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Quick Recall and Today’s Roadmap 

>> Hash Function: Various Security Notions 

>> Markle-Damgaard Domain Extension 

>> Davis Meyer Hash function 
>> Domain Extension for MAC using Hash function: Hash-and-Mac 

>> Key Agreement 

>> Assumptions in Finite Cyclic groups - DL, CDH, DDH 

        Groups 

        Finite groups (modulo arithmetic) 
        Finite cyclic groups 

        Finite Cyclic groups of prime orders (special advantages)  

>> AE:  Two definitions (in one CCA-security was explicit and in the other it was implicit),  

>> AE: Construction  based on CPA secure SKE + CMA-secure MAC; proof of Security 



Hash Functions 
q  Informally a hash-function is a (one-to-many) function mapping arbitrary-length bit-

string to fixed-length bit-strings 

h 

{0, 1}* {0, 1}l(n) 

q  Usually |domain| >>>> |Co-domain| → collisions exist (∃ x1 ≠ x2: h(x1) = h(x2)) 

q  Requirement from a good cryptographic hash function : 

Ø  Given the description of h, finding collisions should be infeasible- Collision Resistance 

Ø  Given the description of h,  x and h(x) finding x’ with h(x’) = h(x) should be 
infeasible- Second Preimage Resistance 

Ø  Given the description of h, given y = h(x) finding x’ with y = h(x’)  should be 
infeasible- Preimage Resistance 



Applications of Hash Functions 

File X 

Hash Function Message digest (hash) of file X 

q  Message digest of a file serves as its unique identifier (unless a collision is found) 

q  The above idea has several applications 

Ø  File  Integrity Check 

v  When a file is downloaded, its hash is also supplied, which is then compared with the hash of 
the downloaded file 

Ø  Virus Fingerprinting 

v  Virus scanners store the hashes of known viruses 

v  When an email attachment or an application is downloaded, its hash is compared with the 
known hashes in the table to identify viruses 

Ø  Deduplication 

v  When a cloud storage is shared by several users, then storing the same file multiple times by 
multiple users is avoided by comparing the digests of uploaded files 

Ø  Password Hashing 

Application to MAC - Domain Extension) 



Hash Functions 

Ivan Damgård: 
Collision Free Hash Functions and Public Key 
Signature Schemes. EUROCRYPT 1987: 203-216 



Collision Resistance Security 

Experiment Hash-CR       (n) 
A, Π 

Π = (Gen, h),  n 

I can break Π 

Run time: Poly(n) 

Attacker A 

Let me verify Gen(1n) Collision 

(x,x’) 

game output  
Ø  1 (A succeeds) if h(x) = h(x’) 
Ø  0 (A fails) otherwise 

Π is  Collision Resistant HF if for every A, there is a negl(n) such that 

              Pr [Hash-CR       (n) = 1] ≤ negl(n)  
A, Π 

k 



Second Preimage Resistance Security 

Experiment Hash-SPR         (n) 
A, Π 

Π = (Gen, h),  n 

I can break Π 

Run time: Poly(n) 

Attacker A 

Let me verify Gen(1n) 

x’ 

game output  
Ø  1 (A succeeds) if h(x) = h(x’) 
Ø  0 (A fails) otherwise 

Π is second preimage resistant HF if for every A, there is a negl(n) such that 

              Pr [Hash-SPR         (n) = 1] ≤ negl(n)  
A, Π 

k and a uniform x 



q  Let h: {0, 1}m → {0, 1}n be a second preimage resistant hash function 

{0, 1}m {0, 1}n 

h(x) 

q  We can design a new hash function from h which is second preimage resistant but not collision 
resistant ? 

q  Define a new hash function g: {0, 1}m → {0, 1}n as follows: 

Ø  g(x) =  
0n, if x = 0m or x = 1m

 

h(x), otherwise 

q  If h is second preimage resistant with probability negl() then g is second preimage resistant with 
probability =   1/2m-1 + negl() = negligible 

q  g is collision resistant with probability 0 

{0, 1}m {0, 1}n 

h(x) 

g(x) 

Collision Resistance & Second Preimage Resistance  

q  Collision Resistance à second preimage resistance. Otherway? 



Preimage Resistance Security 

Experiment Hash-PR         (n) 
A, Π 

Π = (Gen, h),  n 

I can break Π 

Run time: Poly(n) 

Attacker A 

Let me verify Gen(1n) 

x 

game output  
Ø  1 (A succeeds) if   h(x) =  y 
Ø  0 (A fails) otherwise 

Π Is Preimage Resistant HF if for every A, there is a negl(n) such that 

              Pr [Hash-PR         (n) = 1] ≤ negl(n)  
A, Π 

k and uniform  y 



Pre-image Resistance ↛ Second Pre-image Resistance 

q  Let h: {0, 1}m → {0, 1}n be a pre-image 
resistant hash function 

{0, 1}m {0, 1}n 

h(x) 

q  Define a new hash function g: {0, 1}m → {0, 1}n as follows: 

q  If h is pre-image resistant with probability negl() then g is pre-image resistant with 
probability at least  2 negl() = negligible 

q  g is second-preimage resistant with probability 0 

Function g 

x = (x0 x1 … xm-2 xm-1) h(x0 x1 … xm-2 0)  

Ø  Given a random x and g(x), trivial to find x’ ≠ x with g(x’) = g(x) 

v  x’ is the whole x with final bit flipped --- in fact g is also not collision-resistant 



Relation among Security Notions 

Collision resistance Second pre-image resistance 

Pre-image resistance 
(One-wayness) 



q  Let h: {0, 1}m → {0, 1}n be a second-
preimage resistant hash function 

{0, 1}m {0, 1}n 

h(x) 
Ø  Does it imply that h is also pre-image 

resistant ? 

Ø  Depends upon the compression ratio !! 

q  Suppose h is not pre-image resistant --- PPT algorithm Apre for computing pre-image 

y ∈R {0, 1}n 
Apre 

x ∈ {0, 1}m  

h(x) = y 

Ø  Then consider the following PPT algorithm Asec for computing second pre-images 
corresponding to random x and h(x) 

Second Preimage Resistance and Preimage Resistance  



q  Let h: {0, 1}m → {0, 1}n be a second-
preimage resistant hash function 

{0, 1}m {0, 1}n 

h(x) 
Ø  Does it imply that h is also pre-image 

resistant ? 

Ø  Depends upon the compression ratio !! 

q  Suppose h is not pre-image resistant --- PPT algorithm Apre for computing pre-image 

h(x) 
Apre 

x’ ∈ {0, 1}m  

h(x’) = y 

Ø  Then consider the following PPT algorithm Asec for computing second pre-images 
corresponding to random x and h(x) 

Asec 
x ∈R {0, 1}m 

h(x) 
x’ 

q  What is the probability that Asec outputs x’ ≠ x ?  --- depends upon compression ratio  

Ø  Ex: if m = 2n, then on an average every two different x values mapped to the same y. So 
with probability roughly 1-2-n, x’ ≠ x → h is not second-preimage resistant (contradiction) 

Second Preimage Resistance and Preimage Resistance  



q  Let h: {0, 1}m → {0, 1}n be a second-
preimage resistant hash function 

{0, 1}m {0, 1}n 

h(x) 
Ø  Does it imply that h is also pre-image 

resistant ? 

Ø  Depends upon the compression ratio !! 

q  Suppose h is not pre-image resistant --- PPT algorithm Apre for computing pre-image 

h(x) 
Apre 

x’ ∈ {0, 1}m  

h(x’) = y 

Ø  Then consider the following PPT algorithm Asec for computing second pre-images 
corresponding to random x and h(x) 

Asec 
x ∈R {0, 1}m 

h(x) 
x’ 

q  What is the probability that Asec outputs x’ ≠ x ?  --- depends upon compression ratio  

Ø  Ex: if m = n (say the identity function), then x’ ≠ x with probability 0 ↛ h is not second-
preimage resistant (no contradiction) 

Second Preimage Resistance and Preimage Resistance  



Constructing Hash Functions 

>> Stage I: h: {0, 1}l’(n) → {0, 1}l(n) ;    l’(n) > l(n)  

>> Stage II: Domain Extension 

Goal:   h: {0, 1}* → {0, 1}n  

Implies compressing by bit as 
hard (easy) as compressing 
arbitrary number of bits 



q  Given: A fixed-length collision-resistant  function h: {0, 1}2n → {0, 1}n 

The Merkle-Damgaard Transform 

q  Goal: A arbitrary-length collision-resistant  function h: {0, 1}* → {0, 1}n       * < 2n  

x1 x2 … xB xB+1 = L x 

h h Z1 
h Z2 

h ZB g(x) Z0 = 0n 

Divide input x into blocks of length n --- B = L/ n (use 0-padding to make L a multiple of n) 

Used Everywhere in practice! SHA2, MD5 



Theorem: If h is a hash function for messages of length 2n, then the Merkle-Damgard 
transformation yields a collision-resistant hash function for arbitrary length messages. 

x1 x2 … xB L 
x 

h h Z1 h Z2 h ZB g(x) 0n
 

Proof:  Reduction yet again! 
Ø  If Merkle-Damgard is not collision-resistant then h is also not collision resistant 

Ø  Let x = (x1 x2 … xB L) and x’ = (x’1 x’2 … x’B’ L’) be two different messages of length L 
and L’ respectively, such that g(x) = g(x’) 

Ø  Case I: L’ ≠ L : 

Ø  Can you spot a collision for h in this case ? 

x’1 x’2 … x’B’ L’ 
x’ 

h h Z’1 h Z’2 h Z’B’ 
g(x’) 0n

 

The Merkle-Damgard Transform: Security 



L 
x 

h ZB g(x) 

L’ 
x’ 

h Z’B’ 
g(x’) 

Ø  Can you spot a collision for h in this case ? 

v  (ZB || L) ≠ (Z’B’ || L’) is a collision for h --- contradiction 

The Merkle-Damgard Transform: Security 
Theorem: If h is a hash function for messages of length 2n, then the Merkle-Damgard 
transformation yields a collision-resistant hash function for arbitrary length messages. 

Ø  If Merkle-Damgard is not collision-resistant then h is also not collision resistant 

Ø  Let x = (x1 x2 … xB L) and x’ = (x’1 x’2 … x’B’ L’) be two different messages of length L 
and L’ respectively, such that g(x) = g(x’) 

Ø  Case I: L’ ≠ L : 



x1 x2 … xB L 
x 

h h Z1 h Z2 h ZB g(x) 0n 

Ø  Case II: L’ = L : 

x’1 x’2 … x’B L 
x’ 

h h Z’1 h Z’2 h Z’B 
g(x’) 0n 

Ø  Can you spot a collision for h in this case ? 

The Merkle-Damgard Transform: Security 
Theorem: If h is a hash function for messages of length 2n, then the Merkle-Damgard 
transformation yields a collision-resistant hash function for arbitrary length messages. 

Ø  If Merkle-Damgard is not collision-resistant then h is also not collision resistant 

Ø  Let x = (x1 x2 … xB L) and x’ = (x’1 x’2 … x’B’ L’) be two different messages of length L 
and L’ respectively, such that g(x) = g(x’) 



The Merkle-Damgard Transform: Security 

x1 x2 … xB L 
x 

h h Z1 h Z2 h ZB g(x) 0n 

Ø  Case II: L’ = L : 

x’1 x’2 … x’B L 
x’ 

h h Z’1 h Z’2 h Z’B 
g(x’) 0n 

Ø  Can you spot a collision for h in this case ? 

v  Define Ii = (xi || Zi-1) and I’i = (x’i || Z’i-1 ) --- inputs for the ith invocation of h  

v  Let N be the largest index with IN ≠ I’N --- such an N always exist 

Theorem: If h is a hash function for messages of length 2n, then the Merkle-Damgard 
transformation yields a collision-resistant hash function for arbitrary length messages. 

Ø  If Merkle-Damgard is not collision-resistant then h is also not collision resistant 

Ø  Let x = (x1 x2 … xB L) and x’ = (x’1 x’2 … x’B’ L’) be two different messages of length L 
and L’ respectively, such that g(x) = g(x’) 



The Merkle-Damgard Transform: Security 

L 
x 

h ZN-1 ZN 

Ø  Case II: L’ = L : 

L 
x’ 

Ø  By maximality of N, ZN = Z’N as IN+1 = I’N+1 and so on 

v  (x’i || Zi-1)  ≠  (x’i || Z’i-1 ) is a collision for h --- contradiction 

xN x’N 

h Z’N-1 Z’N 

Theorem: If h is a hash function for messages of length 2n, then the Merkle-Damgard 
transformation yields a collision-resistant hash function for arbitrary length messages. 

Ø  If Merkle-Damgard is not collision-resistant then h is also not collision resistant 

Ø  Let x = (x1 x2 … xB L) and x’ = (x’1 x’2 … x’B’ L’) be two different messages of length L 
and L’ respectively, such that g(x) = g(x’) 



The Merkle-Damgard Transform: Security 

L 
x 

h ZN-1 ZN 

Ø  Case II: L’ = L : 

L 
x’ 

v  (x’i || Zi-1)  ≠  (x’i || Z’i-1 ) is a collision for h --- contradiction 

xN x’N 

h Z’N-1 Z’N 

xN+1 x’N+1 

h 

Ø  By maximality of N, ZN = Z’N as IN+1 = I’N+1 and so on 

h 

Ø  So h(IN) = h(I’N), even though IN ≠ I’N 
v  (IN, I’N) constitutes a collision for h --- a contradiction 

Theorem: If h is a hash function for messages of length 2n, then the Merkle-Damgard 
transformation yields a collision-resistant hash function for arbitrary length messages. 

Ø  If Merkle-Damgard is not collision-resistant then h is also not collision resistant 

Ø  Let x = (x1 x2 … xB L) and x’ = (x’1 x’2 … x’B’ L’) be two different messages of length L 
and L’ respectively, such that g(x) = g(x’) 



Constructing Hash Functions 

>> Stage I: h: {0, 1}l’(n) → {0, 1}l(n) ;    l’(n) > l(n)  

>> Stage II: Domain Extension 

Goal:   h: {0, 1}* → {0, 1}n  

>> Davies-Meyer construction,  

>> Matyas-Meyer-Oseas construction,  

>> Miyaguchi-Preneel construction, etc   

>> Heuristics.  
>> None of them are provably secure 
>> Weak guarantees of them being collision resistant is knownL 



q  Given : 

Davis-Meyer Construction 

v  (x’i || Zi-1)  ≠  (x’i || Z’i-1 ) is a collision for h --- contradiction 

Ø  A SPRP F: {0, 1}n x {0, 1}l → {0, 1}l 

k ∈R {0,1}n 

x ∈ {0,1}l 
Fk(x) ∈ {0,1}l 

q  Goal : 

Ø  A fixed-length hash function h: {0, 1}l+n → {0, 1}l 
F 

z k 
l n 

x z 

k 

y = h(x) = F(k, z) 

F
h 

q  Is h a collision-resistant compression function ? 



Davis-Meyer Construction 

z k 
l n 

x z 

k 

y = h(x) = F(k, z) 

F
h 

How to prevent such attack?  

x = z||k y = F(k,z)  z’ = F-1 (k’,F(k,z)) x’ = z’ || k ‘ 

Easy to find collision assuming F to be SPRP. 



Davis-Meyer Construction 

v  (x’i || Zi-1)  ≠  (x’i || Z’i-1 ) is a collision for h --- contradiction 

z k 
l n 

x 
y = h(x) = F(k, z) ⊕ z 

F
h 

z 

k ⊕ 

q  The previous collision finding algorithm work for this construction  fail with high 
probability 

q  No proof of CR of the above scheme under PRF/PRP/SPRP assumption!! Open problem  

>> Think of the reduction, does not work!  

Theorem: If F is a ideal random strong permutation, then adversary making q < 2l/2 queries 
finds a collision with probability q2/2l 

5th Chalk and Talk topic  
Part I: Proof of the theorem below 

Part II: Birthday Attack OR Time/Space Tradeoff for 
Inverting Functions  



Practical Construction of Hash Functions 

v  (x’i || Zi-1)  ≠  (x’i || Z’i-1 ) is a collision for h --- contradiction 

q  MD5 : 

Ø  128-bit output; designed in 1991 and believed to be secure (collision-resistant) 

Ø  Completely broken in 2004 by Chinese cryptanalysts; collision can be found in less 
than a minute on a desktop PC 

q  SHA (Secure Hash Algorithm) Family 

Ø  Standardized by NIST. Got two flavors SHA-1 and SHA-2 

Ø  First a fixed-length compression function designed from a block cipher 

Ø  In the second stage, the Merkle-Damgard transformation is applied 

Ø  Special block ciphers designed for the stage I 

q  SHA-3 (Keccak) 

Ø  Winner of the NIST competition for hash functions 

Ø  Construction very different from previous constructions 

Ø  For stage I uses an un-keyed permutation of block length 1600 bits 

Ø  For stage II uses a new approach called sponge construction 



Message Authentication Using Hash Functions 
q  Given a fixed-length MAC, we can design arbitrary-length MAC using two methods: 

q  Method I: Generic (randomized) but inefficient construction 

m1 m2 m3 m 

k Mac Mac Mac 

t1 = Mack(m1 || 1 || l || r) 

Mack(m) = t = (r, t1 || t2 || t3)  1 2 3 

l  

l l l r r r 

t2 = Mack(m2 || 2 || l || r) t3 = Mack(m3 || 1 || l || r) 

q  Method II: Efficient CBC-Mac 

m1 m2 m3 m 

F 

⊕ ⊕ ⊕ 

F F 

t = Mack(m) 

F 

k 

|m| 

Can we do further improvement 
using hash functions ? 



Message Authentication Using Hash Functions                 
(Hash-and-MAC Paradigm) 

q  Given an arbitrary-length message, compute its Mac-tag in two stages: 

Ø  Step I: Compress the arbitrary-length message to a fixed-length string using a CRHF 

Ø  Step II: Compute the Mac-tag on the message digest (output of the CRHF) 

q  Let: 

Ø  ΠMAC = (Mac, Vrfy) be a MAC for messages of length l(n) 

Ø  h: {0, 1}* → {0, 1}l(n) be a collision-resistant hash function 

q  Then Π’MAC = (Mac’, Vrfy’) is a MAC for arbitrary-length messages constructed as follows: 

Mac k 

d 

h 
m ∈ {0, 1}*  

t 

Tag Generation 

Mac’ 

Vrfy 
t 

d 

h 
m ∈ {0, 1}*  

Tag Verification 

Vrfy’ 

k 0 

⊥ 



Message Authentication Using Hash Functions                 
(Hash-and-MAC Paradigm) 

q  Given an arbitrary-length message, compute its Mac-tag in two stages: 

Ø  Step I: Compress the arbitrary-length message to a fixed-length string using a CRHF 

Ø  Step II: Compute the Mac-tag on the message digest (output of the CRHF) 

q  Let: 

Ø  ΠMAC = (Mac, Vrfy) be a MAC for messages of length l(n) 

Ø  h: {0, 1}* → {0, 1}l(n) be a collision-resistant hash function 

q  Then Π’MAC = (Mac’, Vrfy’) is a MAC for arbitrary-length messages constructed as follows: 

Mac k 

d 

h 
m ∈ {0, 1}*  

t 

Tag Generation 

Mac’ 

Vrfy 
t 

d 

h 
m ∈ {0, 1}*  

Tag Verification 

Vrfy’ 

k 1 

m 

q  The above construction is more efficient than CBC-Mac --- is it secure ? 



Hash-and-MAC Paradigm: Security (Sketch) 

Mac k 

d 

h 
m ∈ {0, 1}*  

t 

Tag Generation 

Mac’ 

Vrfy 
t 

d 

h 
m ∈ {0, 1}*  

Tag Verification 

Vrfy’ 

k 1 

m 

q  The above construction gives a secure MAC for arbitrary-length messages 

I can forge (Mac’, Vrfy’) 

PPT Attacker A 

MAC-Oracle 
Gen(1n) 

k 

m1, m2, …, mq 

t1, t2, …, tq 

ti = Mack(h(mi)) 

(m*, t*) 

q  A successfully forges (Mac’, Vrfy’) if m* ≠ m1, m2, …, mq and Vrfyk(m*, t*) = 1 

q  The above is possible under two possible cases: 

Ø  Case I: There exists some mi ∈ {m1, …, mq} such that h(mi) = h(m*) --- then Mac’k(mi) = Mac’k(m*) = ti 
v  But the probability that h(m*) = h(mi) for m* ≠ mi is negligible ---- as h is a CRHF 



Hash-and-MAC Paradigm: Security (Sketch) 

Mac k 

d 

h 
m ∈ {0, 1}*  

t 

Tag Generation 

Mac’ 

Vrfy 
t 

d 

h 
m ∈ {0, 1}*  

Tag Verification 

Vrfy’ 

k 1 

m 

q  The above construction gives a secure MAC for arbitrary-length messages 

I can forge (Mac’, Vrfy’) 

PPT Attacker A 

MAC-Oracle 
Gen(1n) 

k 

m1, m2, …, mq 

t1, t2, …, tq 

ti = Mack(h(mi)) 

(m*, t*) 

q  A successfully forges (Mac’, Vrfy’) if m* ≠ m1, m2, …, mq and Vrfyk(m*, t*) = 1 

q  The above is possible under two possible cases: 

Ø  Case II: There exists no mi ∈ {m1, …, mq} such that h(mi) = h(m*) 
v  Then Vrfyk(m*, t*) = 1 only if A is able to forge ΠMAC = (Mac, Vrfy) --- contradiction 

Need to formally prove the 
two cases via suitable 
reductions 



 

 
 
 
 

Key Management/Agreement 
 
 
 

 
 

 



How do Parties Maintain Keys ? 
q  Several ways depending on the applications 

Ø  Personally meeting and agreeing on several keys 

v  Ex: several keys embedded in a secure hardware and distributed 

v  Common in military application 

Ø  Use some “secure courier” service 

q  Depend on a trusted key-distribution center (KDC) 

Ø  Used in large “closed” organizations, ex a University, a company, etc 

Ø  Several practical protocols based on the idea of KDC 

v  Ex: Needham-Schroeder protocol 

v  Forms the backbone of Kerberos system --- used in Windows and some Unix systems for secure 
networked authentication and communication 

q  Can parties establish secure keys on a public channel without having any prior shared secret ? 

q  Seems like an impossible task !! 

 Assumption: Secure channel available 
at some point 

 Assumption: Secure channel available 
at some point + Trust on KDC + 

opening up possibility for Single-
point-failure 

Diffie-Hellman Key-exchange protocol 

Ø  Birth of the public-key revolution 



Diffie-Hellman Key Exchange Protocol 

Whitfield Diffie and Martin Hellman. New Directions in 
Cryptography. 1976 

q  Underlying observation: asymmetry is often present in the world !! 

No key required 

Not possible without key 

Ø  Showed how two people can publicly establish a secret-key 
even if an eavesdropper monitors the entire conversation 

Very Easy 

Extremely difficult 

Based on some assumptions in (some) 
cyclic groups of prime order 



Roadmap 

(special advantages)  

Groups 

Finite groups  

m
odular arithm

etic 

Finite cyclic groups 

Finite Cyclic groups of prime order  

Three Assumptions  



Modular Arithmetic 

q  Central to public-key cryptography 

[a mod N] = remainder when a is divided by N 

Notation: r is denoted as  [a mod N] 

q  Let a,  N ∈      , with N > 1. Then 

Proposition: Given a and N, there always exist integers q and r such that : 

a = qN + r, where 0 ≤ r < N 

Definition (Reduction modulo N): The process of mapping an integer a to [a mod N] is called reduction 
modulo N 

q        --- set of integers 

q  There exists a unique mapping from a to [a mod N]; f:          à {0,….,N-1}  



Easy way of Modular Reduction 
q  To do reduction modulo N, always imagine a clock with marks 0, 1, …, N-1 

q  Find   [a mod N]  in the clock notation as follows: 

v  If a is positive:  start counting from 0 in the clock in a clock-wise direction and stop after 
counting a times --- the final mark represents [a mod N] 

 

v  If a is negative:  start counting from 0 in the clock in an anti clock-wise direction and stop after 
counting a times --- the final mark represents [a mod N] 

q  Ex: N = 4 

0 

1 

2 

3 

q  [5 mod 4] =  1 

0 

1 

2 

3 

q  [-7 mod 4] =  1 

0 

1 

2 

3 



Congruence Modulo N 

Ø  a and b are mapped to the same r 

Definition (Congruence Modulo N): If [a mod N] = [b mod N], then a is said to be congruent to b modulo N 

Ø  Notation: a = b mod N; 

Ø  a = b mod N ⇔ N divides (a - b) 

Ø  Note that  a = [b mod N] is different; modulo reduction done on b ONLY 36 = 21 mod 15, but 36 =/= 6 

Proposition: Congruence modulo N is an equivalence relation: Reflexive, symmetric & transitive 



Standard Rules of Arithmetic for Congruence 
mod N  

q  Yes, trivially for Addition. Subtraction and Multiplication 

Ø  If a  = a’ mod N and b = b’ mod N  then a + b = a’ + b’ mod N 

Ø  If a  = a’ mod N and b = b’ mod N  then a – b = a’ - b’ mod N  

Ø  If a = a’ mod N and b = b’ mod N  then a * b = a’ * b’ mod N 

q  Reduce and then add/subtract/multiply 

q  Instead of add/subtract/multiply and then reduce 

q  Example: Compute [1093028 * 190301 mod 100] 

Ø  Option I : first compute 1093028 * 190301 and then reduce mod 100 

Ø  Option II : first reduce 1093028 and 190301 mod 100 and get 28 and 1 respectively. Then 
compute 28* 1 and reduce mod 100 

Ø  Definitely option II is far better than option I 





 

 
 
 
 
 
 

 
 

 

Private-key Cryptography: A Top-down Approach 

Private-key 
Cryptography 

Message 
Authentication 
Codes 

Pseudorandom 
Permutations 

Block Ciphers Pseudorandom 
Generators 

One-way 
Functions 

q Next few lectures 

Number 
Theoretic 
Assumptions 

Public-key 
Cryptography 


