

 Secure Communication in Private Key
Setting

•  Secret key k shared in advance (by “some” mechanism)

k k
??

m

•  m is the plain-text

Encryption Decryption
m c

•  c is the cipher-text (scrambled message)

m

•  Symmetry: same key used for encryption and decryption

 Syntax of SKE

1.  Key-generation Algorithm (Gen()):

2. Encryption Algorithm (Enck(m)); m from {0,1}*:

3. Decryption Algorithm (Deck(c)):

Ø  MUST be a Randomized algorithm

Ø  Outputs a key k chosen according to some probability distribution
determined by the scheme;

Ø  Deterministic/Randomized algorithm

Ø  c ß Enck(m) when randomized and c:=Enck(m) when deterministic

Ø  Usually deterministic

Ø  Outputs m:= Deck(c)

 Syntax of SKE
•  Any cipher defines the following three space (sets):

Ø  Set of all possible keys output by algorithm Gen

1.  Key space ():

Ø  Usually Gen selects a key k uniformly at random from

2. Plain-text (message) space ():
Ø  Set of all possible “legal” message (i.e. those supported by Enc)

3. Cipher-text space ():
Ø  Set of all cipher-texts output by algorithm Enc

Ø  The sets and together define the set

•  Any cipher is defined by specifying (Gen, Enc, Dec) and

 Towards Defining Security of SKE
Two components of a security definition:

Break:

Threat: >> Who is your threat?
>> Who do you want to protect from?
>> Cultivate your enemy a.k.a adversary in crypto language.
>> Look out in practical scenarios / be an adversary
>> Unless you know your adv, no hope of defeating him

>> What are you afraid of losing?
>> What do you want to protect?
>> If you don’t know what to protect then how to do you
 when or if you are protecting it?
>> Means different for different task

 Threat Model
How powerful

 Perfect/Shannon Security

Unbounded Powerful Computationally Bounded

Computational Security

Key as large as the message

Fresh key for every encryption

A small key will do

Key reuse is permitted.

What are his capabilities?

How powerful computationally?

 Pr [M = m | C = c] = Pr [M = m] ∀ m, c

Posteriori probability that

m is encrypted in c

a priori probability that m
will be sent

Guarantee: “The SKE cannot be broken with
probability better than 2-80 in 200 yrs with the
fastest supercomputer. (But can be broken in

theory)

Two relaxations:
 >> Bounded Adversary
 >> Probability of sucess

 Computational Security of SKE

Computational security --- two relaxations to perfect-security

1.  Bounded resource/ efficient adversaries

2. Adversaries can break the scheme with some very small
probability, which is so small that we do not bother

Is it necessary to incorporate these two relaxations ?

YES Absolutely!
Will see towards the end of this class

Making “Efficient” and “Very Small” Precise–
Asymptotic Approach

>> Security parameter n --- publicly known (part of the scheme)

Running time of the users Running time of the attacker Success probability of the attacker

Functions of a security parameter n

>> Typically it is the size of secret-key (ex: n = 128, 256, etc)

1. “Feasible” /“Efficient” / “Probabilistic Poly time (PPT)” means :

Ø  running time is O(nc) for some constant c

2. “ Very Small” / “negligible” means those f(n) :

Ø  “eventually becomes 0”, “grows slower than any inverse poly”

Ø  for every constant c, there exists some N, such that f(n) < n–c , for
all n > N

Our SKE cannot be broken with probability better than 2-n by
adversary with n10 running time.

Ex: 2-n
Recall the properties of

negl functions

Choosing n Carefully is Very Essential

A designer claims that an adversary running for n3 minutes can
break his scheme with probability 240 2-n

Ø  240 2-n is negligible --- hence secure scheme

q  But what value of n to select while implementing ?

Ø  If n ≤ 40 then an adversary working for 403 minutes (6 weeks)
can break the scheme with probability 1 --- completely useless

Ø  n = 50 ? : adversary working for 503 minutes (3 months)
succeed with probability 1/1000 --- may be unacceptable

Ø  n = 500: adversary working for 200 yrs can break the scheme
with probability 2-460 --- definitely acceptable

 n = Knob

min max
 n

Adv’s job becomes harder J

User’s running time is also increasing L

Concrete Approach

>> Set the value of n

>> Run users and adversary on specific machines

No adversary running for 5 yrs on 4GHz Machine can
break the scheme with probability better than 2-60

Asymptotic Statement

Concrete Statement 1
Concrete Statement 2

Concrete Statement n

…
…

Asymptotic Approach

Concrete Approach ý
þ

 Threat Model
How powerful

 Perfect/Shannon Security

Unbounded Powerful Computationally Bounded

Computational Security

Key as large as the message

Fresh key for every encryption

A small key will do

Key reuse is permitted.

What are his capabilities?

How powerful computationally?

 Threat Model

Weakest: Ciphertext-only Attack

k k
??

Enc
m c

•  Attacker has access to a cipher-text (cipher-texts)

•  Goal: to determine the underlying plain-text(s)

•  Passive/Eavesdropper in nature

Ø  Easy to mount

If you are thinking this is the
best attack that can be

mounted. Time for you to
retire. Adversary is way more

smarter J

 Threat Model

>> Bounded Computing Power; Negligible error probability

>> Ciphertext-only Attack

>> Randomized Adversary

Randomness is absolute necessity in Crypto; it is
practical and Good guys use randomness often. Why not
adversary?

Good to be liberal in terms of giving more power to adversary

 What constitutes your “Break”?
Break:

A1>> Secret key ?

 Then Enc(m) = m is secure

A2>> Entire Message?

Then Enc(m) leaking msb is secure m is your salary

A3>> No additional info about the message irrespective of prior information?

Right Notion

>> What are you afraid of losing?
>> What do you want to protect?
>> If you don’t know what to protect then how to do you
 when or if you are protecting it?
>> Means different for different crypto task

Semantic Security Notion for SKE

S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and
System Sciences, 28(2): 270-299, 1984

Captures the ciphertext does not give any additional information about the
message to the adversary irrespective of prior knowledge about m.

h(m): external info
about m; history
function

f(m): additional partial
information about m that
adv wants to compute

 Syntax of SKE
1.  Key-generation Algorithm (Gen(1n)):

2. Encryption Algorithm (Enck(m)); m from {0,1}*:

3. Decryption Algorithm (Deck(c)):

Ø  MUST be a Randomized algorithm

Ø  Outputs a key k chosen according to some probability distribution
determined by the scheme; |k| >= n

Ø  Deterministic/Randomized algorithm

Ø  c ß Enck(m) when randomized and c:=Enck(m) when deterministic

Ø  Usually deterministic

Ø  Outputs m:= Deck(c)

If (Gen, Enc, Dec) is defined over message space {0,1}l(n) then fixed-length SKE
For message of length l(n)

Semantic Security
Two worlds: In one adv gets ciphertext and in another it does not. If the
difference between probabilities of guessing f(x) in the both worlds are negligibly
apart, then semantic security is achieved.

k

Enc
m

Gen(1n)

c ← Enck(m) h(m)

guess about f(m)

Π = (Gen, Enc, Dec) is semantically-secure in the presence of a eavesdropper if
for every PPT A there exists a A’ such that for any Samp and PPT functions f and
h:

Pr [A’(1n,|m|,h(m) =f(m)] - | | ≤ negl(n)

h(m)

guess about f(m)

|m|

Pr [A(1n,c,h(m) =f(m)]

Probability taken over
>> uniform k,
>> m output by Samp(1n),
>> the randomness of A and
>> the randomness of Enc

A A’

Probability taken over
>> m output by Samp(1n) and
>> the randomness of A’

Computational version of
Shannon’s definition
of perfect-security

Indistinguishability Based Definition

Π = (Gen, Enc, Dec),

I can break Π
Let me verify

m0, m1∈ , |m0|=|m1|
(freedom to choose any pair)

Gen(1n)

b ← {0, 1}

c ← Enck(mb)

b’ ∈ {0, 1}

(Attacker’s guess about encrypted message)

b = b’

1 --- attacker won

b ≠ b’
0 --- attacker lost

 Eavesdropping indistinguishability experiment PrivK (n)
A, Π

co

 Π has indistinguishable encryptions in the presence of an eavesdropper or is co-secure if
for every PPT attacker A, there is a negligible function negl(n) such that

Run time: Poly(n)

Attacker A

½ + negl(n)

Pr PrivK (n)
A, Π

co
= 1 ≤ Probability is taken over the

randomness used by A and the
challenger

Common Feature: Experiment- a game between a challenger and an adversary

All Security Definitions will be in Ind style
SEMANTIC Security ≈ IND Security

(First Chalk & Talk Topic)

Challenger

PrivK (n)
A, Π

co

 Equivalent Formulation of Ind Definition

Π = (Gen, Enc, Dec), , n

I can break Π
Let me verify

m0, m1∈ , |m0| = |m1|
(freedom to choose any pair)

Gen(1n)

b ← {0, 1}

c ← Enck(mb)

b’ ∈ {0, 1}
(Attacker’s guess about encrypted message)

Game Output b = b’

1 --- attacker won
b ≠ b’ 0 --- attacker lost

Run time: Poly(n)

Attacker A

½ + negl(n)

Pr PrivK (n)
A, Π

co
= 1 ≤

Intuition behind the definition ?
 >> Attacker should behave in the same way irrespective of of m0 or m1

>> What does same behavior mean ? --- Attacker just outputs a bit

 >> Same behavior means that attacker outputs 1 with al most the same probability in
each case (irrespective of whether it sees an encryption of m0 or m1)

Challenger

 Equivalent Formulation

PrivK (n, b) : the eavesdropping experiment with mb selected by challenger
A, Π

co

Output(PrivK (n, b)) : output bit of the attacker during
A, Π

co
 PrivK (n, b))

A, Π

co

 >> How to formalize that attacker’s strategy gives the same output in each case

Π = (Gen, Enc, Dec) is CO-secure if for every PPT adversary A, there is a negligible function
negl, such that :

Pr[Output(PrivK (n, 0)) = 1]
A, Π

co
Pr[Output(PrivK (n, 1)) = 1]

A, Π

co
- | | ≤ negl(n)

Π = (Gen, Enc, Dec) is co-secure if for every PPT adversary A, there is a negligible function
negl, such that :

½ + negl(n)

Pr PrivK (n)
A, Π

co
= 1 ≤

Ingredient for co-secure SKEs
q  OTP ? But key as large as message

q  Which symmetric-key primitive would serve our purpose?
q  Pseudorandom Generators (PRGs)

M. Blum, S. Micali. How to Generate Cryptographically
strong sequences of pseudo-random bits. SIAM Journal of
Computing, 13(4), 850-864, 1984

q  Need Better solution- Shorter key for big message

A. C.-C. Yao. Theory and Applications of Trapdoor Functions.
FOCS, 80-91, 1982.

 Pseudorandom string looks like a uniformly distributed string

Random Strings/Pseudorandom Strings

 “looking entity” runs in polynomial time

“pseudorandom” or “random” ?

Randomness/Pseudorandomness is a property of a distributions
on strings

0100010101010100010101010

Random Generator / Pseudorandomgenerator is a property of a
process/algorithm that generates strings according to the
respective distributions.

Pseudorandom Generators (PRGs)

Algorithm G

Deterministic

s ∈R {0,1}n

Seed / Secret Key

A deterministic algorithm that “expands” a truly random short string into a
long pseudorandom string (that looks like a random string for a PPT
Distinguishaer)

G(s) ∈ {0,1}l(n)

n : security parameter

•  Requirements :

1. Expansion : for every n, l(n) > n

2. Pseudorandomness : G(s) “looks like” a truly random string

Mathematical formulation of pseudorandomness ? --- Indistinguishability game

l() : expansion factor of G

PRG Security

PPT distinguisher D

A string of length
l(n) please

U : uniform distribution over {0,1}l(n)

b= 0

b= 1

G

Oracle

y
How I selected it ?

G is a PRG if for every PPT D, there is a negligible function negl
Pr [D(r) = 1] Pr [D(G(s)) = 1] -| | ≤ negl(n)
r ∈R {0,1}l(n) s ∈R {0,1}n

Probability taken over
>> Random Choice of r
>> the randomness of D

Probability taken over
>> Random Choice of s
>> the randomness of D

G: Probability distribution over {G(s): s ∈R {0,1}n}

Challenger

Is designing PRG easy?

s ∈R {0,1}n G(s) = ss’

•  Is G a PRG?

D

y∈{0,1}n+1

random or generated by G ?

D outputs 1

 y generated by G

Pr [D(r) = 1] = ½

-Pr [D(r) = 1] Pr [D(G(s)) = 1] | | = ½

r ∈R {0,1}n+1 Pr [D(G(s)) = 1] = 1 s ∈R {0,1}n

Non-negligible

s’ = s1⊕s2⊕…⊕sn

Expansion factor: n+1

--- trivial to design a distinguisher D

Is the final bit of y XOR

of the preceding bits ?
D outputs 0

 y random

•  With how much probability D distinguishes a random and pseudorandom string ?

•  If y generated by G

Ø  D outputs 1 with probability 1

•  If y is truly random

Ø  D outputs 1 with probability ½

Existence of PRG
•  Do PRG exists ?
•  OWF + hardcore bit à PRG

Ø  Provably secure

•  Several practical PRGs (Stream Ciphers)

Ø  Not provably secure (but no good distinguishers
found till now)

Ø  High practical efficiency compared to provably-
secure PRGs

Computational Security : Necessity of
the Relaxations

•  Practical crypto : many messages encrypted using a single short key
•  Relaxation I : security only against efficient attackers --- Why ?

•  Let | | < | | •  Let the attacker launch a known-plaintext
attack against the scheme

(m1, c1), (m2, c2), …,
(mt, ct): ci = Enck(mi)

k1

k2

k3

k ?
k ?

k ?

•  Attacker can try
decrypting each cipher-
text with all possible keys
until it finds a matching key

? Deck1 (ci) = mi, for all i

---brute-force search

•  O(| |) time

Yes

Hurray : I got the key

•  Need to bound the running
time of the attacker to
disallow it to carry brute-
force search attack

k1

k2

k3

Computational Security : Necessity of
the Relaxations

•  Practical crypto : many messages encrypted using a single short key
•  Relaxation II : Attacker allowed to break the

 scheme with some very
small probability

--- Why ?

•  Let | | < | | •  Attacker launches a known-plaintext attack

(m1, c1), (m2, c2), …,
(mt, ct): ci = Enck(mi)

k1

k2

k3

k ?
k ?

k ?

? Deck2(ci) = mi, for all i

--- O(1) time

Yes

Hurray : my guess was correct

•  Need to allow a very small
probability of success
without considering it a
break

•  Attacker randomly guess a
key k ∈ and checks
whether it is the matching
key

q  Probability : 1 / | |

k2

