## Cryptography

Lecture 8

Arpita Patra

## Quick Recall and Today's Roadmap

- >> Hash Functions- stands in between public and private key world
- >> Key Agreement

>> Assumptions in Finite Cyclic groups - DL, CDH, DDH

Groups

Finite groups

Finite cyclic groups

Finite Cyclic groups of prime orders (special advantages)

### Division for Modular Arithmetic

 $\Box$  If b is invertible modulo N (i.e. b<sup>-1</sup> exists) then division by b modulo N is defined as:

$$[a/b \mod N] \stackrel{\text{def}}{=} [ab^{-1} \mod N]$$

- > If ab = cb mod N and if b is invertible then a = c mod N
  - $\bullet$  "Dividing" each side by b (which actually means multiplying both sides by  $b^{-1}$ )
- Which integers b are invertible modulo a given modulus N?

Proposition: Given integers b and N, with  $b \ge 1$  and N > 1, then b is invertible modulo N if and only if gcd(b, N) = 1 (i.e. b & N are relatively prime).

Proof (<=): Inverse finding algorithm (if the number is invertible) --- Extended Euclid (GCD) algorithm

Given any b, N, the Extended Euclid algorithm outputs X and Y such that

$$bX + NY = gcd(b, N)$$

- $\rightarrow$  If gcd(b, N) = 1 then above equation implies that bX + NY = 1
- ➤ Taking mod N both sides gives  $bX = 1 \mod N \rightarrow b^{-1} = [X \mod N]$

### Algorithms for Modular Arithmetic

- $\square$   $\mathbb{Z}_{N}$  --- set of integers modulo N: {0, 1, ..., N 1}
- □ Let |N| = n --- number of bits to represent  $N : n = \Theta(\log N)$
- $\square$  Let a, b  $\in \mathbb{Z}_{\mathbb{N}}$  --- each represented by at most n bits

Theorem: Given integers N > 1, a and b, it is possible to perform the following operations in poly time in |a|, |b| and n:

- >> a mod N
- >> a+b mod N, a-b mod N, ab mod N
- >> Determining if a-1 mod N exists (if it exists)
- >> a-1 mod N (if it exists)
- » ab mod N
- » Choosing a random element of  $\mathbb{Z}_{_{\mathrm{N}}}$

### Group

Definition(Group): A group is a set G along with a binary operation o satisfying the following axioms:

- ➤ Closure: for every  $g, h \in G$ , the value g o  $h \in G$
- > Associativity: for every  $g_1$ ,  $g_2$ ,  $g_3 \in G$ ,  $(g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$
- $\triangleright$  Existence of Identity Element: there exists an identity element  $e \in G$ , such that for all  $g \in G$

$$(e \circ g) = g = (g \circ e)$$

 $\triangleright$  Existence of Inverse: for every  $g \in G$ , there exists an element  $h \in G$ , such that

Definition (Order of a Group:) If G has finite number of elements, then |G| denotes the number of elements in G and is called the order of G

Definition(Abelian Group:) If G satisfies the following additional property then it is called a commutative (Abelian) group: For every  $g, h \in G$ ,  $(g \circ h) = (h \circ g)$ 

Proposition: There exists only one identity element in a group. Every element in a group has a unique inverse

### Group Theory

- $\square$  The set of integers  $\mathbb Z$  is an abelian group with respect to the addition operation (+)
  - Closure and associativity holds
  - $\succ$  The integer 0 is the identity element --- for every integer x, 0 + x = x = x + 0
  - For every integer x, there exists an integer -x, such that x + (-x) = 0 = (-x) + x
  - $\triangleright$  For any two integers x, y, we have x + y = y + x --- commutativity

We are interested only in Finite groups

### Finite Groups

☐ Finite groups using modular arithmetic.

- def
- Define  $\mathbb{Z}_N$  = {0, 1, ..., N-1} and the operation + in  $\mathbb{Z}_N$  as a+b=(a+b) mod N, for every  $a,b\in N$ 
  - > Closure, commutative and associativity holds --- trivial to verify
  - $ightharpoonup 0 \in \mathbb{Z}_N$  is the identity element --- for every  $a \in \mathbb{Z}_N$ ,  $(a + 0) \mod N = (0 + a) \mod N = a$
  - Element (N a) is additive inverse of a modulo N
    - ◆ Inverse of a will be  $(N a) \in \mathbb{N}$  --- (a + N a) mod N = (N a + a) mod N = 0
- The set  $\mathbb{Z}_N = \{0, 1, ..., N-1\}$  is a group with respect to addition modulo N def
- - > The identity element is 1 as for every a  $\in \mathbb{Z}_N$  , we have (a . 1) = (1 . a) = (a mod N) = a
  - Will every element have an inverse?
    - ♦ Element 0 will have no inverse ---  $a \in Z_N$  such that (a0 mod N) = 1
    - ◆ Element a will have an inverse if and only if gcd(a, N) = 1
  - $\succ$  So  $\mathbb{Z}_{\mathbb{N}}$  is not a group with respect to multiplication modulo N
  - $\succ$  Can we construct a set from  $\mathbb{Z}_{\mathbb{N}}$  which will be a group with respect to multiplication modulo N ?

### Finite Groups

- □ Let  $\mathbb{Z}_{N}^{*}$  = {b: {1, ..., N-1} | gcd(b, N) = 1). Then  $\mathbb{Z}_{N}^{*}$  is a group with respect to multiplication modulo N
  - $\succ$  The set  $\mathbb{Z}_N^*$  is the set of integers relatively prime to N
- > Element 1 is the identity element. Every element is invertible. Associativity holds.
- $\succ$  Is  $\mathbb{Z}_N^*$  closed with respect to multiplication mod N? --- given a, b  $\in \mathbb{Z}_N^*$  , will [ab mod N]  $\in \mathbb{Z}_N^*$
- $\triangleright$  Claim: gcd(N, [ab mod N]) = 1 --- element [ab mod N] has multiplicative inverse [b<sup>-1</sup>a<sup>-1</sup> mod N]

### Group Exponentiation in Groups

 $\Box$  Exponentiation: applying same operation on the same element a number of times in a group (G, o)

#### Using Multiplication Notation:

 $\Rightarrow g^{\text{m}} \stackrel{\text{def}}{=} g \circ g \circ \dots \circ g \text{ (m times)}$   $\Rightarrow g^{-\text{m}} \stackrel{\text{def}}{=} (g^{-1} \circ g^{-1} \circ \dots \circ g^{-1}) \text{ (m times)}$   $\Rightarrow q^{\text{O}} \stackrel{\text{def}}{=} e, \text{ the group identity element}$ 

#### Using Addition Notation:

def  

$$\Rightarrow$$
 mg = g o g o ... o g (m times)  
def  
 $\Rightarrow$  -mg = (-g + -g + ... + -g) (m times)  
def  
 $\Rightarrow$  Og = e, the group identity element

### Group Order and Identity Element

Theorem: Let (G, o) be a group of order m, with identity element e. Then for every element  $g \in G$ :

$$g \circ g \circ \dots \circ g = e$$

m times

I.e. Any group element composed with itself m times results in the identity element

```
Proof: Let G = \{g_1, ..., g_m\} --- for simplicity assume G to be an Abelian group
          Let g be an arbitrary element of G
 \triangleright Claim: elements (g o g_1), (g o g_2), ..., (g o g_m) are all distinct
        • On contrary if for distinct g_i, g_j, we have (g \circ g_i) = (g \circ g_j) \rightarrow (g^{-1} \circ g \circ g_i) = (g^{-1} \circ g \circ g_j) \rightarrow g_i = g_j
 \rightarrow Thus {(g o g<sub>1</sub>), (g o g<sub>2</sub>), ..., (g o g<sub>m</sub>)} = G
 > So g_1 \circ g_2 \circ ... \circ g_m = (g \circ g_1) \circ (g \circ g_2) \circ ... \circ (g \circ g_m) -- (both side we have all the elements of G)
                                    = (g \circ g \circ ... \circ g) \circ (g_1 \circ g_2 \circ ... \circ g_m) -- (by associative and commutative property)
                                 e = (q \circ q \circ ... \circ q) \circ e
                                                                                          -- (multiply by (q_1 \circ q_2 \circ \dots \circ q_m)^{-1} both sides)
                                 e = (q \circ q \circ ... \circ q)
                                                                                         -- (a o e = a)
```

### Order of Important Finite Groups

 $\mathbb{Z}_{N}^{*}$  = {b: {1, ..., N-1} | gcd(b, N) = 1). It is a group with respect to multiplication modulo N  $\varphi(N)$  = order of the above group

- □ N is a prime number, say p
  - $\nearrow$   $\mathbb{Z}_{p}^{*} = \{1, 2, ..., p-1\}$  --- every number from 1 to p-1 is relatively prime to p
- $\square$  N = p.q, where p and q are primes
  - = (p-1)(q-1) --- follows from the principle of mutual inclusion-exclusion
  - Which numbers in {1, 2, ..., N-1} are not relatively prime to N?
    - Numbers which are divisible by p --- q-1 such numbers
    - ❖ Numbers which are divisible by q --- p-1 such numbers
    - Numbers which are divisible by both p and q --- 0 such number
  - > How many numbers in  $\{1, 2, ..., N-1\}$  are not relatively prime to N ? --- p + q 2
  - $\rightarrow$  How many numbers in {1, 2, ..., N-1} are relatively prime to N? --- N -1 p q + 2 = (p-1)(q-1)

### Group Order and Identity Element

Theorem: Let (G, o) be a group of order m, with identity element e. Then for every element  $g \in G$ :

I.e. Any group element composed with itself m times results in the identity element

- - $\succ$  Take any arbitrary N > 1 and any a  $\in \mathbb{Z}_{\mathbb{N}}^{2}$  . Then:
    - $[[[[a . a mod N] . a mod N] . a mod N] . a mod N] . ... . a mod N] = [a^{\phi(N)} mod N] = 1$   $\phi(N) \text{ times}$
  - ightharpoonup If N is a prime number, say p, then for any a  $\in$  {1, 2, ..., p-1}, we have :
    - $\triangleright$  [a<sup>p-1</sup> mod p] = 1
  - > If N is a composite number, p.q, then for any a we have:
    - $> [a^{(p-1)(q-1)} \mod N] = 1$

### Subgroup of a Group & Cyclic Group

- $\Box$  Let (G, o) be a group
- $\Box$  Let  $H \subseteq G$

Definition (Subgroup): If (H, o) is also a group, then H is called a subgroup of G w.r.t operation o



- $\square$  Every group (G, o) has two trivial subgroups:
  - $\triangleright$  The group (G, o) itself and the group (e, o)
  - > A group may/may not have subgroups other than trivial subgroups
- Given a finite group (G, o) of order m and an arbitrary element  $g \in G$ , define  $\langle g \rangle = \{g^0, g^1, ..., \}$  --- elements generated by different non-negative powers of g
  - $\triangleright$  The sequence is finite as  $g^m = 1$  and  $g^0$  is also 1
  - Let  $i \le m$  be the smallest positive integer such that  $g^i = 1$ . Then:  $\langle g \rangle = \{g^0, g^1, ..., g^{i-1}\}$  --- as  $g^i = 1$ , after which the sequence starts repeating

Proposition:  $(\langle g \rangle, o)$  is a subgroup of (G, o) of order i

Definition (Order of an element): Smallest positive integer i such that  $g^i = 1$ 

Definition (Generator): If g has order m, then  $\langle g \rangle = G$  --- then g is called a generator of G and G is called a cyclic group generated by g

### Examples

- $\square$  Consider ( $\mathbb{Z}_{2}^{*}$ , \* mod 7) --- it is a group with respect to multiplication modulo 7
  - $\triangleright$  Does 2 belong to the group? --- Yes, as gcd(2,7) = 1; 2 is relatively prime to 7
  - $\blacktriangleright$  What is <2>? --- <2> = { $2^0 \mod 7$ ,  $2^1 \mod 7$ ,  $2^2 \mod 7$ } = {1, 2, 4}
  - > Is (<2>, \* mod 7) a subgroup of ( $\mathbb{Z}_{+}^{*}$ , \* mod 7) ?

|   | 1 | 2 | 4 |
|---|---|---|---|
| 1 | 1 | 2 | 4 |
| 2 | 2 | 4 | 1 |
| 4 | 4 | 1 | 2 |

- ✓ Closure ✓ Associativity
  ✓ Identity --- 1
  ✓ Inverse
  ❖ 1<sup>-1</sup> = 1, 2<sup>-1</sup> = 4, 4<sup>-1</sup> = 2

$$\bullet$$
 1<sup>-1</sup> = 1, 2<sup>-1</sup> = 4, 4<sup>-1</sup> = 2

- Does 3 belong to the group? --- Yes, as gcd(3,7) = 1; 3 is relatively prime to 7
- $\rightarrow$  What is  $\langle 3 \rangle$ ? ---  $\langle 3 \rangle$  = {3<sup>0</sup> mod 7, 3<sup>1</sup> mod 7, 3<sup>2</sup> mod 7, 3<sup>3</sup> mod 7, 3<sup>4</sup> mod 7, 3<sup>5</sup> mod 7, 3<sup>6</sup> mod 7}  $= \{1, 3, 2, 6, 4, 5\} =$  the original group
- $\triangleright$  2 does not "generate" the entire group  $\mathbb{Z}_{\downarrow}^{*}$
- 3 "generates" the entire group  $\mathbb{Z}_{7}^{*}$  --- 3 is a generator

### Important Finite Cyclic Groups

Theorem: The group ( $\mathbb{Z}_p^*$ , \* mod p) is a cyclic group of order p - 1.

- Every element need not be a generator
- $\star$  Ex:  $(\mathbb{Z}_7^*, * \text{mod } 7)$  is a cyclic group with generator 3
  - $\circ$  Element 2 is not a generator for this group ---  $\langle 2 \rangle = \{1, 2, 4\}$

### Useful Propositions on Order of a Group Element

□ Let (G, o) be a group of order m and let  $g \in G$  such that g has order i  $(1 \le i \le m)$  ---  $g^i = e$ 

Proposition: For any integer x, y, we have  $g^x = g^y$  if and only if  $x = y \mod i$ ; i.e. [x mod i] = [y mod i]

Proof: If [x mod i] = [y mod i], then from the previous claim  $g^x = g^y$ If  $q^x = q^y \rightarrow q^{x-y} = q^{x-y \mod i} = 1 \rightarrow x - y \mod i = 0$ 

Proposition: The order of g divides the order of G --- i divides m

The last claim has several interesting implications

### Finite Cyclic Groups of Prime Order

Corollary: If (G, o) is a group of prime order p then G is cyclic and all elements of G, except the identity element will be generators of G

- Any arbitrary element  $g \in G$  apart from the identity element will have order p --- the only positive numbers which divides a prime p are 1 and p
- $\star$  Ex: consider the group (  $\mathbb{Z}_7$  , + mod 7) --- cyclic group, with identity element 1 and generators 1, 2, 3, 4, 5 and 6

Instances of Cyclic groups of prime order??

Theorem: The group (  $\mathbb{Z}_p^{*}$ , \* mod p) is a cyclic group of order p - 1.

We can construct cyclic groups of prime order from the above group when p has a specific format

## Prime-order Cyclic Subgroup of Zp

Definition (Safe Primes): Prime numbers in the format p = 2q+1 where q is also a prime.

Example (5, 11), (11, 23), ... several such pairs

Definition (Quadratic Residue Modulo p): Call  $y \in \mathbb{Z}_p$  a quadratic residue modulo p if there exists an  $x \in \mathbb{Z}_p^*$ , with  $y = x^2 \mod p$ .  $x \in \mathbb{Z}_p$  is called square-root of  $y \mod p$ 

Theorem: The set of quadratic residues modulo p is a cyclic subgroup of  $\mathbb{Z}_p$  of order q. I.e.

Q =  $\{x^2 \text{ mod p } | x \in \mathbb{Z}_p^*\}$ , then (Q, \* mod p) is a cyclic subgroup of ( $\mathbb{Z}_p^*$ , \* mod p) of order q

#### Proof:

Step I: To show that (Q, \* mod p) is a subgroup of  $(\mathbb{Z}_p^*, * mod p)$ 

Step II: Show that (Q, \* mod p) is of order q

## Prime-order Cyclic Subgroup of Z<sub>p</sub>\*

Theorem: The set of quadratic residues modulo p is a cyclic subgroup of  $\mathbb{Z}_p$  of order q. I.e.  $Q = \{x^2 \mod p \mid x \in \mathbb{Z}_p^*\}$ , then  $(Q, * \mod p)$  is a cyclic subgroup of  $(\mathbb{Z}_p^*, * \mod p)$  of order q

#### Proof:

Step I: To show that (Q, \* mod p) is a subgroup of  $(\mathbb{Z}_p^*, * mod p)$ 

- Closure: (Q, \* mod p) satisfies the closure property
  - Given arbitrary  $y_1, y_2 \in Q$ , show that  $(y_1 * y_2) \mod p \in Q$

○ 
$$y_1 \in Q \rightarrow y_1 = x_1^2 \mod p$$
, for some  $x_1 \in \mathbb{Z}_p^*$ 

○ 
$$y_2 \in Q \rightarrow y_2 = x_2^2 \mod p$$
, for some  $x_2 \in \mathbb{Z}_p^*$ 

o 
$$(y_1 * y_2) \mod p = (x_1 * x_2)^2 \mod p = (x_3)^2 \mod p$$
, where  $x_3 = (x_1 * x_2) \in \mathbb{Z}_p^*$ 

○ So 
$$(y_1 * y_2)$$
 mod  $p \in Q$ 

## Prime-order Cyclic Subgroup of Z<sub>p</sub>\*

Theorem: The set of quadratic residues modulo p is a cyclic subgroup of  $\mathbb{Z}_p^*$  of order q. I.e.

Q =  $\{x^2 \text{ mod p} \mid x \in \mathbb{Z}_p^*\}$ , then (Q, \* mod p) is a cyclic subgroup of ( $\mathbb{Z}_p^*$ , \* mod p) of order q

#### Proof:

Step I: To show that (Q, \* mod p) is a subgroup of  $(\mathbb{Z}_p^*, * mod p)$ 

- Closure: (Q, \* mod p) satisfies the closure property
- Associativity: trivial to verify that given arbitrary  $y_1, y_2, y_3 \in \mathbb{Q}$ , we have  $(y_1 * y_2) * y_3 \mod p = y_1 * (y_2 * y_3) \mod p$
- Identity: The element 1 will be present in Q, which will be the identity element for Q  $1 = 1^2 \mod p$
- Inverse: Show that every element  $y \in Q$  has a multiplicative inverse  $y^{-1} \in Q$ , with  $(y * y^{-1} \text{ mod } p) = 1$   $y \in Q \rightarrow y = (x^2 \text{ mod } p)$ , for some  $x \in \mathbb{Z}_p^*$

What can you say about  $z = (x^{-1})^2 \mod p$ ?

- $x \in \mathbb{Z}_p^* \to x^{-1} \in \mathbb{Z}_p^*$ , which implies that  $z \in Q$
- From the above we get that (y \* z mod p) = 1

## Prime-order Cyclic Subgroup of Zp

Theorem: The set of quadratic residues modulo p is a cyclic subgroup of  $\mathbb{Z}_p$  of order q. I.e.  $Q = \{x^2 \text{ mod p} \mid x \in \mathbb{Z}_p^*\}$ , then (Q, \* mod p) is a cyclic subgroup of  $(\mathbb{Z}_p^*, * \text{ mod p})$  of order q

```
Proof: Step I: To show that (Q, * mod p) is a subgroup of (\mathbb{Z}_p), * mod p
Step II: Show that (Q, * mod p) is of order q
```

- We will show that  $f: \mathbb{Z}_p^* \to \mathbb{Q}$  is a 2-to-1 function --- exactly 2 elements have the same image  $|\mathbb{Z}_p^*| = (p-1)$ , the above will imply that  $|\mathbb{Q}| = (p-1)/2 = q$
- > Let g be a generator of  $\mathbb{Z}_{p}^{*}$  ---  $\mathbb{Z}_{p}^{*} = \{g^{0}, g^{1}, ..., g^{p-2}\}$
- $\triangleright$  Consider an arbitrary element  $g^i$  in  $\mathbb{Z}_p^*$  and its corresponding image  $(g^i)^2$  mod p in Q
- ightharpoonup Claim: there exists only one more element  $g^j$  in  $\mathbb{Z}_p^*$ , with  $(g^i)^2$  mod  $p=(g^j)^2$  mod p
  - ❖ If  $(g^i)^2 \mod p = (g^j)^2 \mod p$  → [2i mod p -1] = [2j mod p-1] → (p 1) divides (2i 2j) → q | (i j)
  - ❖ The above implies that for a fixed  $i \in \{0, ..., p-2\}$ , there is only 1 possible j, namely  $(i + q) \mod p-1$   $(i + 2q) \mod (p 1) = i$

### Generalization

For Prime numbers in the format p = rq+1 where q is also a prime.

Theorem: The set of rth residues modulo p is a cyclic subgroup of  $\mathbb{Z}_p^*$  of order q. I.e.  $\mathbb{Q} = \{x^r \text{ mod p} \mid x \in \mathbb{Z}_p^*\}$ , then  $(\mathbb{Q}, * \text{ mod p})$  is a cyclic subgroup of  $(\mathbb{Z}_p^*, * \text{ mod p})$  of order q

# Easy Problems in Finite Cyclic Groups (of Prime Order)

- 1. Generating Cyclic Groups / Cyclic Groups of Prime Order
  - How to sample a prime number of n bits / how to sample primes of specific format (safe primes) (Miller-Rabin, Agrawal-Kayal-Saxena)
  - >> Finding a generator
  - >> Given generator, how to generate an element of the group (requires exponentiation)
- 2. Sampling an uniform random group element

There exists a generator

Group order (p-1) is not a prime. Every exponent may not have multiplicative inverse modulo (p-1)

If group order (p-1) has small prime factors, there exists no-trivial algo to break the hard problems that we discuss next

Prime Order Cyclic Group 
$$Q = \{x^r \mod p \mid x \in \mathbb{Z}_p^* \}$$

Every element except the identity element is a generator

Group order q. Every exponent have multiplicative inverse modulo q and easy to compute

The attacks does not work here

### Discrete Logarithm

- $\Box$  Let (G, o) be a cyclic group of order q (with |q| = n bits) and with generator g
  - $> \{g^0, g^1, g^2, ..., g^{q-1}\} = G --- g$  has order q as it is the generator
  - $\triangleright$  Given any element  $h \in G$ , it can be expressed as some power of g
    - ❖  $\exists$  a unique  $x \in \mathbb{Z}_q = \{0, 1, ..., q-1\}$ , such that  $h = g^x$
    - $\star$  x is called the discrete log of h with respect to g --- expressed as  $\log_a$  h

- ☐ Discrete log follows certain rules of standard logarithms
  - $> \log_q e = 0$
  - $> \log_g h^r = [r \log_g h \mod q]$
  - $> \log_q [h_1 \circ h_2] = [(\log_q h_1 + \log_q h_2) \mod q]$

### Discrete Logarithm Problem

□ How difficult is it to compute the DLog of a random group element?
For certain groups, there exists no better algorithm than the inefficient brute-force

Modeled as a challenge-response experiment:  $DLog_{A,G}(n)$  (G, o,

(G, o, g, q) output by an group gen algo



DLog problem is hard relative to the group G, if for every PPT algorithm A, there exists a negligible function negl(), such that:

$$Pr[DLog_{A,G}(n) = 1] \leq negl()$$

- $\square$  DLog Assumption: there exists some group G, relative to which DLog problem is hard
  - > We have seen will see such candidates earlier

### Computational Diffie-Hellman (CDH) Problem

- $\Box$  Given a cyclic group (G, o) of order q and a generator g for G.
- $\Box$  The CDH problem for the group (G, o) is to compute  $g^{x,y}$  for random group elements  $g^x$ ,  $g^y$



CDH problem is hard relative to the group G, if for every PPT algorithm A:

$$Pr[CDH_{A,G}(n) = 1] \leq negl()$$

### Relation between CDH and DLog Problems

Given a cyclic group (G, o) of order q and a generator q for G:



If CDH is hard in (G, o) then DLog is hard in (G, o).



- Advantage of 🤓 same as



- If DLog is hard in (G, o) then CDH is hard in (G, o)? --- nothing is known
- CDH (hardness) is a stronger assumption than DLog (hardness) assumption
  - CDH might be solved even without being able to solve the DLog problem

### Decisional Diffie-Hellman (DDH) Problem

The DDH problem for the group (G, o) is to distinguish  $g^{x,y}$  from a random group element  $g^z$ , if  $g^x$ ,  $g^y$ are random

DDH problem is hard relative to (G, o) if for every PPT algorithm A:

$$\Pr[A(G, o, q, g, g^{X}, g^{Y}, g^{XY}) = 1]$$
 -  $\Pr[A(G, o, q, g, g^{X}, g^{Y}, g^{Z}) = 1]$  \le negl()

Probability over uniform choice of x and y Probability over uniform choice of x, y and z

- Claim: If DDH is hard relative to (G, o) then CDH is also hard relative to (G, o)
  - $\triangleright$  If CDH can be solved, then given  $g^{x}$  and  $g^{y}$ , compute  $g^{xy}$  and compare it with the third element

- Nothing is known regarding the converse --- DDH is a stronger assumption than CDH
  - DDH might be solved even without being able to solve CDH

### Cryptographic Assumptions in Cyclic Groups

$$DDH \longrightarrow CDH \longrightarrow DL$$

Cyclic Groups of Prime Order is best choice.

- >> DL is harder in this group compared to cyclic group  $\mathbb{Z}_p^*$  (Pohlig-Hellman Algo) >> DDH can be broken in cyclic group  $\mathbb{Z}_p^*$  but believed to hold good it its prime order subgroup

6th Chalk and Talk topic

Attacks on Discrete Log Assumptions-

- (i) Pohlig-Hellman Algorithm
- (ii) Shanks Baby-step/Giant-step algorithm

(iii) Discrete Logs from Collisions

### Diffie-Hellman Key-Exchange Protocol



### Diffie-Hellman Key-Exchange Protocol



### Key-Exchange Protocol: Security



- ☐ Given an arbitrary key-exchange protocol, whose execution is monitored by a PPT eavesdropper
  - What security property we demand from such a protocol?
    - Option I: the output key k should remain hidden from the eavesdropper
- ❖ Option II: the output key k should remain indistinguishable for the eavesdropper from a uniformly random key from the key-space K

- We actually want to have option II
  - If we want the key to be used as the secret-key for some higher level primitive

### Key-Exchange Protocol: Security Experiment



- $\Box$  Experiment output is 1 if and only if b' = b
- $\ \square$   $\Pi$  is a secure KE protocol if:

Runs an instance of  $\Pi$  in mind simulating the role of S, R

$$\Pr\left|\begin{array}{c|c} \text{edv} \\ \text{KE} \\ A \cdot \Pi \end{array}\right| \leq \frac{1}{2} + \text{negl(n)}$$

## Diffie-Hellman Key-Exchange Protocol: Security



- $\Box$  What is the probability that the output of the experiment is 1?
  - $\triangleright$  Same with which A can distinguish  $g^{xy}$  from a random group element  $g^z$

### Uniform Group Elements vs Uniform Random Strings

- $\Box$  DH key-exchange protocol enables the parties to agree on a (pseudo)random group element  $q^{xy}$
- ☐ In reality, the parties would like to agree on (pseudo)random bit string which can be used as a secret-key for higher level primitive, such as PRF, MAC, etc
- Required: a method of deriving (pseudo)random bit strings from (pseudo)random group elements
  - Potential solution (used in practice)
    - ❖ Use the binary representation of the group element  $g^{XY}$  as the required key
    - Claim: the resultant bit-string will be (pseudo)random if the group element is (pseudo)random
  - > The above claim need not be true --
  - Ex: consider the pr A suitable key-derivation function (KDF) is applied to  $q^{XY}$  to derive pseudorandom key
  - > Subgroup (Q
    - Typically KDFs are based on hash functions
    - The agreed key y

      Details out of scope of this course
    - $\diamond$  Number of bits to representments of  $\mathbb{Z}_p$ 
      - o But Q does not contain all possible bit-strings of length log p ---  $|Q| = q \approx 2^{\log_2 p} / 2$
      - $\circ$  So binary representation of the agreed key does not correspond to a random  $\log_2$  p-bit string

generator of  $Q, x, y \in \mathbb{Z}_a$ 

### Active Attacks Against DH Key-Exchange Protocol

- □ DH key-exchange protocol assumes a passive attacker --- only listens the conversation
- ☐ In reality, the attacker may be malicious/active --- can change information, inject its own messages, etc
- ☐ Two types of active attacks against DH key-exchange protocol
  - Impersonation attack:



### Active Attacks Against DH Key-Exchange Protocol

- ☐ DH key-exchange protocol assumes a passive attacker --- only listens the conversation
- ☐ In reality, the attacker may be malicious/active --- can change information, inject its own messages, etc
- ☐ Two types of active attacks against DH key-exchange protocol
  - Impersonation attack:
  - Man-in-the-middle attack:



☐ In practice, robust mechanisms are used in the DH key-exchange protocol to deal with the man-in-the-middle attack --- ex: TLS protocol

### The Public-key Revolution

☐ In their seminal paper on the key-exchange, Diffie-Hellman also proposed the notion of public-key cryptography (asymmetric-key cryptography)



### Public-key Crypto vs Private-key Crypto

#### Private-Key Crypto

#### Public-Key Crypto

- Key distribution has to be done apriori.
- In multi-sender scenario, a receiver need to hold one secret key per sender
- Well-suited for closed organization (university, private company, military). Does not work for open environment (Internet Merchant)
- + Very fast computation. Efficient Communication. Only way to do crypto in resource-constrained devices such as mobile, RFID, ATM cards etc
- + only those who shares a key can send a message

- + Key distribution can be done over public channel!!
- + One receiver can setup a single public-key/ secret key and all the senders can use the same public key
- + Better suited for open environment (Internet) where two parties have not met personally but still want to communicate securely (Internet merchant & Customer)
- Orders of magnitude slower than Private-key. Heavy even for desktop computers while handling many operations at the same time
- Anyone can send message including unintended persons
- Relies on the fact that there is a way to correctly send the public key to the senders (can be ensured if the parties share some prior info or there is a trusted party)
- □ Diffie and Hellman could not come up with a concrete construction; though a public-key encryption scheme was "hidden" in their key-exchange protocol
- □ Cryptography spread to masses just due to advent of public-key cryptography

Thank You!