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Quick Recall and Today’s Roadmap 

>> Construction based on PRG 

>> Overview of Proof by reduction 

>> Proof of PRG-based SKE 
>> Extension of CO-security to CO-MULT-security and the second is stronger than 
previous  

>> Chosen Plaintext Attack (CPA), CPA Security, stronger than previous notions; 
minimum requirement for any SKE 

>> Is it practical? 

>> A construction for CPA-secure scheme 
>> Proof of Security 

>>  Extension to CPA-MULT-security 

>> Modes of Operations (very efficient construction used in practice) 



 Chosen-Plaintext Attacks (CPA) 
(Single-message Security) 

k k 
?? 

Enc 
m  c = Enck(m) 

(m1, c1), (m2, c2), …, (mt, ct): ci = Enck(mi) 

>>  Adversary influences the honest parties to get encryption of plain-
texts (using the same key) of its choice 

>> Adv’s Goal: to determine the plain-text encrypted in a new cipher-text 

Encryption Oracle 



CPA 

M. Luby: Pseudorandomness and Cryptographic 
Applications; Princeton University Press, 1996 

Mihir Bellare, Anand Desai, E. Jokipii, Phillip Rogaway: 
A Concrete Security Treatment of Symmetric Encryption. 
FOCS: 394-403, 1997   



 Is CPA Realistic ? 

q  How can an attacker influence parties to encrypt 
messages of its choice (using the same key) ? 

q  Consider a secure hardware with secret-key embedded 

>> Often used in military applications 

q  An insider may have access to the hardware (not the key) 

>> Can choose messages of its choice and get their 
encryptions 



CPA shortened WWII by 2-3 Years 
q  Breaking of German codes by British during WW II 

Loc1 Loc2 

Loc3 

Enck(Loc1) Enck(Loc2) Enck(Loc3) 
q  Trivia: Who played a key role in this 

cryptanalysis process 

At Bletchley Park 
Axis Power 

Allied Power 



CPA Indistinguishability Experiment 
Π = (Gen, Enc, Dec),       , n 

Gen(1n) 

PrivK         (n) 
A, Π 

cpa 

Query: Plain-text 

Response: Ciphertext 

Training Phase: 

  >> A is given oracle access to Enck() 

  >> A adaptively submits its query (free to submit m0, m1) and receives their encryption 

I can break Π 
Let me verify 

PPT Attacker A 



CPA Indistinguishability Experiment 
Π = (Gen, Enc, Dec),       , n 

Gen(1n) 

PrivK         (n) 
A, Π 

cpa 

Challenge Phase: 

Training Phase 

>> A submits two equal length challenge plaintexts 

>> A is free to submit any message of its choice (including the ones already queried during 
the training phase) 

>> One of the challenge plaintexts is randomly encrypted for A (using fresh randomness) 

m0, m1∈       , |m0| = |m1| 

b ← {0, 1} 

c ← Enck(mb) 

I can break Π 
Let me verify 

PPT Attacker A 



CPA Indistinguishability Experiment 
Π = (Gen, Enc, Dec),       , n 

I can break Π 
Let me verify Gen(1n) 

PrivK         (n) 
A, Π 

cpa 

PPT Attacker A 

Post-challenge Training Phase: 

Training Phase 

m0, m1∈       , |m0| = |m1| 

b ← {0, 1} 

c ← Enck(mb) 

>> A is given oracle access to Enck() 

>> A adaptively submits its query (possibly including m0, m1) and receives their encryption 

Query: Plain-text 

Response: Ciphertext 



CPA Indistinguishability Experiment 
Π = (Gen, Enc, Dec),       , n 

I can break Π 
Let me verify Gen(1n) 

PrivK         (n) 
A, Π 

cpa 

PPT Attacker A 

Response Phase: 

Training Phase 

m0, m1∈       , |m0| = |m1| 

b ← {0, 1} 

c ← Enck(mb) 

Post-challenge Training  

Ø  A finally submits its guess regarding encrypted challenge plain-text 

Ø  A wins the experiment if its guess is correct 

b’ ∈ {0, 1} 

Game Output b = b’ 

1 --- attacker won 
b ≠ b’ 0 --- attacker lost 



CPA Security 
Π = (Gen, Enc, Dec),       , n 

I can break Π 
Let me verify Gen(1n) 

PrivK         (n) 
A, Π 

cpa 

PPT Attacker A 

Training Phase 

m0, m1∈       , |m0| = |m1| 

b ← {0, 1} 

c ← Enck(mb) 

Post-challenge Training  

b’ ∈ {0, 1} 

Game Output b = b’ 

1 --- attacker won 
b ≠ b’ 0 --- attacker lost 

½ + negl(n) 

 

Pr PrivK     (n) 
A, Π 

cpa 
= 1 ≤ 

 Π is CPA-secure if for every PPT A, there is a negligible function negl, such that: 



Search for Ingredients of CPA-Secure Scheme 

x1 = 00000…0 y1 ∈R {0,1}n 

x2 = 00000…1 

… 

x2n = 11111… 1 y2n ∈R {0,1}n 

y2 ∈R {0,1}n 

… 

x1 = 00000…0 y1 ∈R {0,1}n 

x2 = 00000…1 

… 

x2n = 11111… 1 y2n ∈R {0,1}n 

y2 ∈R {0,1}n 

… 

f: {0,1}n → {0, 1}n f: {0,1}n → {0, 1}n 

Enc 
m 

yi 

c = (xi, m⊕ yi)   

?? 

Pad yi is truly random 

>> Instances of OTP 

 >> Problem with the above solution --- size of f is n2n bits 

q  Encryption procedure cannot be deterministic. Can u find an attack? 

>> Need  “fresh” randomness for each run of Enc. Results different 
ciphertexts for the same message 

>> At the same time want to use a “single key”. 

q  Encryption procedure MUST be randomized 



Ingredient for  CPA-secure SKEs 

q   Need a smarter tool. A short key.  

q  Pseudorandom Function (PRF) 

O. Goldreich, S. Goldwasser and S. Micali. How to 
Construct Random Functions. JACM, 33(4), 792-807, 
1986 



Pseudorandom Functions (PRF) 
q  What is a truly random function (TRF) ? 

>> Whose output behavior is completely unpredictable 

>> Given an input, it randomly assigns one element from the co-domain 
as the output 

>> Every element from the co-domain is a possible image with equal 
probability 

q  What is a PRF ? 

>> Intuitively a function whose output behavior “looks like” a TRF 

>> As long as the “entity”  who observes is computationally bounded 

>> Randomness/Pseudorandomness tag of a function is meaningful 
when it is drawn from  a distributions of functions. 

q   Given a function f: is it  TRF or PRF ? 



 TRF vs PRF 

For simplicity, consider functions from {0,1}n to {0,1}n 

q  Funcn = {f1, f2, …, f        } --- family of all such functions 
2n. 2n 

A function chosen uniformly at random from the above is a TRF 

q  PRFs are keyed functions; given key and input, there is an 
efficient way of computing a PRF 

q  Funcn = {Fk1
, …, Fk    } –-- family of keyed functions with key length n 

2n 

q  |Funcn|    >>>>>>>>>>>             |Funcn| 

A function chosen uniformly at random from the above is a PRF 



A possible Definition of PRF in PRG style 

q  Give  F (table) either uniformly sampled from Funcn or from              
to PPT distinguisher D and ask if it is  a TRF or PRF.  

>> If D cannot tell apart the “behavior” of the function Fk (for a 
uniformly random k)   from a truly random function f: {0,1}n → {0,1}n, 
then we say f is a PRF.  

>> Does it work? 

>> No, since the description of the function is of exponential size  

>> Instead we give D oracle access to either a TRF or a PRF and 
ask “tell us who are you interacting with?”  

Funcn 



 Indistinguishability Game for PRF 

PPT distinguisher D 

Value of the function    
 at x1 

b= 0 

Oracle Funcn = {f1, f2, …, f       } 
2n. 2n 

Value of the function   
at x1 is y1 

f ∈R Funcn 

F: {0, 1}n x {0, 1}n → {0, 1}n 

Funcn = {Fk1
, …, Fk    } 

2n b 



 Indistinguishability Game for PRF 

PPT distinguisher D 

Value of the function    
 at xt 

b= 0 

Oracle Funcn = {f1, f2, …, f       } 
2n. 2n 

Value of the function   
at xt is yt 

f ∈R Funcn 

F: {0, 1}n x {0, 1}n → {0, 1}n 

Funcn = {Fk1
, …, Fk    } 

2n b 

•  D can  adaptively asks its queries 

•  D allowed to ask polynomial number of queries 



 Indistinguishability Game for PRF 

PPT distinguisher D 

Value of the function    
 at x1 

Funcn = {f1, f2, …, f       } 
2n. 2n 

Value of the function   
at x1 is y1 

F: {0, 1}n x {0, 1}n → {0, 1}n 

Funcn = {Fk1
, …, Fk    } 

2n b 

b= 1 

Fk 



 Indistinguishability Game for PRF 

PPT distinguisher D 

Value of the function    
 at xt 

Funcn = {f1, f2, …, f       } 
2n. 2n 

Value of the function   
at xt is yt 

F: {0, 1}n x {0, 1}n → {0, 1}n 

Funcn = {Fk1
, …, Fk    } 

2n b 

b= 1 

Fk 

•  D can  adaptively asks its queries 

•  D allowed to ask polynomial number of queries 



Modeling PRF as an Indistinguishability Game 

PPT distinguisher D 

Funcn = {f1, f2, …, f       } 
2n. 2n 

F: {0, 1}n x {0, 1}n → {0, 1}n 

F is a PRF if for every PPT D there is an negl(n) 

(x1, y1), (x2, y2),…, (xk, yk) 

≤ negl(n) Pr [D       (1n) = 1] 
Fk( ) 

>> uniformly random k 
>> D‘s randomness  

Pr [D     (1n) = 1] 
f( ) 

>>  uniform choice of f 
>> D’s randomness 

-| |

>> D  not given k in the above game --- otherwise D can distinguish with high probability 

Funcn = {Fk1
, …, Fk    } 

2n 



Existence of PRF 
•  Do PRF exists ? 

•  OWF à PRG à PRF (Tree Construction) (otheway is also possible; 
take as an HW) 

•  Several practical PRFs  

>> No good distinguishers found till now; believed to be PRF 

>> High practical efficiency compared to provably-secure PRFs 

>> NT based; Not used in practice 

>> Block Ciphers, AES, DES 

>> AES/DES are PRFs: this is an assumption 



PRF-based CPA-Secure Scheme  

Potential solution 

Let us agree on a 
truly random function 

x1 = 00000…0 y1 ∈R {0,1}n 

x2 = 00000…1 

… 

x2n = 11111… 1 y2n ∈R {0,1}n 

y2 ∈R {0,1}n 

… 

(secret meeting / mechanism) 

Look-up table of a TRF f from {0,1}n to {0, 1}n 



Fixed-length CPA-Secure Encryption from PRF 
•  Let F be a length-preserving PRF (just for simplicity) 

Ø  F: {0, 1}n x {0, 1}n → {0, 1}n 

•  Construct a CPA-secure encryption cipher for messages of length n  

m,k c   

Secret PRF-key k 

(key-agreement)   

c,k 

Fixed-length 
encryption 

Enck(m) 

>> r in {0, 1}n 

>> c = (r, m⊕ Fk(r))   

Deck(c = (c0,c1)) 

>> m = c1 ⊕  Fk(c0)  



Security Proof 

Theorem. If Fk is a PRF, then Π is a CPA-secure scheme. 

Proof: On the board. 

m,k c   

Secret PRF-key k 

(key-agreement)   

c,k 

Enck(m) 

>> r in {0, 1}n 

>> c = (r, m⊕ Fk(r))   

Deck(c = (c0,c1)) 

>> m = c1 ⊕ Fk(c0)  



Recall Security Proof of PRG-based Scheme 

Theorem. If G is a PRG, then Π is a CO-secure scheme. 

Proof: Assume Π is not secure 

m,k c   

Secret PRG-key k 

c,k Enck(m) 

>> c = m⊕ G(k)   

Deck(c) 

>> m = c ⊕ G(k)  

A, p(n):  ½ + 1/p(n) 

 

Pr PrivK     (n) 
A, Π 

co 
= 1 > 

A D y∈{0,1}l(n) 

Let us run PrivK     (n) 
A, Π 

co 

m0, m1∈R         , |m0| = |m1| 

b 

c = mb ⊕ y 

b’ ∈ {0, 1} 

PRS or RS? 

½  

 

Pr PrivK     (n) 
A, Π 

co 
= 1 = 

1 if b = b’  

0 otherwise 

Pr [D(y) = 1] Pr [D(G(s)) = 1] 
= = 



Pseudo Random Permutation (PRP) 

PPT distinguisher D 

F: {0, 1}n x {0, 1}n → {0, 1}n 

(x1, y1), (x2, y2),…, (xk, yk) 

Distinct pairs  

Permn = {f1, f2, …, f       } 
(2n)! 

Permn = {Fk1
, …, Fk    } 

2n 

F is a PRF if for every PPT D there is an negl(n) 

≤ negl(n) Pr [D       (1n) = 1] 
Fk( ) 

>> uniformly random k 
>> D‘s randomness  

Pr [D     (1n) = 1] 
f( ) 

>>  uniform choice of f 
>> D’s randomness 

-| |



PPT distinguisher D 

Permn = {f1, f2, …, f       } 
(2n)! 

F: {0, 1}n x {0, 1}n → {0, 1}n 

(x1, y1), (x2, y2),…, (xk, yk) 

≤ negl(n) Pr [D                (1n) = 1] 
Fk( ) -| |

(y1, x1), (y2, x2),…, (yk, xk) 

, Fk
-1( )    Pr [D             (1n) = 1] 

f( ) , f-1( ) 

Strong PRP 

>> Any strong PRP is by default a PRP 

>> What about the converse ? 

Permn = {Fk1
, …, Fk    } 

2n 

F is a PRF if for every PPT D there is an negl(n) 

>> uniformly random k 
>> D‘s randomness  

>>  uniform choice of f 
>> D’s randomness 



q  Practical instantiation of CPA-secure SKE from only PRP/
Strong PRP 

PRF/PRP/SPRP 

>> Operates on block of message at a time --- hence the name 

>> Ex: AES, DES; No distinguisher found so far  

q  Theoretical instantiation of CPA-secure SKE from any 
PRF/PRP/SPRP. 

>> Blocks ciphers 



CPA Security for Multiple Encryptions 
Π = (Gen, Enc, Dec),       , n 

I can break Π 
Let me verify Gen(1n) 

PrivK         (n) 
A, Π 

cpa-mult 

PPT Attacker A 

Training Phase b ← {0, 1} 

Post-challenge Training  

b’ ∈ {0, 1} 

Game Output b = b’ 

1 --- attacker won 
b ≠ b’ 0 --- attacker lost 

(freedom to choose any pair) 
M0 = (m0,1, …, m0, t) 
→ 

M1 = (m1,1, …, m1, t) 
→ 

c1 ← Enck(mb,1) ct ← Enck(mb, t) ,…,  

½ + negl(n) 

 

Pr PrivK       (n) 
A, Π 

cpa-mult 
= 1 ≤ 

Π is CPA-secure for multiple encryptions  if for every PPT A, there is a negligible function 
negl, such that: 



CPA Multiple-message vs Single-message Security 

q  Experiment                 is a special case of PrivK     (n) 
A, Π 

cpa 
PrivK     (n) 

A, Π 

cpa-mult 

Ø  Set  |M0| = |M1| = 1  
→ →

q  Any cipher that is CPA-secure for multiple encryptions is also CPA-
secure (for single encryption) 

q  What about the converse ? 

>> Converse was not true in the case of co-security 
>> Ciphers with indistinguishable encryption for 
single message but no indistinguishable multiple 
encryptions 

Theorem: Any cipher that is CPA-secure is also CPA-secure for 
multiple encryptions 

q  Sufficient to prove CPA-security for single encryption; rest is “for 
free” 



CPA-security Guarantee in Practice 

q  Ensures security against CPA even if multiple messages are 
encrypted using a single key and communicated 

>> Even if the adversary knows that the encrypted messages belong 
to one of the two possible “classes” 

>> Even if the adversary has seen encryptions of the messages in 
those classes  in the past 

q  Very good security guarantees 

 >> The least we should expect from a cipher 



CPA-security for Arbitrary-length Messages 
(Theoretical Construction) 

q  Let Π = (Gen, Enc, Dec) be a fixed-length CPA-secure based on PRP/
SPRP/PRF. Supports message of length 

m1 m2 m3 

n n 
n 

Gen 
c1 c3 c6 k 

m 

c1c2…c6 ← Enck(m) 

Enck(m) 

 r in {0, 1}n 

c = (r, m⊕ Fk(r))   

Enck(m) 

 r in {0, 1}n 

c = (r, m⊕ Fk(r))   

Enck(m) 

 r in {0, 1}n 

c = (r, m⊕ Fk(r))   



How Good it is? 
 

Randomness 
Usage 
 
Ciphertext 
Expansion 
 
Ciphertext 
Computation 
Parallelizabl
e 
Randomness 
Reusability 
 
Minimal 
Assumption 
(PRF/PRP/
SPRP) 
 
CPA 
Security 
 

Theoretical 
Construction  

  
n / Block = kn 
 
 
2n / Block = 2kn 
 
 
Yes 
 
 
 
No 
 
 
 
PRF 
 
 
Yes 
 
 

Finally 
  

  
n / Overall = n 
 
 
k n + n  
 
 
Yes 
 
 
 
Yes 
 
 
 
PRF 
 
 
Yes 
 
 

Assume Message Blocks: k;  |m| = k n  



Block-cipher Modes of Operations 
q  Given 

Ø  A length-preserving block cipher F (may be a PRF/PRP/SPRP) with block length n  

Keyed Algorithm F 

k ∈R {0, 1}n 

x ∈ {0, 1}n 
Fk(x) = F(k, x) ∈ {0, 1}n 

q  Goal 

Ø  To encrypt a message m = m1m2 … mk using F with ciphertext length as small as 
possible and with randomness as less as possible. 

Ø  Without loss of generality --- each mi ∈ {0,1}n 

m1 m2 m3 m4 … mk m 

{0,1}n {0,1}n {0,1}n {0,1}n {0,1}n {0,1}n 



Electronic Code Book (ECB) Mode 

m1 m2 m3 m 

Gen 

k 

F F F 

c1 = Fk(m1) c2 = Fk(m2) c3 = Fk(m3) 

q  Decryption: compute mi = Fk
-1(ci) >> Assumes Fk

 is SPRP.  

q  CPA Security ?  

>> No. not even CO security for multi message 

>> Deterministic Encryption 

q  Encryption: compute ci = Fk(mi) – No randomness used at all ! |c| = |m| 

q  Parallelizable! 



Current Picture 
 

Randomness 
Usage 
 
Ciphertext 
Expansion 
 
Ciphertext 
Computation 
Parallizable 
 
Randomness 
Reusability 
 
Minimal 
Assumption 
(PRF/PRP/
SPRP) 
 
CPA 
Security 
 

Theoretical 
Construction  

  
n / Block = kn 
 
 
2n / Block = 2kn 
 
 
Yes 
 
 
 
No 
 
 
 
PRF 
 
 
Yes 
 
 

ECB Mode 
  

  
No randomness 
 
 
k n  
 
 
Yes 
 
 
 
--- 
 
 
 
SPRP 
 
 
NO 
 
 

Assume Message Blocks: k;  |m| = k n  



Cipher Block Chaining (CBC) Mode 
m1 m2 m3 m 

Gen 

k 

F 

q  Security ? --- looks like yes as Fk is a PRF/PRP/SPRP 

⊕ ⊕ ⊕ 

F F 

IV 

c1 = Fk(m1⊕c0) 
c0  c2 = Fk(m2⊕c1) c3 = Fk(m3⊕c2) 

Encryption  ci = Fk(mi⊕ci-1), for i = 1, …, k Enck(m1 m2 … ml) = (c0 c1… cl) 

Decryption:  mi = Fk
-1(ci) ⊕ci-1, for i = 1, …, l >> Assumes Fk

 is SPRP.  

 CPA Security ?  >> Randomized Encryption. Provides CPA security. HW 

 Blockwise Parallel Computation ?    >> NO 



Current Picture 
 

Randomness 
Usage 
 
Ciphertext 
Expansion 
 
Ciphertext 
Computation 
Parallizable 
 
Randomness 
Reusability 
 
Minimal 
Assumption 
(PRF/PRP/
SPRP) 
 
CPA 
Security 
 

Theoretical 
Construction  

  
n / Block = kn 
 
 
2n / Block = 2kn 
 
 
Yes 
 
 
 
No 
 
 
 
PRF 
 
 
Yes 
 
 

ECB Mode 
  

  
No randomness 
 
 
k n  
 
 
Yes 
 
 
 
--- 
 
 
 
SPRP 
 
 
NO 
 
 

Assume Message Blocks: k;  |m| = k n  

CBC Mode 
  

  
n 
 
 
k n + n  
 
 
NO 
 
 
 
--- 
 
 
 
SPRP 
 
 
YES 
 
 



m1 m2 m3 m 

Gen 

k 

F 

⊕ ⊕ ⊕ 

F F 

IV 

c1 = Fk(m1⊕c0) 
c0  c2 = Fk(m2⊕c1) c3 = Fk(m3⊕c2) 

q  Choosing  distinct IV enough ? Can save randomness 

IV Misuse in CBC Mode 

q  Unfortunately this version of CBC mode is not cpa-secure-- Assignment 



m1 m2 m3 m 

Gen 

k 

F 

⊕ ⊕ ⊕ 

F F 

IV 

c1 = Fk(m1⊕c0) 
c0  c2 = Fk(m2⊕c1) c3 = Fk(m3⊕c2) 

q  Can the last ciphertext of previous block act as the IV for next encryption ? 

IV misuse in CBC Mode 

Ø  Bandwidth and randomness saving 



m1 m2 m3 M1 

Gen 

k 

F

⊕ ⊕ ⊕

F F

IV1 

c1 c0  c2 c3  

IV misuse in CBC Mode 

m4 m5 m6 M2 

IV2 

c4  

k 

F

⊕ ⊕ ⊕

F F

c5 c6 c7  
Ideal way of encrypting two messages via CBC mode 

q  Can the last ciphertext of previous block act as the IV for next encryption ? 
Ø  Bandwidth and randomness saving 



m1 m2 m3 M1 

Gen 

k 

F

⊕ ⊕ ⊕

F F

IV1 

c1 c0  c2 c3  

IV misuse in CBC Mode- Chained CBC 

m4 m5 m6 M2 

k 

F

⊕ ⊕ ⊕

F F

c4 c5 c6  
Chained CBC mode 

q  Can the last ciphertext of previous block act as the IV for next encryption ? 

>> Bandwidth and randomness saving 

q  Chained CBC mode --- used in SSL 3.0 and TLS 1.0 

>> Stateful variant of CBC 

q  CPA security?  
>> It is “equivalent” to encrypting a single large message M = M1 || M2 via CBC mode 

>> Yet Not CPA-secure 

No modifications to crypto 
schemes even if the 
modifications look benign 

BEAST attack on SSL/TSL 



Output Feedback (OFB) Mode 

m1 m2 m3 m 

Gen 

k 

F F F 

IV 

y1 = Fk(y0) 
y0  y2 = Fk(y1) 

c1 = y1⊕m1 

q  First generate a pseudorandom stream of pad (independent of m) 

q  Use the pseudorandom stream for masking m 

y3 = Fk(y2) 

⊕ ⊕ ⊕ 

c2 = y2⊕m2 c3 = y3⊕m3 c0  

Encryption: Enck(m1 m2 … ml) = (c0 c1… cl) 



Output Feedback (OFB) Mode 

m1 m2 m3 m 

Gen 

k 

F F F 

IV 

y1 = Fk(y0) 
y0  y2 = Fk(y1) 

c1 = y1⊕m1 

Not parallalizable but pre-computable 

CPA-secure! The chained version too! 

y3 = Fk(y2) 

⊕ ⊕ ⊕ 

c2 = y2⊕m2 c3 = y3⊕m3 c0  

Encryption: Enck(m1 m2 … ml) = (c0 c1… cl) 

Decryption: mi = F(yi-1) ⊕ ci   PRF Enough ! 
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Assume Message Blocks: k;  |m| = k n  

CBC Mode 
  

  
n 
 
 
k n + n  
 
 
NO 
 
 
 
--- 
 
 
 
SPRP 
 
 
YES 
 
 

OFB Mode 
  

  
n 
 
 
k n + n  
 
 
NO (But pre-
computable) 
 
 
YES 
 
 
 
PRF 
 
 
YES 
 
 



Counter (CTR) Mode 

m1 m2 m3 m 

Gen 

k 

F F F 

CTR ∈ {0, 1}n  

y1  y2 

c1 = y1⊕m1 

q  Same idea as in OFB modes : pseudorandom stream followed by masking 

Ø  However everything can be now parallelized 

y3 

⊕ ⊕ ⊕ 

c2 = y2⊕m2 c3 = y3⊕m3 c0  
Encryption: Enck(m1 m2 … ml) = (c0 c1… cl) 

CTR +1 CTR +2 CTR +3 

mod 2n 

Pseudorandom 
stream 



Counter (CTR) Mode 

m1 m2 m3 m 

Gen 

k 

F F F 

CTR ∈ {0, 1}n  

y1  y2 

c1 = y1⊕m1 

y3 

⊕ ⊕ ⊕ 

c2 = y2⊕m2 c3 = y3⊕m3 c0  
q  Encryption: Enck(m1 m2 … ml) = (c0 c1… cl); Decryption: Easy;   PRF enough! 

CTR +1 CTR +2 CTR +3 

mod 2n 

Pseudorandom 
stream 

q  Encryption / decryption can be parallelized 

q  Can decrypt a specific ciphertext block by just one invocation of F 

q  Chained/Statefull variant is CPA-secure 

Highly attractive 
features Chalk &Talk Session 2 Topic: 

CPA-security of CTR Mode 
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Some Practical Issues 

q  Block length in practice 

Ø  CBC, OFB, CTR mode uses a random IV as the starting point 

Ø  For randomizing the encryption process 

v  Ensures that each invocation of F is on a “fresh” input (w.h.p) 

v  If two invocations of F are on the same input --- security issues 

Ø  Ideal size of IV ? --- depends on block length supported by F 

q   Say the block length supported by F is l 
Ø  In CTR mode, IV will be a uniform string of l bits 

Ø  After 2l/2 encryptions, IV will repeat with a constant probability 

Ø  If l is too short, then impractical security (even if F is a SPRP) 

Ø   DES with l = 64 --- IV repetition after 232 ≈ 4, 300, 000, 000 encryptions 

v  Approximately 32 GB of plaintexts --- may not be too large for all applications 

Birthday paradox 



Some Practical Issues 

q  IV misuse 

Ø  Assumption made: a uniform IV selected as the starting point 

Ø  What if the assumption goes wrong (say due to poor randomness generation, 
incorrect implementation, etc) ? 

Ø  Problems if IV is repeated 

q  In the CTR and OFB modes, the same pseudorandom stream will be generated 

v  Two messages XORed with the same stream --- serious security breach 

q  In the CBC mode, the effect is not that serious 

v  After few blocks, inputs to F will “diverge” (blocks of m are also part of the input) 

q  Solution against IV misuse 

Ø  Use CBC mode 

Ø  Or stateful OFB / CTR mode 



Conclusion 
•  We discussed the notion of CPA 

Ø  A very important class of (passive) attack  

Ø  Solution: pseudorandom function (PRF) 

Ø  Minimum requirement from any cipher : CPA-security 

•  CPA-secure cipher requires stronger primitive than PRG 

•  Fixed-length CPA-secure cipher using PRF 

Ø  Arbitrary length CPA-secure encryption: divide into 
blocks and encrypt each block by fixed-length 
encryption --- theoretical (inefficient) 

Ø  Practical solution (modes of operation of        
block ciphers) 





Distribution for a TRF 
q  For simplicity, consider functions from {0,1}n to {0,1}n 

q  f is a TRF  {0,1}n to {0,1}n if picked uniformly at random from Funcn   

>> How many such functions ? --- 2n. 2n 

>> Funcn = {f1, f2, …, f        } --- family of all such functions 
2n. 2n 

>> Picking a f from Funcn ≈   

>> Each row of the look-up table of f randomly selected from {0,1}n 

x1 = 00000…0 y1 ∈R {0,1}n 

x2 = 00000…1 y2 ∈R {0,1}n 

… … 

x2n = 11111… 1 y2n ∈R {0,1}n 

>> Prob. that a random look-up table is of f = ½ n ½ n ½ n x x x … 



Distributions for a PRF 

q   Funcn = {f1, f2, …, f      } 2n. 2n 

q   Each function corresponds to a n-length key uniformly distributed 
over {0,1}n 

q  PRFs are keyed functions 

>> The key facilitates efficient evaluation of the function  

q  Funcn = {Fk1
, …, Fk    } 2n 

q  |Funcn|    >>>>>>>>>>>             |Funcn| 



Insecurity of ECB Mode: A practical Example 
q  Think of some practical situation where encrypting using ECB mode is 

indeed dangerous 

Ø  Suppose you want to encrypt a black and white image using ECB mode 

Ø  Say a group of pixels in the image corresponds to one block of F 

Image to be 
encrypted 

ECB mode 

Encrypted image Encrypted image (via a 
secure mode) 

q  Source: Wikipedia with imaged derived from Larry Ewing using GIMP 

Secure mode 



Block-cipher Modes of Operations : Some 
Practical Issues 

q  Message transmission errors (non-adversarial) 

Ø  Dropped packets, changed bits, etc 

Ø  Different modes of operations have different effect 

Ø  Standard solutions --- error-correction, re-transmission 

q  Message transmission errors (adversarial) 

Ø  What if the adversary “changes” ciphertext contents ? 

Ø  Issue of message integrity / authentication 

v  Will be discussed in detail later 


