Cryptography

Lecture 5

Arpita Patra

Quick Recall and Today's Roadmap

- >> CCA Security, more stronger than CPA security
- >> Break of CBC Mode CPA secure scheme under CCA- Padding Oracle Attack
- >> MAC
- >> Security Definitions: CMA, sCMA. CMVA, sCMVA
- >> PRF-based MAC
- >> Domain Extension for MAC: To handle arbitrary length message

Not at all an easy task;

Naïve construction (by Goldreich);

Proof of Security

CBC-MAC: Practical Domain Extension

>> Authenticated Encryption: Privacy and Integrity

Notion that subsumes CCA-security

Construction (again a bit tricky)

proof of Security

CMA Security for MAC

Experiment Mac-forge
$$A, \Pi$$

 Π = (Gen, Mac, Vrfy), n

game output

- > 1 (A succeeds) if $Vrfy_k(m, t) = 1$ and $m \notin Q$
- > 0 (A fails) otherwise

 Π is CMA-secure if for every A, there is a negl(n) such that

Pr [Mac-forge (n) = 1]
$$\leq$$
 negl(n)

Strong CMA Security for MAC

cma
Experiment Mac-sforge (n)
A,
$$\Pi$$

 Π = (Gen, Mac, Vrfy), n

game output

- > 1 (A succeeds) if $Vrfy_k(m, t) = 1$ and $(m, t) \notin Q$
- > 0 (A fails) otherwise

 Π is strong CMA-secure if for every A, there is a negl(n) such that

Pr [Mac-sforge (n) = 1]
$$\leq$$
 negl(n)

Fixed-length MAC from PRF

□ Let $F:\{0, 1\}^n \times \{0, 1\}^n \to \{0, 1\}^n$ be a PRF

Then Π = (Gen, Mac, Vrfy) is a fixed-length MAC for n-bit strings where :

Theorem: If F is a PRF then Π is a CMA-secure MAC.

- \succ Show that if Π is not CMA-secure then F is not a PRF by designing a distinguisher for F
- > If instead a TRF f was used to compute tag then an attacker can guess f(m) for a "new" m with probability at most 2⁻ⁿ
- The same should hold even if a PRF is used (as key is unknown)

Domain Extension

Given a scheme that handles fixed-length message.

How to handle arbitrary-length messages

SKE

Break the message into blocks and encrypt each block using fixed-length scheme (minimum security notion CPA-security)

Want efficiency?- Go for Mode of operations

The same does not work here-Additional tricks necessary

Want efficiency?- CBC-MAC, C-MAC, Hash-and-MAC, HMAC

Domain Extension

Warning! Simple ideas do not work!!

Attempt I

Divide the message into blocks and authenticate each separately via fixed-length MAC

- Block re-ordering attack:
 - ❖ Given (m, t), where $m = m_1 || m_2 || m_3$ and $t = t_1 || t_2 || t_3$
 - \Leftrightarrow Then (m', t') is a valid pair, where m' = m₂ || m₁ || m₃ and t' = t₂ || t₁ || t₃

Domain Extension for MAC

Warning! Simple ideas do not work!!

Attempt II

Prevent the previous attack by authenticating block index along with each block

Truncation attack:

- ❖ A valid (msg, tag) pair can be generated by dropping (msg, tag) blocks from the end
- $(m_1 \mid m_2, t_1 \mid t_2)$ is a valid new (msg, tag) pair generated from $(m_1 \mid m_2 \mid m_3, t_1 \mid t_2 \mid t_3)$

Domain Extension for MAC

Warning! Simple ideas do not work!!

Attempt III

> Prevent the previous attack by additionally authenticating message length with each block

Mix-and-match attack:

- Suppose attacker learns $(m_1 || m_2 || m_3, t_1 || t_2 || t_3)$ and $(m'_1 || m'_2 || m'_3, t'_1 || t'_2 || t'_3)$ where $(m_1 || m_2 || m_3) = (m'_1 || m'_2 || m'_3)$
- ❖ Then $(m_1 || m'_2 || m_3, t_1 || t'_2 || t_3)$ is a valid, new (message, tag) pair

Domain Extension for MAC

Ahhhh Finally!

t work !!

Attempt IV

Prevent the previous attack by additionally authenticating a random identifier with each block; a fresh random identifier for each message

- Is this construction secure ? --- yes (it is in fact a randomized MAC)
- > Is Randomization necessary for domain extension?-- NO
- But this is highly inefficient --- each invocation of Mac is now invoked only on n/4 bits of m
- So if |m| = dn bits, then it requires 4d invocations of Mac algorithm and tag size is 4dn bits

Proof of Domain Extension for MAC

Theorem: If Π' = (Mac', Vrfy') is CMA-secure for fixed-length message of length n, then Π = (Mac, Vrfy) is CMA-secure for arbitrary -length messages.

Proof: On the board.

CBC-MAC for Arbitrary-length Messages

- \Box Let F: $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a PRF, whose key k is agreed between S and R
- \square Let S has a message m with |m| = dn, where d is some polynomial in n
- ☐ CBC-Mac:

Practical Domain Extension: CBC MAC & Proof & Differences with CBC Mode of operation for SKE.

3rd Chalk and Talk topic

Information-theoretic MAC (no assumption, simple construction, strong security, very useful in high-level problems)

4th Chalk and Talk topic

Only d invocations of PRF

Highly efficient

4d invocations of PRF

The Picture Till Now

SKE

MAC

- ☐ Privacy
- □ Not necessarily provide integrity and authentication;
- >> easy to come of with a valid ciphertext
 - >> easy to manipulate known ciphertext

- ☐ Integrity & Authentication
- Not necessarily provide privacy;
- >> Easy to distinguish tags of two different messages

Authenticated Encryption

Jonathan Katz, <u>Moti Yung:</u>
Unforgeable Encryption and Chosen Ciphertext
Secure Modes of Operation. <u>FSE 2000: 284-299</u>

Mihir Bellare, <u>Chanathip Namprempre:</u>

Authenticated Encryption: Relations among Notions and Analysis of the Generic Composition Paradigm. <u>ASIACRYPT 2000: 531-545</u>

Authenticated Encryption

* Modeled via a new experiment which exactly captures the above --- Enc-Forge

Unforgeable Encryption Experiment

Experiment Enc-Forge (n)
$$\Pi = (Gen, Enc, Dec)$$

 Π is unforgeable if for every PPT A:

Pr
$$\left[\text{Enc-Forge} \quad (n) = 1 \right] \leq \text{negl}(n)$$

Authenticated Encryption (Formal Definition)

- \square A symmetric-key cipher Π = (Gen, Enc, Dec) is an authenticated cipher if both the following holds:
 - \triangleright Π is CCA-secure
 - ❖ For every PPT adversary A participating in the CCA-experiment, there is a negligible function negl₁(), such that:

$$\Pr\left(\begin{array}{c} cca \\ PrivK \quad (n) = 1 \\ A, \Pi \end{array}\right) \leq \frac{1}{2} + negl_1(n)$$

- $\succ \Pi$ is unforgeable
 - For every PPT adversary A participating in the unforgeable encryption experiment, there is a negligible function negl₂(), such that:

$$\Pr\left(\text{Enc-Forge}_{A, \Pi} (n)\right) \leq \operatorname{negl}_{2}(n)$$

Thank You!

CBC-MAC vs CBC-mode of Encryption

- Random IV present in CBC-mode of encryption
 - Very crucial for security
- Will there be any harm if we use a random IV in CBC-MAC?
 - > Yes; it will become insecure!!
- ☐ In CBC-mode of encryption, the intermediate values are also part of the output (ciphertext)
- Will there be any harm if we include the intermediate values in CBC-MAC as part of the tag?
 - Yes; it will become insecure!!
- We should be very careful in implementing crypto primitives
 - Should clearly follow the specifications

