Cryptography

Lecture 3

Arpita Patra

Quick Recall and Today's Roadmap

- » Construction based on PRG
- >> Overview of Proof by reduction
- » Proof of PRG-based SKE

» Extension of CO-security to CO-MULT-security and the second is stronger than previous

» Chosen Plaintext Attack (CPA), CPA Security, stronger than previous notions; minimum requirement for any SKE

- >> Is it practical?
- >> A construction for CPA-secure scheme
- » Proof of Security
- » Extension to CPA-MULT-security
- >> Modes of Operations (very efficient construction used in practice)

Chosen-Plaintext Attacks (CPA) (Single-message Security)

>> Adv's Goal: to determine the plain-text encrypted in a new cipher-text

M. Luby: Pseudorandomness and Cryptographic Applications; Princeton University Press, 1996

Mihir Bellare, <u>Anand Desai, E. Jokipii, Phillip Rogaway:</u> A Concrete Security Treatment of Symmetric Encryption. FOCS: 394-403, 1997

Is CPA Realistic ?

- How can an attacker influence parties to encrypt messages of its choice (using the same key)?
- □ Consider a secure hardware with secret-key embedded
 - >> Often used in military applications
- □ An insider may have access to the hardware (not the key)

» Can choose messages of its choice and get their encryptions

CPA shortened WWII by 2-3 Years

Breaking of German codes by British during WW II

PrivK $\begin{pmatrix} c \mu u \\ A, \Pi \end{pmatrix}$ (n) $\Pi = (Gen, Enc, Dec), \mathcal{M}, n$

Query: Plain-text

Response: Ciphertext

PPT Attacker A

I can break Π

Training Phase:

- \gg A is given oracle access to $Enc_k()$
- \gg A adaptively submits its query (free to submit m_0 , m_1) and receives their encryption

Challenge Phase:

» A submits two equal length challenge plaintexts

» A is free to submit any message of its choice (including the ones already queried during the training phase)

>> One of the challenge plaintexts is randomly encrypted for A (using fresh randomness)

Post-challenge Training Phase:

 \gg A is given oracle access to $Enc_k()$

 \gg A adaptively submits its query (possibly including m_0 , m_1) and receives their encryption

Response Phase:

- > A finally submits its guess regarding encrypted challenge plain-text
- > A wins the experiment if its guess is correct

 Π is CPA-secure if for every PPT A, there is a negligible function negl, such that:

$$\Pr\left(\begin{array}{c} cpa \\ PrivK (n) = 1 \\ A, \Pi \end{array}\right) \leq \frac{1}{2} + negl(n)$$

Search for Ingredients of CPA-Secure Scheme

Encryption procedure cannot be deterministic. Can u find an attack?
 Encryption procedure MUST be randomized

>> Need "fresh" randomness for each run of Enc. Results different ciphertexts for the same message

>> At the same time want to use a "single key".

Ingredient for CPA-secure SKEs

□ Need a smarter tool. A short key.

Pseudorandom Function (PRF)

O. Goldreich, S. Goldwasser and S. Micali. How to Construct Random Functions. JACM, 33(4), 792-807, 1986

Pseudorandom Functions (PRF)

 \Box What is a truly random function (TRF)?

>> Whose output behavior is completely unpredictable

>> Given an input, it randomly assigns one element from the co-domain as the output

>> Every element from the co-domain is a possible image with equal probability

□ What is a PRF?

>> Intuitively a function whose output behavior "looks like" a TRF

>> As long as the "entity" who observes is computationally bounded

Given a function f: is it TRF or PRF?

>> Randomness/Pseudorandomness tag of a function is meaningful when it is drawn from a distributions of functions.

TRF vs PRF

For simplicity, consider functions from {0,1}ⁿ to {0,1}ⁿ

□ Func_n = { f_1 , f_2 , ..., $f_{2^{n} 2^n}$ } --- family of all such functions

A function chosen uniformly at random from the above is a TRF

□ $Func_n = {F_{k_1}, ..., F_{k_{2^n}}}$ --- family of keyed functions with key length n A function chosen uniformly at random from the above is a PRF

PRFs are keyed functions; given key and input, there is an efficient way of computing a PRF

A possible Definition of PRF in PRG style

- Give F (table) either uniformly sampled from Func_n or from Func_n to PPT distinguisher D and ask if it is a TRF or PRF.
 >> Does it work?
 - >> No, since the description of the function is of exponential size
 - >> Instead we give D oracle access to either a TRF or a PRF and ask "tell us who are you interacting with?"

>> If D cannot tell apart the "behavior" of the function F_k (for a uniformly random k) from a truly random function f: $\{0,1\}^n \rightarrow \{0,1\}^n$, then we say f is a PRF.

- D can adaptively asks its queries
- D allowed to ask polynomial number of queries

 $F: \{0, 1\}^n \times \{0, 1\}^n \to \{0, 1\}^n$

Func_n = { $f_1, f_2, ..., f_{2^{n.2^n}}$ }

 $F: \{0, 1\}^n \times \{0, 1\}^n \to \{0, 1\}^n$

Func_n = { $f_1, f_2, ..., f_{2^{n} 2^n}$ }

- D can adaptively asks its queries
- D allowed to ask polynomial number of queries

Modeling PRF as an Indistinguishability Game

F is a PRF if for every PPT D there is an negl(n)

» D not given k in the above game --- otherwise D can distinguish with high probability

Existence of PRF

- Do PRF exists ?
- OWF → PRG → PRF (Tree Construction) (otheway is also possible; take as an HW)

>> NT based; Not used in practice

- Several practical PRFs
 - >> Block Ciphers, AES, DES
 - >> No good distinguishers found till now; believed to be PRF
 - >> AES/DES are PRFs: this is an assumption
 - >> High practical efficiency compared to provably-secure PRFs

PRF-based CPA-Secure Scheme

Potential solution

Look-up table of a TRF f from $\{0,1\}^n$ to $\{0,1\}^n$

Fixed-length CPA-Secure Encryption from PRF

- Let F be a length-preserving PRF (just for simplicity) Fixed-length encryption > F: $\{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}^n$
- Construct a CPA-secure encryption cipher for messages of length n

Security Proof

Theorem. If F_k is a PRF, then Π is a CPA-secure scheme.

Proof: On the board.

Recall Security Proof of PRG-based Scheme

Proof: Assume II is not secure
A, p(n):
$$\Pr\left(\begin{array}{c} co\\ PrivK\\ A, II \end{array}\right) \rightarrow \frac{1}{2} + 1/p(n)$$

$$\Pr\left(\begin{array}{c} co\\ PrivK\\ PrivK\\ A, \overline{II} \end{array}\right) = \frac{1}{2}$$

$$= \frac{1}{2}$$

$$\Pr\left[D(G(s)) = 1\right]$$

$$\Pr\left[D(y) = 1\right]$$

Pseudo Random Permutation (PRP)

F is a PRF if for every PPT D there is an negl(n)

Pr [D^{Fk(*)}(1ⁿ) = 1] >> uniformly random k >> D's randomness

$$\Pr\left[D^{f(\bullet)}(1^{n}) = 1\right] \leq \operatorname{negl}(n)$$
w uniform choice of f

>> D's randomness

Strong PRP

F is a PRF if for every PPT D there is an negl(n)

$$\Pr\left[D^{F_{k}(\bullet), F_{k}^{-1}(\bullet)}(1^{n}) = 1\right] - \Pr\left[D^{f(\bullet), f^{-1}(\bullet)}(1^{n}) = 1\right] \leq \operatorname{negl}(n)$$

$$\Rightarrow \text{ uniformly random } k \qquad \Rightarrow \text{ uniform choice of } f$$

$$\Rightarrow D's \text{ randomness} \qquad \Rightarrow D's \text{ randomness}$$

PRF/PRP/SPRP

- Theoretical instantiation of CPA-secure SKE from any PRF/PRP/SPRP.
- Practical instantiation of CPA-secure SKE from only PRP/ Strong PRP
 - >> Ex: AES, DES; No distinguisher found so far
 - >> Blocks ciphers
 - >> Operates on block of message at a time --- hence the name

CPA Security for Multiple Encryptions

 Π is CPA-secure for multiple encryptions if for every PPT A, there is a negligible function negl, such that:

CPA Multiple-message vs Single-message Security

Theorem: Any cipher that is CPA-secure is also CPA-secure for multiple encryptions

Sufficient to prove CPA-security for single encryption; rest is "for free"

CPA-security Guarantee in Practice

Ensures security against CPA even if multiple messages are encrypted using a single key and communicated

>> Even if the adversary knows that the encrypted messages belong to one of the two possible "classes"

>> Even if the adversary has seen encryptions of the messages in those classes in the past

Very good security guarantees

>> The least we should expect from a cipher

CPA-security for Arbitrary-length Messages (Theoretical Construction)

□ Let II = (Gen, Enc, Dec) be a fixed-length CPA-secure based on PRP/ SPRP/PRF. Supports message of length

 $c_1c_2...c_6 \leftarrow Enc_k(m)$

How Good it is?

Assume Message Blocks: k; |m| = k n

	Theoretical Construction	Finally
Randomness Usage	n / Block = kn	n / Overall = 1
Ciphertext Expansion	2n / Block = 2kn	k n + n
Ciphertext Computation Parallelizabl e	Yes	Yes
Randomness Reusability	No	Yes
Minimal Assumption (PRF/PRP/ SPRP)	PRF	PRF
CPA Security	Yes	Yes

Block-cipher Modes of Operations

Given

> A length-preserving block cipher F (may be a PRF/PRP/SPRP) with block length n

Keyed Algorithm F

Goal

- > To encrypt a message $m = m_1m_2 \dots m_k$ using F with ciphertext length as small as possible and with randomness as less as possible.
- > Without loss of generality --- each $m_i \in \{0,1\}^n$

Electronic Code Book (ECB) Mode

- Encryption: compute $c_i = F_k(m_i)$ No randomness used at all |c| = |m|
- Decryption: compute $m_i = F_k^{-1}(c_i)$ >> Assumes F_k is SPRP.

- Parallelizable!
- **CPA** Security?
 - >> Deterministic Encryption
 - >> No. not even CO security for multi message

Current Picture

Assume Message Blocks: k; |m| = k n

	Theoretical Construction	ECB Mode
Randomness Usage	n / Block = kn	No randomness
Ciphertext Expansion	2n / Block = 2kn	k n
Ciphertext Computation Parallizable	Yes	Yes
Randomness Reusability	No	
Minimal Assumption (PRF/PRP/ SPRP)	PRF	SPRP
CPA Security	Yes	NO

Cipher Block Chaining (CBC) Mode

CPA Security?

>> Randomized Encryption. Provides CPA security. HW

Current Picture

Assume Message Blocks: k; |m| = k n

	Theoretical Construction	ECB Mode	CBC Mode
Randomness Usage	n / Block = kn	No randomness	n
Ciphertext Expansion	2n / Block = 2kn	kn	kn+n
Ciphertext Computation Parallizable	Yes	Yes	NO
Randomness Reusability	No		
Minimal Assumption (PRF/PRP/ SPRP)	PRF	SPRP	SPRP
CPA Security	Yes	NO	YES

IV Misuse in CBC Mode

□ Choosing distinct IV enough ? Can save randomness

□ Unfortunately this version of CBC mode is not cpa-secure-- Assignment

IV misuse in CBC Mode

Can the last ciphertext of previous block act as the IV for next encryption ?
 > Bandwidth and randomness saving

IV misuse in CBC Mode

Ideal way of encrypting two messages via CBC mode

Can the last ciphertext of previous block act as the IV for next encryption ?
 Bandwidth and randomness saving

IV misuse in CBC Mode- Chained CBC

Output Feedback (OFB) Mode

Encryption: $Enc_{k}(m_{1} m_{2} ... m_{l}) = (c_{0} c_{1}... c_{l})$

First generate a pseudorandom stream of pad (independent of m)
 Use the pseudorandom stream for masking m

Output Feedback (OFB) Mode

Encryption: $Enc_{k}(m_{1} m_{2} ... m_{l}) = (c_{0} c_{1}... c_{l})$

Decryption: $m_i = F(y_{i-1}) \oplus c_i$ PRF Enough !

Not parallalizable but pre-computable

CPA-secure! The chained version too!

Current Picture

Assume Message Blocks: k; |m| = k n

	Theoretical Construction	ECB Mode	CBC Mode	OFB Mode
Randomness Usage	n / Block = kn	No randomness	n	n
Ciphertext Expansion	2n / Block = 2kn	k n	k n + n	k n + n
Ciphertext Computation Parallizable	Yes	Yes	NO	NO (But pre- computable)
Randomness Reusability	No			YES
Minimal Assumption (PRF/PRP/ SPRP)	PRF	SPRP	SPRP	PRF
CPA Security	Yes	NO	YES	YES

Counter (CTR) Mode

Encryption: $Enc_{k}(m_{1} m_{2} ... m_{l}) = (c_{0} c_{1}... c_{l})$

□ Same idea as in OFB modes : pseudorandom stream followed by masking

> However everything can be now parallelized

Counter (CTR) Mode

Current Picture

Assume Message Blocks: k; |m| = k n

	Theoretical Construction	ECB Mode	CBC Mode	OFB Mode	CTR Mode
Randomness Usage	n / Block = kn	No randomness	n	n	n
Ciphertext Expansion	2n / Block = 2kn	k n	k n + n	k n + n	k n + n
Ciphertext Computation Parallizable	Yes	Yes	NO	NO (But pre- computable)	YES
Randomness Reusability	No			YES	YES
Minimal Assumption (PRF/PRP/ SPRP)	PRF	SPRP	SPRP	PRF	PRF
CPA Security	Yes	NO	YES	YES	YES

Some Practical Issues

Block length in practice

- > CBC, OFB, CTR mode uses a random IV as the starting point
- For randomizing the encryption process
 - Ensures that each invocation of F is on a "fresh" input (w.h.p)
 - ✤ If two invocations of F are on the same input --- security issues
- > Ideal size of IV ? --- depends on block length supported by F
- □ Say the block length supported by F is |
 - > In CTR mode, IV will be a uniform string of | bits
 - > After $2^{1/2}$ encryptions, IV will repeat with a constant probability
 - > If is too short, then impractical security (even if F is a SPRP)
 - > DES with I = 64 --- IV repetition after $2^{32} \approx 4$, 300, 000, 000 encryptions
 - * Approximately 32 GB of plaintexts --- may not be too large for all applications

Birthday paradox

Some Practical Issues

□ IV misuse

> Assumption made: a uniform IV selected as the starting point

> What if the assumption goes wrong (say due to poor randomness generation, incorrect implementation, etc)?

> Problems if IV is repeated

□ In the CTR and OFB modes, the same pseudorandom stream will be generated

Two messages XORed with the same stream --- serious security breach

□ In the CBC mode, the effect is not that serious

After few blocks, inputs to F will "diverge" (blocks of m are also part of the input)

□ Solution against IV misuse

- Use CBC mode
- > Or stateful OFB / CTR mode

Conclusion

- We discussed the notion of CPA
 - > A very important class of (passive) attack
 - > Minimum requirement from any cipher : CPA-security
- CPA-secure cipher requires stronger primitive than PRG
 - Solution: pseudorandom function (PRF)
- Fixed-length CPA-secure cipher using PRF
 - Arbitrary length CPA-secure encryption: divide into blocks and encrypt each block by fixed-length encryption --- theoretical (inefficient)
 - Practical solution (modes of operation of block ciphers)

Distribution for a TRF

For simplicity, consider functions from {0,1}ⁿ to {0,1}ⁿ

>> How many such functions ? --- 2^{n. 2ⁿ}

>> Func_n = { f_1 , f_2 , ..., $f_{2^{n.2^n}}$ } --- family of all such functions

- ☐ f is a TRF {0,1}ⁿ to {0,1}ⁿ if picked uniformly at random from Func_n >> Picking a f from Func_n ≈
 - >> Each row of the look-up table of f randomly selected from {0,1}ⁿ

x ₁ = 000000	y₁ ∈ _R {0,1} ⁿ
x ₂ = 000001	y₂ ∈ _R {0,1} ⁿ
$x_{2^n} = 111111$	y₂n ∈ _R {0,1} ⁿ

>> Prob. that a random look-up table is of $f = \frac{1}{2^n} \times \frac{1}{2^n} \times \dots \times \frac{1}{2^n}$

Distributions for a PRF

Given Sunc_n = {
$$f_1, f_2, ..., f_{2^{n.2^n}}$$
}

□
$$Func_n = \{F_{k_1}, ..., F_{k_{2^n}}\}$$

Each function corresponds to a n-length key uniformly distributed over {0,1}ⁿ

>> The key facilitates efficient evaluation of the function

□ PRFs are keyed functions

Insecurity of ECB Mode: A practical Example

- Think of some practical situation where encrypting using ECB mode is indeed dangerous
 - Suppose you want to encrypt a black and white image using ECB mode
 - Say a group of pixels in the image corresponds to one block of F

Source: Wikipedia with imaged derived from Larry Ewing using GIMP

Block-cipher Modes of Operations : Some Practical Issues

□ Message transmission errors (non-adversarial)

- > Dropped packets, changed bits, etc
- > Different modes of operations have different effect
- > Standard solutions --- error-correction, re-transmission
- □ Message transmission errors (adversarial)
 - > What if the adversary "changes" ciphertext contents ?
 - > Issue of message integrity / authentication
 - Will be discussed in detail later