
Cryptography

Lecture 7

Arpita Patra

Quick Recall and Today’s Roadmap

>> Hash Function: Various Security Notions

>> Markle-Damgaard Domain Extension

>> Davis Meyer Hash function
>> Domain Extension for MAC using Hash function: Hash-and-Mac

>> Key Agreement

>> Assumptions in Finite Cyclic groups - DL, CDH, DDH

 Groups

 Finite groups (modulo arithmetic)
 Finite cyclic groups

 Finite Cyclic groups of prime orders (special advantages)

>> AE: Two definitions (in one CCA-security was explicit and in the other it was implicit),

>> AE: Construction based on CPA secure SKE + CMA-secure MAC; proof of Security

Hash Functions
q  Informally a hash-function is a (one-to-many) function mapping arbitrary-length bit-

string to fixed-length bit-strings

h

{0, 1}* {0, 1}l(n)

q  Usually |domain| >>>> |Co-domain| → collisions exist (∃ x1 ≠ x2: h(x1) = h(x2))

q  Requirement from a good cryptographic hash function :

Ø  Given the description of h, finding collisions should be infeasible- Collision Resistance

Ø  Given the description of h, x and h(x) finding x’ with h(x’) = h(x) should be
infeasible- Second Preimage Resistance

Ø  Given the description of h, given y = h(x) finding x’ with y = h(x’) should be
infeasible- Preimage Resistance

Applications of Hash Functions

File X

Hash Function Message digest (hash) of file X

q  Message digest of a file serves as its unique identifier (unless a collision is found)

q  The above idea has several applications

Ø  File Integrity Check

v  When a file is downloaded, its hash is also supplied, which is then compared with the hash of
the downloaded file

Ø  Virus Fingerprinting

v  Virus scanners store the hashes of known viruses

v  When an email attachment or an application is downloaded, its hash is compared with the
known hashes in the table to identify viruses

Ø  Deduplication

v  When a cloud storage is shared by several users, then storing the same file multiple times by
multiple users is avoided by comparing the digests of uploaded files

Ø  Password Hashing

Application to MAC - Domain Extension)

Hash Functions

Ivan Damgård:
Collision Free Hash Functions and Public Key
Signature Schemes. EUROCRYPT 1987: 203-216

Collision Resistance Security

Experiment Hash-CR (n)
A, Π

Π = (Gen, h), n

I can break Π

Run time: Poly(n)

Attacker A

Let me verify Gen(1n) Collision

(x,x’)

game output
Ø  1 (A succeeds) if h(x) = h(x’)
Ø  0 (A fails) otherwise

Π is Collision Resistant HF if for every A, there is a negl(n) such that

 Pr [Hash-CR (n) = 1] ≤ negl(n)
A, Π

k

Second Preimage Resistance Security

Experiment Hash-SPR (n)
A, Π

Π = (Gen, h), n

I can break Π

Run time: Poly(n)

Attacker A

Let me verify Gen(1n)

x’

game output
Ø  1 (A succeeds) if h(x) = h(x’)
Ø  0 (A fails) otherwise

Π is second preimage resistant HF if for every A, there is a negl(n) such that

 Pr [Hash-SPR (n) = 1] ≤ negl(n)
A, Π

k and a uniform x

q  Let h: {0, 1}m → {0, 1}n be a second preimage resistant hash function

{0, 1}m {0, 1}n

h(x)

q  We can design a new hash function from h which is second preimage resistant but not collision
resistant ?

q  Define a new hash function g: {0, 1}m → {0, 1}n as follows:

Ø  g(x) =
0n, if x = 0m or x = 1m

h(x), otherwise

q  If h is second preimage resistant with probability negl() then g is second preimage resistant with
probability = 1/2m-1 + negl() = negligible

q  g is collision resistant with probability 0

{0, 1}m {0, 1}n

h(x)

g(x)

Collision Resistance & Second Preimage Resistance

q  Collision Resistance à second preimage resistance. Otherway?

Preimage Resistance Security

Experiment Hash-PR (n)
A, Π

Π = (Gen, h), n

I can break Π

Run time: Poly(n)

Attacker A

Let me verify Gen(1n)

x

game output
Ø  1 (A succeeds) if h(x) = y
Ø  0 (A fails) otherwise

Π Is Preimage Resistant HF if for every A, there is a negl(n) such that

 Pr [Hash-PR (n) = 1] ≤ negl(n)
A, Π

k and uniform y

Pre-image Resistance ↛ Second Pre-image Resistance

q  Let h: {0, 1}m → {0, 1}n be a pre-image
resistant hash function

{0, 1}m {0, 1}n

h(x)

q  Define a new hash function g: {0, 1}m → {0, 1}n as follows:

q  If h is pre-image resistant with probability negl() then g is pre-image resistant with
probability at least 2 negl() = negligible

q  g is second-preimage resistant with probability 0

Function g

x = (x0 x1 … xm-2 xm-1) h(x0 x1 … xm-2 0)

Ø  Given a random x and g(x), trivial to find x’ ≠ x with g(x’) = g(x)

v  x’ is the whole x with final bit flipped --- in fact g is also not collision-resistant

Relation among Security Notions

Collision resistance Second pre-image resistance

Pre-image resistance
(One-wayness)

q  Let h: {0, 1}m → {0, 1}n be a second-
preimage resistant hash function

{0, 1}m {0, 1}n

h(x)
Ø  Does it imply that h is also pre-image

resistant ?

Ø  Depends upon the compression ratio !!

q  Suppose h is not pre-image resistant --- PPT algorithm Apre for computing pre-image

y ∈R {0, 1}n
Apre

x ∈ {0, 1}m

h(x) = y

Ø  Then consider the following PPT algorithm Asec for computing second pre-images
corresponding to random x and h(x)

Second Preimage Resistance and Preimage Resistance

q  Let h: {0, 1}m → {0, 1}n be a second-
preimage resistant hash function

{0, 1}m {0, 1}n

h(x)
Ø  Does it imply that h is also pre-image

resistant ?

Ø  Depends upon the compression ratio !!

q  Suppose h is not pre-image resistant --- PPT algorithm Apre for computing pre-image

h(x)
Apre

x’ ∈ {0, 1}m

h(x’) = y

Ø  Then consider the following PPT algorithm Asec for computing second pre-images
corresponding to random x and h(x)

Asec
x ∈R {0, 1}m

h(x)
x’

q  What is the probability that Asec outputs x’ ≠ x ? --- depends upon compression ratio

Ø  Ex: if m = 2n, then on an average every two different x values mapped to the same y. So
with probability roughly 1-2-n, x’ ≠ x → h is not second-preimage resistant (contradiction)

Second Preimage Resistance and Preimage Resistance

q  Let h: {0, 1}m → {0, 1}n be a second-
preimage resistant hash function

{0, 1}m {0, 1}n

h(x)
Ø  Does it imply that h is also pre-image

resistant ?

Ø  Depends upon the compression ratio !!

q  Suppose h is not pre-image resistant --- PPT algorithm Apre for computing pre-image

h(x)
Apre

x’ ∈ {0, 1}m

h(x’) = y

Ø  Then consider the following PPT algorithm Asec for computing second pre-images
corresponding to random x and h(x)

Asec
x ∈R {0, 1}m

h(x)
x’

q  What is the probability that Asec outputs x’ ≠ x ? --- depends upon compression ratio

Ø  Ex: if m = n (say the identity function), then x’ ≠ x with probability 0 ↛ h is not second-
preimage resistant (no contradiction)

Second Preimage Resistance and Preimage Resistance

Constructing Hash Functions

>> Stage I: h: {0, 1}l’(n) → {0, 1}l(n) ; l’(n) > l(n)

>> Stage II: Domain Extension

Goal: h: {0, 1}* → {0, 1}n

Implies compressing by bit as
hard (easy) as compressing
arbitrary number of bits

q  Given: A fixed-length collision-resistant function h: {0, 1}2n → {0, 1}n

The Merkle-Damgaard Transform

q  Goal: A arbitrary-length collision-resistant function h: {0, 1}* → {0, 1}n * < 2n

x1 x2 … xB xB+1 = L x

h h Z1
h Z2

h ZB g(x) Z0 = 0n

Divide input x into blocks of length n --- B = L/ n (use 0-padding to make L a multiple of n)

Used Everywhere in practice! SHA2, MD5

Theorem: If h is a hash function for messages of length 2n, then the Merkle-Damgard
transformation yields a collision-resistant hash function for arbitrary length messages.

x1 x2 … xB L
x

h h Z1 h Z2 h ZB g(x) 0n

Proof: Reduction yet again!
Ø  If Merkle-Damgard is not collision-resistant then h is also not collision resistant

Ø  Let x = (x1 x2 … xB L) and x’ = (x’1 x’2 … x’B’ L’) be two different messages of length L
and L’ respectively, such that g(x) = g(x’)

Ø  Case I: L’ ≠ L :

Ø  Can you spot a collision for h in this case ?

x’1 x’2 … x’B’ L’
x’

h h Z’1 h Z’2 h Z’B’
g(x’) 0n

The Merkle-Damgard Transform: Security

L
x

h ZB g(x)

L’
x’

h Z’B’
g(x’)

Ø  Can you spot a collision for h in this case ?

v  (ZB || L) ≠ (Z’B’ || L’) is a collision for h --- contradiction

The Merkle-Damgard Transform: Security
Theorem: If h is a hash function for messages of length 2n, then the Merkle-Damgard
transformation yields a collision-resistant hash function for arbitrary length messages.

Ø  If Merkle-Damgard is not collision-resistant then h is also not collision resistant

Ø  Let x = (x1 x2 … xB L) and x’ = (x’1 x’2 … x’B’ L’) be two different messages of length L
and L’ respectively, such that g(x) = g(x’)

Ø  Case I: L’ ≠ L :

x1 x2 … xB L
x

h h Z1 h Z2 h ZB g(x) 0n

Ø  Case II: L’ = L :

x’1 x’2 … x’B L
x’

h h Z’1 h Z’2 h Z’B
g(x’) 0n

Ø  Can you spot a collision for h in this case ?

The Merkle-Damgard Transform: Security
Theorem: If h is a hash function for messages of length 2n, then the Merkle-Damgard
transformation yields a collision-resistant hash function for arbitrary length messages.

Ø  If Merkle-Damgard is not collision-resistant then h is also not collision resistant

Ø  Let x = (x1 x2 … xB L) and x’ = (x’1 x’2 … x’B’ L’) be two different messages of length L
and L’ respectively, such that g(x) = g(x’)

The Merkle-Damgard Transform: Security

x1 x2 … xB L
x

h h Z1 h Z2 h ZB g(x) 0n

Ø  Case II: L’ = L :

x’1 x’2 … x’B L
x’

h h Z’1 h Z’2 h Z’B
g(x’) 0n

Ø  Can you spot a collision for h in this case ?

v  Define Ii = (xi || Zi-1) and I’i = (x’i || Z’i-1) --- inputs for the ith invocation of h

v  Let N be the largest index with IN ≠ I’N --- such an N always exist

Theorem: If h is a hash function for messages of length 2n, then the Merkle-Damgard
transformation yields a collision-resistant hash function for arbitrary length messages.

Ø  If Merkle-Damgard is not collision-resistant then h is also not collision resistant

Ø  Let x = (x1 x2 … xB L) and x’ = (x’1 x’2 … x’B’ L’) be two different messages of length L
and L’ respectively, such that g(x) = g(x’)

The Merkle-Damgard Transform: Security

L
x

h ZN-1 ZN

Ø  Case II: L’ = L :

L
x’

Ø  By maximality of N, ZN = Z’N as IN+1 = I’N+1 and so on

v  (x’i || Zi-1) ≠ (x’i || Z’i-1) is a collision for h --- contradiction

xN x’N

h Z’N-1 Z’N

Theorem: If h is a hash function for messages of length 2n, then the Merkle-Damgard
transformation yields a collision-resistant hash function for arbitrary length messages.

Ø  If Merkle-Damgard is not collision-resistant then h is also not collision resistant

Ø  Let x = (x1 x2 … xB L) and x’ = (x’1 x’2 … x’B’ L’) be two different messages of length L
and L’ respectively, such that g(x) = g(x’)

The Merkle-Damgard Transform: Security

L
x

h ZN-1 ZN

Ø  Case II: L’ = L :

L
x’

v  (x’i || Zi-1) ≠ (x’i || Z’i-1) is a collision for h --- contradiction

xN x’N

h Z’N-1 Z’N

xN+1 x’N+1

h

Ø  By maximality of N, ZN = Z’N as IN+1 = I’N+1 and so on

h

Ø  So h(IN) = h(I’N), even though IN ≠ I’N
v  (IN, I’N) constitutes a collision for h --- a contradiction

Theorem: If h is a hash function for messages of length 2n, then the Merkle-Damgard
transformation yields a collision-resistant hash function for arbitrary length messages.

Ø  If Merkle-Damgard is not collision-resistant then h is also not collision resistant

Ø  Let x = (x1 x2 … xB L) and x’ = (x’1 x’2 … x’B’ L’) be two different messages of length L
and L’ respectively, such that g(x) = g(x’)

Constructing Hash Functions

>> Stage I: h: {0, 1}l’(n) → {0, 1}l(n) ; l’(n) > l(n)

>> Stage II: Domain Extension

Goal: h: {0, 1}* → {0, 1}n

>> Davies-Meyer construction,

>> Matyas-Meyer-Oseas construction,

>> Miyaguchi-Preneel construction, etc

>> Heuristics.
>> None of them are provably secure
>> Weak guarantees of them being collision resistant is knownL

q  Given :

Davis-Meyer Construction

v  (x’i || Zi-1) ≠ (x’i || Z’i-1) is a collision for h --- contradiction

Ø  A SPRP F: {0, 1}n x {0, 1}l → {0, 1}l

k ∈R {0,1}n

x ∈ {0,1}l
Fk(x) ∈ {0,1}l

q  Goal :

Ø  A fixed-length hash function h: {0, 1}l+n → {0, 1}l
F

z k
l n

x z

k

y = h(x) = F(k, z)

F
h

q  Is h a collision-resistant compression function ?

Davis-Meyer Construction

z k
l n

x z

k

y = h(x) = F(k, z)

F
h

How to prevent such attack?

x = z||k y = F(k,z) z’ = F-1 (k’,F(k,z)) x’ = z’ || k ‘

Easy to find collision assuming F to be SPRP.

Davis-Meyer Construction

v  (x’i || Zi-1) ≠ (x’i || Z’i-1) is a collision for h --- contradiction

z k
l n

x
y = h(x) = F(k, z) ⊕ z

F
h

z

k ⊕

q  The previous collision finding algorithm work for this construction fail with high
probability

q  No proof of CR of the above scheme under PRF/PRP/SPRP assumption!! Open problem

>> Think of the reduction, does not work!

Theorem: If F is a ideal random strong permutation, then adversary making q < 2l/2 queries
finds a collision with probability q2/2l

5th Chalk and Talk topic
Part I: Proof of the theorem below

Part II: Birthday Attack OR Time/Space Tradeoff for
Inverting Functions

Practical Construction of Hash Functions

v  (x’i || Zi-1) ≠ (x’i || Z’i-1) is a collision for h --- contradiction

q  MD5 :

Ø  128-bit output; designed in 1991 and believed to be secure (collision-resistant)

Ø  Completely broken in 2004 by Chinese cryptanalysts; collision can be found in less
than a minute on a desktop PC

q  SHA (Secure Hash Algorithm) Family

Ø  Standardized by NIST. Got two flavors SHA-1 and SHA-2

Ø  First a fixed-length compression function designed from a block cipher

Ø  In the second stage, the Merkle-Damgard transformation is applied

Ø  Special block ciphers designed for the stage I

q  SHA-3 (Keccak)

Ø  Winner of the NIST competition for hash functions

Ø  Construction very different from previous constructions

Ø  For stage I uses an un-keyed permutation of block length 1600 bits

Ø  For stage II uses a new approach called sponge construction

Message Authentication Using Hash Functions
q  Given a fixed-length MAC, we can design arbitrary-length MAC using two methods:

q  Method I: Generic (randomized) but inefficient construction

m1 m2 m3 m

k Mac Mac Mac

t1 = Mack(m1 || 1 || l || r)

Mack(m) = t = (r, t1 || t2 || t3) 1 2 3

l

l l l r r r

t2 = Mack(m2 || 2 || l || r) t3 = Mack(m3 || 1 || l || r)

q  Method II: Efficient CBC-Mac

m1 m2 m3 m

F

⊕ ⊕ ⊕

F F

t = Mack(m)

F

k

|m|

Can we do further improvement
using hash functions ?

Message Authentication Using Hash Functions
(Hash-and-MAC Paradigm)

q  Given an arbitrary-length message, compute its Mac-tag in two stages:

Ø  Step I: Compress the arbitrary-length message to a fixed-length string using a CRHF

Ø  Step II: Compute the Mac-tag on the message digest (output of the CRHF)

q  Let:

Ø  ΠMAC = (Mac, Vrfy) be a MAC for messages of length l(n)

Ø  h: {0, 1}* → {0, 1}l(n) be a collision-resistant hash function

q  Then Π’MAC = (Mac’, Vrfy’) is a MAC for arbitrary-length messages constructed as follows:

Mac k

d

h
m ∈ {0, 1}*

t

Tag Generation

Mac’

Vrfy
t

d

h
m ∈ {0, 1}*

Tag Verification

Vrfy’

k 0

⊥

Message Authentication Using Hash Functions
(Hash-and-MAC Paradigm)

q  Given an arbitrary-length message, compute its Mac-tag in two stages:

Ø  Step I: Compress the arbitrary-length message to a fixed-length string using a CRHF

Ø  Step II: Compute the Mac-tag on the message digest (output of the CRHF)

q  Let:

Ø  ΠMAC = (Mac, Vrfy) be a MAC for messages of length l(n)

Ø  h: {0, 1}* → {0, 1}l(n) be a collision-resistant hash function

q  Then Π’MAC = (Mac’, Vrfy’) is a MAC for arbitrary-length messages constructed as follows:

Mac k

d

h
m ∈ {0, 1}*

t

Tag Generation

Mac’

Vrfy
t

d

h
m ∈ {0, 1}*

Tag Verification

Vrfy’

k 1

m

q  The above construction is more efficient than CBC-Mac --- is it secure ?

Hash-and-MAC Paradigm: Security (Sketch)

Mac k

d

h
m ∈ {0, 1}*

t

Tag Generation

Mac’

Vrfy
t

d

h
m ∈ {0, 1}*

Tag Verification

Vrfy’

k 1

m

q  The above construction gives a secure MAC for arbitrary-length messages

I can forge (Mac’, Vrfy’)

PPT Attacker A

MAC-Oracle
Gen(1n)

k

m1, m2, …, mq

t1, t2, …, tq

ti = Mack(h(mi))

(m*, t*)

q  A successfully forges (Mac’, Vrfy’) if m* ≠ m1, m2, …, mq and Vrfyk(m*, t*) = 1

q  The above is possible under two possible cases:

Ø  Case I: There exists some mi ∈ {m1, …, mq} such that h(mi) = h(m*) --- then Mac’k(mi) = Mac’k(m*) = ti
v  But the probability that h(m*) = h(mi) for m* ≠ mi is negligible ---- as h is a CRHF

Hash-and-MAC Paradigm: Security (Sketch)

Mac k

d

h
m ∈ {0, 1}*

t

Tag Generation

Mac’

Vrfy
t

d

h
m ∈ {0, 1}*

Tag Verification

Vrfy’

k 1

m

q  The above construction gives a secure MAC for arbitrary-length messages

I can forge (Mac’, Vrfy’)

PPT Attacker A

MAC-Oracle
Gen(1n)

k

m1, m2, …, mq

t1, t2, …, tq

ti = Mack(h(mi))

(m*, t*)

q  A successfully forges (Mac’, Vrfy’) if m* ≠ m1, m2, …, mq and Vrfyk(m*, t*) = 1

q  The above is possible under two possible cases:

Ø  Case II: There exists no mi ∈ {m1, …, mq} such that h(mi) = h(m*)
v  Then Vrfyk(m*, t*) = 1 only if A is able to forge ΠMAC = (Mac, Vrfy) --- contradiction

Need to formally prove the
two cases via suitable
reductions

Key Management/Agreement

How do Parties Maintain Keys ?
q  Several ways depending on the applications

Ø  Personally meeting and agreeing on several keys

v  Ex: several keys embedded in a secure hardware and distributed

v  Common in military application

Ø  Use some “secure courier” service

q  Depend on a trusted key-distribution center (KDC)

Ø  Used in large “closed” organizations, ex a University, a company, etc

Ø  Several practical protocols based on the idea of KDC

v  Ex: Needham-Schroeder protocol

v  Forms the backbone of Kerberos system --- used in Windows and some Unix systems for secure
networked authentication and communication

q  Can parties establish secure keys on a public channel without having any prior shared secret ?

q  Seems like an impossible task !!

 Assumption: Secure channel available
at some point

 Assumption: Secure channel available
at some point + Trust on KDC +

opening up possibility for Single-
point-failure

Diffie-Hellman Key-exchange protocol

Ø  Birth of the public-key revolution

Diffie-Hellman Key Exchange Protocol

Whitfield Diffie and Martin Hellman. New Directions in
Cryptography. 1976

q  Underlying observation: asymmetry is often present in the world !!

No key required

Not possible without key

Ø  Showed how two people can publicly establish a secret-key
even if an eavesdropper monitors the entire conversation

Very Easy

Extremely difficult

Based on some assumptions in (some)
cyclic groups of prime order

Roadmap

(special advantages)

Groups

Finite groups

m
odular arithm

etic

Finite cyclic groups

Finite Cyclic groups of prime order

Three Assumptions

Modular Arithmetic

q  Central to public-key cryptography

[a mod N] = remainder when a is divided by N

Notation: r is denoted as [a mod N]

q  Let a, N ∈ , with N > 1. Then

Proposition: Given a and N, there always exist integers q and r such that :

a = qN + r, where 0 ≤ r < N

Definition (Reduction modulo N): The process of mapping an integer a to [a mod N] is called reduction
modulo N

q  --- set of integers

q  There exists a unique mapping from a to [a mod N]; f: à {0,….,N-1}

Easy way of Modular Reduction
q  To do reduction modulo N, always imagine a clock with marks 0, 1, …, N-1

q  Find [a mod N] in the clock notation as follows:

v  If a is positive: start counting from 0 in the clock in a clock-wise direction and stop after
counting a times --- the final mark represents [a mod N]

v  If a is negative: start counting from 0 in the clock in an anti clock-wise direction and stop after
counting a times --- the final mark represents [a mod N]

q  Ex: N = 4

0

1

2

3

q  [5 mod 4] = 1

0

1

2

3

q  [-7 mod 4] = 1

0

1

2

3

Congruence Modulo N

Ø  a and b are mapped to the same r

Definition (Congruence Modulo N): If [a mod N] = [b mod N], then a is said to be congruent to b modulo N

Ø  Notation: a = b mod N;

Ø  a = b mod N ⇔ N divides (a - b)

Ø  Note that a = [b mod N] is different; modulo reduction done on b ONLY 36 = 21 mod 15, but 36 =/= 6

Proposition: Congruence modulo N is an equivalence relation: Reflexive, symmetric & transitive

Standard Rules of Arithmetic for Congruence
mod N

q  Yes, trivially for Addition. Subtraction and Multiplication

Ø  If a = a’ mod N and b = b’ mod N then a + b = a’ + b’ mod N

Ø  If a = a’ mod N and b = b’ mod N then a – b = a’ - b’ mod N

Ø  If a = a’ mod N and b = b’ mod N then a * b = a’ * b’ mod N

q  Reduce and then add/subtract/multiply

q  Instead of add/subtract/multiply and then reduce

q  Example: Compute [1093028 * 190301 mod 100]

Ø  Option I : first compute 1093028 * 190301 and then reduce mod 100

Ø  Option II : first reduce 1093028 and 190301 mod 100 and get 28 and 1 respectively. Then
compute 28* 1 and reduce mod 100

Ø  Definitely option II is far better than option I

Private-key Cryptography: A Top-down Approach

Private-key
Cryptography

Message
Authentication
Codes

Pseudorandom
Permutations

Block Ciphers Pseudorandom
Generators

One-way
Functions

q Next few lectures

Number
Theoretic
Assumptions

Public-key
Cryptography

