
Cryptography

Lecture 4

Arpita Patra

Quick Recall and Today’s Roadmap
>> CPA Security

>> PRF-based construction

>> Proof of Security
>> Extension to CPA-MULT-security

>> Modes of Operations (very efficient construction used in practice)

>> CCA Security, more stronger than CPA security

>> Is it practical? Yes we will break CBC Mode CPA secure scheme under CCA

>> Introduction to MAC
>> Security Definition

>> PRF-based scheme

>> Domain Extension for MAC

 Chosen-Ciphertext Attacks (CCA)
(Single-message Security)

k k
??

Enc
m c = Enck(m)

(m1, c1), (m2, c2), …, (mt, ct): ci = Enck(mi)

>> Adversary influences the honest parties to get encryption of plain-texts + decryption of
ciphertexts of its choice

>> Adv’s Goal: to determine the plain-text encrypted in a new cipher-text

Encryption Oracle

Dec

(c1, m1), (c2, m2), …, (ct, mt): mi = Deck(ci)

Decryption Oracle
>> CCA is more powerful than CPA (subsumes CPA)

>> Getting Decryption Oracle (DO) Service is much easier than getting
Encryption Oracle service

>> A little help from DO can be very very detrimental.

DO Service is Practical

m = transfer
$x from my
account to
account #y

Bank customer

Enc
m c

Bank

c’ Dec
m’

Bank customer
Bank

Enc
m

m = transfer
$x from my
account to
account #y

c

m’ = transfer
$10000x from
my account to
account #y

Dear customer: “did you instructed us to transfer
$10000x from your account to account #y ?”

I see! So c’ is the encryption for the message m’ !

q  Similar scenarios:

>> An attacker sends an arbitrary ciphertext c’(for an unknown message) to army
headquarters and waits for the ciphertext to be decrypted and observes the behavior/
movements of the army --- will give an hint what c’ corresponds to

>> As a part of the protocol, an honest party may give DO service; Think of a simple
authentication protocol used in a small company.

DO Service is Practical

Adv no longer an eavesdropper, he is active and malicious!!

DO is Extremely Powerful
q  Even the knowledge of whether a modified ciphertext decrypted correctly or not can help

an attacker to completely find the underlying plaintext !!

q  Padding oracle attack --- can be easily launched on several practically deployed ciphers

q  CBC-mode of encryption and decryption when |m| = multiple of block length L in bytes

m1 m2 m

k

F

⊕ ⊕

F

IV

c1 c0 c2

m2 = F-1(c2) ⊕ c1

m1 = F-1(c1) ⊕ c0

But what if |m| ≠ l L?

q  PKCS#5 padding --- a popular padding

 >> Let b be the number of bytes need to be appended in the last block of m to make its
length L bytes --- 1 ≤ b ≤ L

>> Append b bytes to the last block of m, each of them representing the integer value b

Encryption Decryption

 CBC Mode with PKCS#5 Padding

m1 m2 m b b b b

L L

k

F

⊕ ⊕

F

IV

c1 = Fk(m1⊕c0) c0 c2 = Fk(m’2 ⊕c1)

Decrypt as per usual CBC-mode
decryption and obtain m1 || m’2

Read the final byte value b

If the last b bytes of m’2 all have value
b then strip-off the pad and output m

Else output bad padding (request for
re-transmission)

k k

Enc
m

k

c1 c2

q  An attacker can modify the ciphertexts and learn b (|m| leaked) and m.

q  Hint: What will happen to the decryption of m2 if the ith byte of c1 is modified by Δ ?

Ø  m’2 on decryption will be modified by Δ at ith byte !!

Encryption Decryption

If decryption successful,
do nothing
else ask for retransmission

m’2 = F-1(c2) ⊕ c1

m1 = F-1(c1) ⊕ c0

k k

Enc
m

k

c1 c2

c’1 c2

1st byte of c1 changed

Dec

Failure, Retransmit please

b = L

Padding Oracle Attack on CBC Mode

m1 m2 m b b b b

L L

k

F

⊕ ⊕

F

IV

c1 = Fk(m1⊕c0) c0 c2 = Fk(m’2 ⊕c1)

Encryption Decryption

k

Decrypt as per usual CBC-mode
decryption and obtain m1 || m’2

Read the final byte value b

If the last b bytes of m’2 all have value
b then strip-off the pad and output m

Else output bad padding (request for
re-transmission)

m’2 = F-1(c2) ⊕ c1

m1 = F-1(c1) ⊕ c0

k k

Enc
m

k

c1 c2

c’1 c2

1st byte of c1 changed

Dec

Padding Oracle Attack on CBC Mode

m1 m2 m b b b b

L L

k

F

⊕ ⊕

F

IV

c1 = Fk(m1⊕c0) c0 c2 = Fk(m’2 ⊕c1)

Encryption Decryption

k

Success

b < L

Decrypt as per usual CBC-mode
decryption and obtain m1 || m’2

Read the final byte value b

If the last b bytes of m’2 all have value
b then strip-off the pad and output m

Else output bad padding (request for
re-transmission)

m’2 = F-1(c2) ⊕ c1

m1 = F-1(c1) ⊕ c0

k k

Enc
m

k

c1 c2

c’1 c2

2nd byte of c1 changed

Dec

Padding Oracle Attack on CBC Mode

m1 m2 m b b b b

L L

k

F

⊕ ⊕

F

IV

c1 = Fk(m1⊕c0) c0 c2 = Fk(m’2 ⊕c1)

Encryption Decryption

k

Failure/Success

b=L-1 / b < L-1

Decrypt as per usual CBC-mode
decryption and obtain m1 || m’2

Read the final byte value b

If the last b bytes of m’2 all have value
b then strip-off the pad and output m

Else output bad padding (request for
re-transmission)

m’2 = F-1(c2) ⊕ c1

m1 = F-1(c1) ⊕ c0

k k

Enc
m

k

c1 c2

c’1 c2

ith byte of c1 changed

Dec

Padding Oracle Attack on CBC Mode

m1 m2 m b b b b

L L

k

F

⊕ ⊕

F

IV

c1 = Fk(m1⊕c0) c0 c2 = Fk(m’2 ⊕c1)

Encryption Decryption

k

Failure/Success

b=L- i + 1 / b < L- i + 1

Decrypt as per usual CBC-mode
decryption and obtain m1 || m’2

Read the final byte value b

If the last b bytes of m’2 all have value
b then strip-off the pad and output m

Else output bad padding (request for
re-transmission)

m’2 = F-1(c2) ⊕ c1

m1 = F-1(c1) ⊕ c0

k k

Enc
m

k

c1 c2

c’1 c2

ist byte of c1 changed

Dec

Padding Oracle Attack on CBC Mode

m1 m2 m b b b b

L L

k

F

⊕ ⊕

F

IV

c1 = Fk(m1⊕c0) c0 c2 = Fk(m’2 ⊕c1)

Encryption Decryption

k

Failure

b=L-i + 1 q  If i is the least indexed modified ciphertext
corresponding to which “Failure” comes for
then b = L – i + 1 J b is leaked. |m| is leaked!!

Decrypt as per usual CBC-mode
decryption and obtain m1 || m’2

Read the final byte value b

If the last b bytes of m’2 all have value
b then strip-off the pad and output m

Else output bad padding (request for
re-transmission)

m’2 = F-1(c2) ⊕ c1

m1 = F-1(c1) ⊕ c0

k k

Enc
m

k

c1 c2

Dec

Padding Oracle Attack on CBC Mode

m1 m2 m b b b b

L L

k

F

⊕ ⊕

F

IV

c1 = Fk(m1⊕c0) c0 c2 = Fk(m’2 ⊕c1)

Encryption Decryption

k

To do: find m.
We will see how adv can find the last byte of m. This
can be extended for rest of the message bytes

Decrypt as per usual CBC-mode
decryption and obtain m1 || m’2

Read the final byte value b

If the last b bytes of m’2 all have value
b then strip-off the pad and output m

Else output bad padding (request for
re-transmission)

m’2 = F-1(c2) ⊕ c1

m1 = F-1(c1) ⊕ c0

k k

Enc
m

k

c1 c2

Dec

Padding Oracle Attack on CBC Mode

m1 m2 m b b b b

L L

k

F

⊕ ⊕

F

IV

c1 = Fk(m1⊕c0) c0 c2 = Fk(m’2 ⊕c1)

Encryption Decryption

k

Once b is known attacker knows m2 is of the form:

b b b b B

Decrypt as per usual CBC-mode
decryption and obtain m1 || m’2

Read the final byte value b

If the last b bytes of m’2 all have value
b then strip-off the pad and output m

Else output bad padding (request for
re-transmission)

m’2 = F-1(c2) ⊕ c1

m1 = F-1(c1) ⊕ c0

k k

Enc
m

k

c1 c2

Dec

Padding Oracle Attack on CBC Mode

m1 m2 m b b b b

L L

k

F

⊕ ⊕

F

IV

c1 = Fk(m1⊕c0) c0 c2 = Fk(m’2 ⊕c1)

Encryption Decryption

k

b b b b B

c’1 c2

Last b+1 bytes of c1 changed by Δ1

 Δ1 = (000… 1 (b+1)⊕b (b+1)⊕b (b+1)⊕ b)

Success/Failure

B = b / B ≠ b b+1 B+1 b+1 b+1 b+1

Run at most 256 times to know B exactly!!

Decrypt as per usual CBC-mode
decryption and obtain m1 || m’2

Read the final byte value b

If the last b bytes of m’2 all have value
b then strip-off the pad and output m

Else output bad padding (request for
re-transmission)

m’2 = F-1(c2) ⊕ c1

m1 = F-1(c1) ⊕ c0

CPA Secure
CBC Mode

Scheme Broken
L

Padding Oracle Attack

Serge Vaudenay:
Security Flaws Induced by CBC Padding - Applications to
SSL, IPSEC, WTLS EUROCRYPT 2002: 534-546

Morale of the Story
q Attacker can have control over “what” is decrypted

Ø Will help the attacker to break the secrecy !!

q Remedy:

Ø  Capture CCA in the security definition.

Ø  Chosen-ciphertext attack (CCA) security

CCA Indistinguishability Experiment

Query: Plain-text

Response: Ciphertext

Training Phase:

Ø  A is given oracle access to both Enck() and Deck()

Ø  A adaptively submits its queries (any query is allowed in any order) and receives
response

I can break Π
Gen(1n) Let me verify

PPT Attacker A

Π = (Gen, Enc, Dec), PrivK (n)
A, Π

cca

Query: Cipher-text

Response: Plaintext

CCA Indistinguishability Experiment
Π = (Gen, Enc, Dec),

Gen(1n)

PrivK (n)
A, Π

cca

Challenge Phase:

Training Phase

Ø  A submits two equal length challenge plaintexts

Ø  A is free to submit any message of its choice (including the ones already queried during
the training phase)

Ø  One of the challenge plaintexts is randomly encrypted for A (using fresh
randomness)

m0, m1∈ , |m0| = |m1|

b ← {0, 1}

c ← Enck(mb)

I can break Π
Let me verify

PPT Attacker A

CCA Indistinguishability Experiment
Π = (Gen, Enc, Dec),

I can break Π
Let me verify Gen(1n)

PrivK (n)
A, Π

cca

PPT Attacker A

Post-challenge Training Phase:

Training Phase

m0, m1∈ , |m0| = |m1|

b ← {0, 1}

c ← Enck(mb)

Ø  A is given oracle access to both Enck() and Deck()

Ø  A adaptively submits its encryption/decryption query and receives the response

Query: Plain-text/Ciphertext

Response: Ciphertext/Plaintext

A is restricted from submitting the challenge ciphertext c as the decryption query
--- otherwise impossible to achieve any security

CCA Indistinguishability Experiment
Π = (Gen, Enc, Dec),

I can break Π
Let me verify Gen(1n)

PrivK (n)
A, Π

cca

PPT Attacker A

Response Phase:

Training Phase

m0, m1∈ , |m0| = |m1|

b ← {0, 1}

c ← Enck(mb)

Post-challenge Training

Ø  A finally submits its guess regarding encrypted challenge plain-text

Ø  A wins the experiment if its guess is correct

b’ ∈ {0, 1}

Game Output b = b’

1 --- attacker won
b ≠ b’ 0 --- attacker lost

CCA Indistinguishability Experiment
Π = (Gen, Enc, Dec),

I can break Π
Let me verify Gen(1n)

PrivK (n)
A, Π

cca

PPT Attacker A

Training Phase

m0, m1∈ , |m0| = |m1|

b ← {0, 1}

c ← Enck(mb)

Post-challenge Training

b’ ∈ {0, 1}

Game Output b = b’

1 --- attacker won
b ≠ b’ 0 --- attacker lost

½ + negl(n)

Pr PrivK (n)
A, Π

cca
= 1 ≤

Π is CCA-secure if for every PPT A, there is a negligible function negl, such that:

CCA Security for Multiple Encryptions
Π = (Gen, Enc, Dec),

I can break Π
Let me verify Gen(1n)

PrivK (n)
A, Π

cca-mult

PPT Attacker A

Training Phase b ← {0, 1}

Post-challenge Training

b’ ∈ {0, 1}

Game Output b = b’

1 --- attacker won
b ≠ b’ 0 --- attacker lost

(freedom to choose any pair)
M0 = (m0,1, …, m0, t)
→

M1 = (m1,1, …, m1, t)
→

c1 ← Enck(mb,1) ct ← Enck(mb, t) ,…,

½ + negl(n)

Pr PrivK (n)
A, Π

cca-mult
= 1 ≤

Π is CCA-secure for multiple encryptions if for every PPT A, there is a negligible function
negl, such that:

CCA Multiple-message vs Single-message Security

•  Experiment is a special case of PrivK (n)
A, Π

cca
PrivK (n)

A, Π

cca-mult

Ø  Set |M0| = |M1| = 1
→ →

•  Any cipher that is CCA-secure for multiple encryptions is also
CCA-secure (for single encryption)

•  What about the converse ?

Theorem: Any cipher that is CCA-secure is also CCA-secure for
multiple encryptions

>> Sufficient to prove CCA-security for single message; rest is “for
free”

CCA Security is Stronger Than CPA-security
Π = (Gen, Enc, Dec), , n

I can break Π
Let me verify

Gen(1n)

PrivK (n)
A, Π

cca

PPT Attacker A

b ← {0, 1}

Enck(m) → (r, Fk(r) ⊕ m)

F

m0 = (00…0) m1 = (11…1)

c* = (r, s*) = (r, Fk(r) ⊕ mb)

Plz decrypt c = (r, s) for me

(s is same as s* with 1st bit flipped)

m = Deck(c)

b’ = 0 if m = 100…0

b’ = 1 if m = 011…1

q  No encryption-oracle service used in the above attack !!

q  What is the probability of A winning the game above ?

Ø  If mb = (00…0) then m = (100…0). So A outputs b’ = 0 = b with probability 1

Ø  If mb = (11…1) then m = (011…1). So A outputs b’ = 1 = b with probability 1

Towards Achieving CCA-Security

>> This is called malleability. CPA-secure scheme does not guarantee non-
malleability

What capability of adv lets him win?

Need a SKE so that

>> Easy to manipulate known ciphertexts to obtain new ciphertexts so that the
relation between the underlying messages are known to him..then he gets DO
service on the changed ciphertext to get the message.. Using the relation retrieve
the original message

>> Together, the above two makes DO useless to the adversary.

 >> Creating a new ciphertext will be nearly impossible…

>> Changing a ciphertext should either result in an incorrect ciphertext or should
decrypt to a plaintext which is unrelated to the original plaintext

Message Authentication Codes (MAC) helps us to get such a cipher!!

Message Integrity and Authentication
q  In secure-communication, is it enough to keep privacy of the message?

Ø  What is the guarantee that a message received by R indeed originated from S and vice-
versa ? --- issue of message authentication

Ø  Even if it is confirmed that the message received by R originated from S, what is the
guarantee that the message content is genuine ? --- issue of message integrity

Ø  Message integrity and authentication are also part of secure communication

q  Encryption scheme does not help (unless designed with specific purpose of MI and MA).

q  Message authentication/integrity is important even when privacy is not a concern

Ø  Any kind of access control system needs them. Think of bank, institute, any organization

Ø  Consider all the CPA secure schemes considered so far (PRF-based, modes of
operations); none provide MI/MA

Ø  Spoofing attack is easy. Changing ciphertext and thereby changing the underlying
message is easy!!

 Message Authentication in Private Key Setting

•  Secret key k shared in advance (by “some” mechanism)

k k

m

•  m is the plain-text

Tag Generation Verification
m m,t

•  t is the tag

0/1

•  Symmetry: same key used for encryption and decryption

Syntax of Message Authentication Codes (MAC)
A MAC is a 3-tuple (Gen, Mac, Vrfy) of algorithms with the following syntax

Gen
1n k

Output: key k (usually uniform at random from {0, 1}n
Input: 1n

Running time: O(Poly(n)); MUST be randomized

Mac
m∈{0, 1}* Tag t

k

Vrfy
m∈{0, 1}*, t 0/1

k

(Invalid/Valid)

1.  Key-generation Algorithm (Gen(1n)):

2. Tag Generation Algorithm (Mack(m)); m from {0,1}*:

3. Veification Algorithm (Vrfyk(m,t)):

Output: Tag t

Input: m,k

Running time: O(Poly(n)); Deterministic/Randomized

Output: 0/1

Input: (m,t),k

Running time: O(Poly(n)); Deterministic (usually)

 Syntax of MAC
•  Any MAC defines the following three space (sets):

Ø  Set of all possible keys output by algorithm Gen

1.  Key space (K):

2. Plain-text (message) space (M):

Ø  Set of all possible “legal” message (i.e. those supported by Mac)

3. Tag space (T):

Ø  Set of all tags output by algorithm Mac

Ø  The sets M and K together define the set T

•  Any MAC is defined by specifying (Gen, Mac, Vrfy) and M

Correctness: For every n, every k output by Gen and every message m the following should
hold :

Vrfyk(m, Mack(m)) = 1

 Towards Defining Security of MAC
Two components of a security definition:

Break:

Threat: >> Computationally Bounded / negligible success prob.

>> New (m,t) pair such that adv has not seen a tag on m

>> New (m,t) such that adv has not seen (m,t) before–-
stronger notion

>> What kind of attacks he can mount?
q  Chosen Message Attack (CMA) --- in spirit of CPA; models the fact

that adv can influence the honest parties to authenticate a message
of its choice.

q  Chosen Message and Verification Attack (CMVA) --- in spirit of CCA
models the fact that the adv can influence the honest parties to
authenticate messages and verify tag, message pair of its choice.

>> Randomized

MAC Experiment

Experiment Mac-forge (n)
A, Π

Π = (Gen, Mac, Vrfy), n

I can break Π

Run time: Poly(n)

Attacker A

Let me verify

q  Training phase :
Ø  A gets tag for several messages of its choice adaptively --- access to Mac-oracle

Plz give me the tag for m1

Gen(1n)

t1 ← Mack(m1)

Plz give me the tag for m2

t2 ← Mack(m2)

Plz give me the tag for ml

tl ← Mack(ml)

MAC Authentication Experiment

Experiment Mac-forge (n)
A, Π

Π = (Gen, Mac, Vrfy), n

I can break Π

Run time: Poly(n)

Attacker A

Let me verify

 Q = {(m1, …,ml }

Gen(1n)

Training Phase

Forged tag generated by A

(m, t)

game output
Ø  1 (A succeeds) if Vrfyk(m, t) = 1 and m ∉ Q
Ø  0 (A fails) otherwise

Π is existentially unforgeable under an adaptive chosen message attack or CMA- secure if

 Pr [Mac-forge (n) = 1] ≤ negl(n)
A, Π

MAC Authentication Experiment

Experiment Mac-sforge (n)
A, Π

Π = (Gen, Mac, Vrfy), n

I can break Π

Run time: Poly(n)

Attacker A

Let me verify

 Q = {(m1, t1), …,(ml , tl)}

Gen(1n)

Training Phase

Forged tag generated by A

(m, t)

game output
Ø  1 (A succeeds) if Vrfyk(m, t) = 1 and (m, t) ∉ Q
Ø  0 (A fails) otherwise

Π is existentially unforgeable under an adaptive chosen message attack or strong CMA-
secure if Pr [Mac-sforge (n) = 1] ≤ negl(n)

A, Π

What is not Captured in MAC Security Definition

>> Let a bank user X sends the following instruction to the bank:
“transfer $1000 from account #X to account #Y“

>> What if an attacker simply sends 10 copies of the original (message, tag) pair --Bank will
consider each request genuine --- disaster for X

>> The above attack is called replay attack

q  Why Replay Attack is not taken care in MAC Definition

>> Additional techniques like (synchronized) counters, timestamp, etc are used

q  If A returns (m,t) for a already queried message, we don’t consider that as
the break.

>> What it captures in real scenario? if (m,t) is a valid pair generated by the sender,
then there is no harm if the receiver accepts it even though adv forwards it (may be at a
later point of time)

>> Is it problematic?

>> Whether this attack is of concern depends on actual application scenario

>> So it is better to deal with this in the outer protocol (that uased MAC for
authentication)

