Cryptography
Lecture 7

Arpita Patra

Quick Recall and Today's Roadmap

>> AE: Two definitions (in one CCA-security was explicit and in the other it was implicit),
> AE: Construction based on CPA secure SKE + CMA-secure MAC; proof of Security

>> Hash Function: Various Security Notions
>> Markle-Damgaard Domain Extension
>> Davis Meyer Hash function
>> Domain Extension for MAC using Hash function: Hash-and-Mac
>> Key Agreement
>> Assumptions in Finite Cyclic groups - DL, CDH, DDH
Groups
Finite groups (modulo arithmetic)
Finite cyclic groups

Finite Cyclic groups of prime orders (special advantages)

Hash Functions

O Informally a hash-function is a (one-to-many) function mapping arbitrary-length bit-
string to fixed-length bit-strings

h

/\

{0,)* {0, 1!

Q Usually |domain| >»>> |Co-domain| — collisions exist (3 x; = x5: h(x1) = h(x5))

O Requirement from a good cryptographic hash function :

>

>

Given the description of h, finding collisions should be infeasible- Collision Resistance

Given the description of h, x and h(x) finding x" with h(x’) = h(x) should be
infeasible- Second Preimage Resistance

Given the description of h, given y = h(x) finding x' with y = h(x') should be
infeasible- Preimage Resistance

Applications of Hash Functions

A
Application to MAC - Domain Extension) [hash) of file X
File X

O Message digest of a file serves as its unique idenftifier (unless a collision is found)
O The above idea has several applications

> File Integrity Check

% When a file is downloaded, its hash is also supplied, which is then compared with the hash of
the downloaded file

> Virus Fingerprinting
*» Virus scanners store the hashes of known viruses

<+ When an email attachment or an application is downloaded, its hash is compared with the
known hashes in the table to identify viruses

> Deduplication

% When a cloud storage is shared by several users, then storing the same file multiple times by
multiple users is avoided by comparing the digests of uploaded files

» Password Hashing

Hash Functions

Ivan Damgard:
Collision Free Hash Functions and Public Key
Signature Schemes. EUROCRYPT 1987: 203-216

Collision Resistance Security

Experiment Hash-CRA H(n) I1=(Gen, h), n

Attacker A

‘)
Let me verify

AN

Gen(1n)

(x.x)

I can break 11 ..
Collision

Run time: Poly(n)
game output

» 1 (A succeeds) if h(x) = h(x")
» 0 (A fails) otherwise

I1is Collision Resistant HF if for every A, there is a negl(n) such that

Pr [Hash-CR (n) = 1] < negl(n)
A, Tl

Second Preimage Resistance Security

Experiment Hash-SPR A (n) IT= (Gen, h), n

Attacker A .
acker k and a uniform x

‘)
Let me verify

AN

Gen(1n)

I can break I1
Run time: Poly(n)

game output

» 1 (A succeeds) if h(x) = h(x")
» 0 (A fails) otherwise

IT is second preimage resistant HF if for every A, there is a negl(n) such that

Pr [Hash-SPR (n) = 1] < negl(n)
A, Il

Collision Resistance & Second Preimage Resistance

Q Collision Resistance - second preimage resistance. Otherway?

Q Let h: {0, 1}» — {0, 1}" be a second preimage resistant hash function

0 We can design a new hash function from h which is second preimage resistant but not collision
resistant ?
O Define a new hash function g: {0, 1} — {0, 1}" as follows:
O if x=0mor x = 1m

> g(x)=
h(x), otherwise

Q gis collision resistant with probability O

O If hissecond preimage resistant with probability negl() then g is second preimage resistant with
probability = 1/2m-1 + negl() = negligible

Preimage Resistance Security

Experiment Hash-PR \ H(n) IT= (Gen, h), n

A ker A
Facker k and uniform vy

‘)
Let me verify

AN

Gen(1n)

I can break I1
Run time: Poly(n)

game output

> 1(A succeeds) if h(x)=y
> 0 (A fails) otherwise

IT Is Preimage Resistant HF if for every A, there is a negl(n) such that

Pr [Hash-PR (n) = 1] < negl(n)
A, Il

Pre-image Resistance » Second Pre-image Resistance

h(x)

Q Let h: {0, ™ — {0, 1}" be a pre-image
resistant hash function

{0, M 0. 1"

O Define a new hash function g: {O, 1M - {0, 13" as follows:

Function g

h(Xo X1 ... Xp2 0)

O If his pre-image resistant with probability negl() then g is pre-image resistant with
probability at least 2 negl() = negligible

O g is second-preimage resistant with probability O
» Given a random x and g(x), trivial to find x' = x with g(x') = g(x)

/

< X' is the whole x with final bit flipped --- in fact g is also not collision-resistant

Relation among Security Notions

. . . >
Collision resistance <«/— | Second pre-image resistance

N
N 7
N 7
N 7
N 7
N 7
N 7
4 b

Pre-image resistance
(One-wayness)

Second Preimage Resistance and Preimage Resistance

Q Let h: {0, ™ — {0, 1}" be a second-
h(x) preimage resistant hash function

> Does it imply that h is also pre-image
resistant ?

0, m {0,)" > Depends upon the compression ratio |l

0 Suppose h is not pre-image resistant --- PPT algorithm Apre for computing pre-image

> Then consider the following PPT algorithm A, . for computing second pre-images
corresponding to random x and h(x)

y € {0, 13"

XE (o, 1ym
h(x) =y

Second Preimage Resistance and Preimage Resistance

Q Let h: {0, ™ — {0, 1}" be a second-
h(x) preimage resistant hash function

> Does it imply that h is also pre-image
resistant ?

{0, nym {0, " > Depends upon the compression ratio !l

0 Suppose h is not pre-image resistant --- PPT algorithm Apre for computing pre-image

> Then consider the following PPT algorithm A, . for computing second pre-images
corresponding to random x and h(x)

h(x)

x' e{0, 1jm
h(x) =y

O What is the probability that A, outputs x' = x ? --- depends upon compression ratio

» Ex: if m = 2n, then on an average every two different x values mapped to the same y. So
with probability roughly 1-2, x' = x — h is not second-preimage resistant (contradiction)

Second Preimage Resistance and Preimage Resistance

Q Let h: {0, ™ — {0, 1}" be a second-
h(x) preimage resistant hash function

> Does it imply that h is also pre-image
resistant ?

{0, nym {0, " > Depends upon the compression ratio !l

0 Suppose h is not pre-image resistant --- PPT algorithm Apre for computing pre-image

> Then consider the following PPT algorithm A, . for computing second pre-images
corresponding to random x and h(x)

x € {0, 1} : h(x)
h(x)
X x' e{0, 1jm
h(x) =y

O What is the probability that Asec outputs x' = x ? --- depends upon compression ratio

» Ex:if m = n (say the identity function), then x' = x with probability O + h is not second-
preimage resistant (no contradiction)

Constructing Hash Functions

*x
Goal: h:{0, 1} — {0 13"

> Stage I: h: {0, 1}|'(n) — {0, 1}|("' Implies compressing by bit as
hard (easy) as compressing
arbitrary number of bits

>> Stage IT: Domain Extension

The Merkle-Damgaard Transform
QO Given: A fixed-length collision-resistant function h: {0, 1}2n — {0, "
O Goal: A arbitrary-length collision-resistant function h: {0, 1}* — {0, " x¢2n

Divide input x into blocks of length n --- B = L/ n (use O-padding o make L a multiple of n)

X —> X1 | X2 | XB+1 =
ZO = On h Zl h Q(X)
—_— > —a - —— —> —

I Used Everywhere in practicel SHA2, MD5

The Merkle-Damgard Transform: Security

Theorem: If his a hash function for messages of length 2n, then the Merkle-Damgard
transformation yields a collision-resistant hash function for arbitrary length messages.

Proof: Reduction yet again!

» If Merkle-Damgard is not collision-resistant then h is also not collision resistant

> Let x = (x1x2 .. xgL)and x' = (x'1 x'» ... xX'g' L') be two different messages of length L

and L' respectively, such that g(x) = g(x’)

» CaseI: L' =L:
X—> E'x[| |x|\3—)| LL X—> [1|x[| | LlL
o, h_z3 h Zg >hZB>hg(x) E)h zy h Zz _ |hzg |h

» Can you spot a collision for h in this case ?

The Merkle-Damgard Transform: Security

Theorem: If his a hash function for messages of length 2n, then the Merkle-Damgard
transformation yields a collision-resistant hash function for arbitrary length messages.

» If Merkle-Damgard is not collision-resistant then h is also not collision resistant

> Let x = (x1xo .. xgL)and x' = (x'q X'5 .. X'g' L) be two different messages of length L
and L' respectively, such that g(x) = g(x)

> CaseI:L' =L:
x—> I LL xX—> . L
Zg ' h i(x) Zpy h 9(><)

» Can you spot a collision for h in this case ?

“ (Zg I L) = (Z'g || L") is a collision for h --- contradiction

The Merkle-Damgard Transform: Security

Theorem: If his a hash function for messages of length 2n, then the Merkle-Damgard
transformation yields a collision-resistant hash function for arbitrary length messages.

» If Merkle-Damgard is not collision-resistant then h is also not collision resistant

> Let x = (x1x2 .. xgL)and x' = (x'1 x'» ... xX'g' L') be two different messages of length L

and L' respectively, such that g(x) = g(x’)

> CaseIT: L' =L:

o, h Z > --- h 28 hi(x) o, h Z'1>h Z?-- >h Z‘R>h

» Can you spot a collision for h in this case ?

The Merkle-Damgard Transform: Security

Theorem: If his a hash function for messages of length 2n, then the Merkle-Damgard
transformation yields a collision-resistant hash function for arbitrary length messages.

» If Merkle-Damgard is not collision-resistant then h is also not collision resistant

> Let x = (x1x2 .. xgL)and x' = (x'1 x'» ... xX'g' L') be two different messages of length L
and L' respectively, such that g(x) = g(x’)

> CaseIT: L' =L:

o, h Z > --- h 28 hi(x) o, h Z'1>h Z?-- >h Zp, hi(;(:

» Can you spot a collision for h in this case ?
< Define I; = (x; || Z;_9) and I'; = (X' || Z';_1) --- inputs for the l*h invocation of h

< Let N be the largest index with I = I’y --- such an N always exist

The Merkle-Damgard Transform: Security

Theorem: If his a hash function for messages of length 2n, then the Merkle-Damgard
transformation yields a collision-resistant hash function for arbitrary length messages.

» If Merkle-Damgard is not collision-resistant then h is also not collision resistant

> Let x = (x1xo .. xgL)and x' = (x'q X'5 .. X'g' L) be two different messages of length L
and L' respectively, such that g(x) = g(x)

> CaseIT: L' =L:

x—> | |XE| | L xX—> | |’<[| | L
ZN-1 h—EN Z'N-l h_E’N

» By maximality of N, Zy = Z'\j as IN41 = TN+1 and so on

The Merkle-Damgard Transform: Security

Theorem: If his a hash function for messages of length 2n, then the Merkle-Damgard
transformation yields a collision-resistant hash function for arbitrary length messages.

» If Merkle-Damgard is not collision-resistant then h is also not collision resistant

> Let x = (x1x2 .. xgL)and x' = (x'1 x'» ... xX'g' L') be two different messages of length L
and L' respectively, such that g(x) = g(x)

> CaseIT: L' =L:

X—> | | XN |XN+1| L X—> | |x'N| X'N+1| L
Zni h Zy |k Znah ZN

» By maximality of N, Zy = Z'\j as IN41 = TN+1 and so on
> So h(IyN) = h(I'\). even though Iy = '\

<+ (IN. I\ constitutes a collision for h --- a contradiction

Constructing Hash Functions

Goal: h: {0, 1} —{0, 1"
>» Stage T: h: {0, 'MW = (0, /(M 1(n) > I(n)

>> Stage IT: Domain Extension

>> Davies-Meyer construction,
>> Matyas-Meyer-Oseas construction,

>> Miyaguchi-Preneel construction, efc

>> Heuristics.
>> None of them are provably secure
>> Weak guarantees of them being collision resistant is known®

Davis-Meyer Construction

| ke, (0"

O Given: . Fk(X) = {O,l}l
> A SPRPF: {0, 13" x {0, 1}' = {0, 1} x € {01} '

Q Goal : 'F

> A fixed-length hash function h: {0, 1}I+n — {0, 1}I

— | D>+—NnN—

y=h(x)= F(k, 2)

v

A Is h a collision-resistant compression function ?

Davis-Meyer Construction

— | —_— N —>

>z | ok Z

y = h(x) = F(k, 2)

How to prevent such attack?

Easy to find collision assuming F to be SPRP.

x = z||k y = F(k,z) z' = F1 (K ,F(k,z)) xX=Z ||l k'

Davis-Meyer Construction

:EL) _y=h(x)=F(k,z):®z
h
= 5th Chalk and Talk topic

Part I: Proof of the theorem below

Part IT: Birthday Attack OR Time/Space Tradeoff for
Inverting Functions

Theorem: If F is a ideal random strong permutation, then adversary making q < 22 queries
finds a collision with probability q2/2!

Practical Construction of Hash Functions
O MD5:

> 128-bit output; designed in 1991 and believed to be secure (collision-resistant)

> Completely broken in 2004 by Chinese cryptanalysts; collision can be found in less
than a minute on a desktop PC

O SHA (Secure Hash Algorithm) Family
» Standardized by NIST. Got two flavors SHA-1 and SHA-2
> First a fixed-length compression function designed from a block cipher
> Inthe second stage, the Merkle-Damgard transformation is applied

» Special block ciphers designed for the stage I
O SHA-3 (Keccak)
» Winner of the NIST competition for hash functions
» Construction very different from previous constructions

> For stage T uses an un-keyed permutation of block length 1600 bits

> For stage IT uses a new approach called sponge construction

Message Authentication Using Hash Functions

0 Given a fixed-length MAC, we can design arbitrary-length MAC using two methods:

O Method I: Generic (randomized) but inefficient construction

A
v

3,

Mac,(m) = += (r, ty || 1, |] 13)

|| r
vy v uv
%?? Mac Mac Mac
v v v
ty= Mac(my [TIITIIr) 1= Mac(ma |1 2 [11 r) t5= Mac(ms |1 1 [] 1] r)

O Method IT: Efficient CBC-Mac
Can we do further improvement
m > using hash functions ?

. l *
S B S

v v

: —> t= MGCk(m)

Message Authentication Using Hash Functions
(Hash-and-MAC Paradigm)

Q Given an arbitrary-length message, compute its Mac-tag in two stages:

> Step I: Compress the arbitrary-length message to a fixed-length string using a CRHF
» Step IT: Compute the Mac-tag on the message digest (output of the CRHF)

Q Let:
> Hpac = (Mac, Vrfy) be a MAC for messages of length I(n)

> h: {0, 1}* - {0, l}l(“) be a collision-resistant hash function

Q ThenIT'pac = (Mac', Vrfy') is a MAC for arbitrary-length messages constructed as follows:

Tag Generation Tag Verification
m € {0, 1}* m € {0, 1}* -
‘ d 1
k 0
k >Vrfy —
1.

Vrfy'

Message Authentication Using Hash Functions
(Hash-and-MAC Paradigm)

Q Given an arbitrary-length message, compute its Mac-tag in two stages:

> Step I: Compress the arbitrary-length message to a fixed-length string using a CRHF
» Step IT: Compute the Mac-tag on the message digest (output of the CRHF)

Q Let:
> Hpac = (Mac, Vrfy) be a MAC for messages of length I(n)

> h: {0, 1}* - {0, l}l(“) be a collision-resistant hash function

Q ThenIT'pac = (Mac', Vrfy') is a MAC for arbitrary-length messages constructed as follows:

Tag Generation Tag Verification
— -1 — -7
d T d m
—>
k 3 1
k . Mac — Vrfy =
Mac'’ T Vrfy'

O The above construction is more efficient than CBC-Mac --- is it secure ?

Hash-and-MAC Paradigm: Security (Sketch)

Tag Generation Tag Verification
m € {0, 1}* m € {0, 1}*
IR m.
k . >Vrfy —
_Mac — Vrfy —
1.
Mac' Vrfy'
0 The above construction gives a secure MAC for arbitrary-length messages
my, My, ..., M
PPT Attacker A >
LEVI PR
© 1= Mag(h(m) d
Gen(1n)

I can forge (Mac’, Vrfy') (m*, %) > MAC-Oracle |

Q A successfully forges (Mac', Vrfy') if m* = mq, mo, ..., mq and Vrfy(m*, 1*) = 1
O The above is possible under two possible cases:
> Case I: There exists some m; € {mq, ..., mq} such that h(m;) = h(m*) --- then Mac', (m;) = Mac', (m*) = ¥;
< But the probability that h(m*) = h(m;) for m* = m; is negligible ---- as h is a CRHF

Hash-and-MAC Paradigm: Security (Sketch)

Tag Generation Tag Verification
m € {0, 1}* m € {0, 1}*
IR m.
k . >Vrfy —
_Mac — Vrfy —
1.
Mac'’ Vrfy'
0 The above construction gives a secure MAC for arbitrary-length messages
my, My, ..., M
PPT Attacker A >
LEVI PR
1= Mag(h(m) d
Gen(1n)

T can forge (Mac’, Vrfy') |
ge {) Need to formally prove the MAC-Oracle

two cases via suitable

O A successfully forges (Mac’, Vr e s

ryR(m*, t%) =1
O The above is possible under two possibie ¢ ses:.
> Case IT: There exists nom; € {mq, .., mq} such that h(m;) = h(m*)
< Then Vrfyk(m*, t*) = 1 only if A is able to forge Iy o = (Mac, Vrfy) --- contradiction

Key Management/Agreement

How do Parties Maintain Keys ?

O Several ways depending on the applications

> Personally meeting and agreeing on several keys

% Ex: several keys embedded ina secure| Assumption: Secure channel available
at some point

% Common in military application

> Use some “secure courier"” service

O Depend on a trusted key-distribution center (KDC)

> Used in large "closed” organizations, ex a Universitv _a companv. etc

Agemntion: Secure channel available
~point + Trust on KDC +
) possibility for Single-
point-failure

> Several practical protoss!=has

% Ex: Needho " niceio Lioliman Key-exchange protocol

% Forms the b~ > Birth of the public-key revolution
networked ¢

7 v T -r

Q Can parties establish secure | 5 onapuviic channel without having any prior shared secret ?

O Seems like an impossible task

Diffie-Hellman Key Exchange Protocol

Whitfield Diffie and Martin Hellman. New Directions in
Cryptography. 1976

> Showed how two people can publicly establish a secret-key
even if an eavesdropper monitors the entire conversation

No key required

Not possihle w L

s

Based on some assumptions in (some)
cyclic s of prime order

—

T

Extremely difficult

a

Roadmap

Groups

|

Finite groups

|

Finite cyclic groups
Three Assumptions

|

2142WY41JD JDjNPOW

Finite Cyclic groups of prime order

(special advantages)

Modular Arithmetic

d Central to public-key cryptography

Q '/, --- set of integers
Q Leta, N EZ ,with N> 1. Then

[a mod NJ = remainder when a is divided by N

Proposition: Given a and N, there always exist integers q and r such that :

a=gN+r,where0O=<r<«N

Notation: r is denoted as [a mod N]

]

O There exists a unique mapping from a o [a mod NJ; f: 4, - {0,...N-1}

Definition (Reduction modulo N): The process of mapping an integer a to [a mod N] is called reduction
modulo N

Easy way of Modular Reduction

O To do reduction modulo N, always imagine a clock with marks O, 1, ..., N-1

Q Find [a mod N] in the clock notation as follows:

< If aispositive: start counting from O in the clock in a clock-wise direction and stop after
counting a times --- the final mark represents [a mod N]

< If ais negative: start counting from O in the clock in an anti clock-wise direction and stop after
counting a times --- the final mark represents [a mod N]

O Ex:N=4 O [Bmod4]=1 Q [-7mod4]=1

0 0 0

Congruence Modulo N

Definition (Congruence Modulo N): If [a mod N] = [b mod NJ, then a is said to be congruent to b modulo N

> aand b are mapped to the same r

> Notation: a = b mod N;
» Note that a = [b mod N]is different; modulo reduction done on b ONLY 36 = 21 mod 15, but 36 =/= 6
> a=bmodN <= N divides (a - b)

Proposition: Congruence modulo N is an equivalence relation: Reflexive, symmetric & transitive

Standard Rules of Arithmetic for Congruence
mod N

QO VYes, trivially for Addition. Subtrac* O Reduce and then add/subtract/multiply

> Tfa =d modNandb = b modN O Instead of add/subtract/multiply and then reduce

> Ifa z=amodNandb =b' mod N Triernc
> Ifa=amodNandb=b'modN thena*b=ad**. odN

O Example: Compute [1093028 * 190301 mod 100]
» OptionI: first compute 1093028 * 190301 and then reduce mod 100

» Option IT: first reduce 1093028 and 190301 mod 100 and get 28 and 1 respectively. Then
compute 28* 1 and reduce mod 100

> Definitely option IT is far better than option I

Private-key Cryptography: A Top-down Approach

Private-key Message

Cryptography \ / é\uc’irhen’rica‘rion
odes

Pseudorandom

_7 Permutations
7’
'

Block Ciphers Pseudorandom
Generators

T

One-way
Functions

T

Number
Theoretic
Assumptions

O Next few lectures

Public-key
Cryptography | <

