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Quick Recall and Today’s Roadmap 

>> Hash Functions- stands in between public and private key world 

>> Key Agreement 

>> Assumptions in Finite Cyclic groups - DL, CDH, DDH 

        Groups 

        Finite groups 
        Finite cyclic groups 

        Finite Cyclic groups of prime orders (special advantages)  



Division for Modular Arithmetic 
q  If b is invertible modulo N (i.e. b-1 exists) then division by b modulo N is defined as: 

[a/b mod N]     =     [ab-1 mod N] 
def 

Ø  If ab = cb mod N and if b is invertible then a = c mod N 

v  “Dividing” each side by b (which actually means multiplying both sides by b-1) 

q  Which integers b are invertible modulo a given modulus N ? 

Proposition: Given integers b and N, with b ≥ 1 and N > 1, then b is invertible modulo N if and only if 
gcd(b, N) = 1 (i.e. b & N are relatively prime). 

Proof (<=): Inverse finding algorithm (if the number is invertible) --- Extended Euclid (GCD) 
algorithm 

Ø  Given any b, N, the Extended Euclid algorithm outputs X and Y such that 

bX + NY = gcd(b, N) 

Ø  If gcd(b, N) = 1 then above equation implies that bX + NY = 1 

Ø  Taking mod N both sides gives bX = 1 mod N → b-1 = [X mod N] 



Algorithms for Modular Arithmetic 

q  Let |N| = n --- number of bits to represent N : n = Θ(log N) 

q  Let a, b ∈        --- each represented by  at most n bits 

 
Theorem: Given integers N > 1, a and b, it is possible to perform the following operations in poly time in 
|a|, |b| and n:  

      >>  a mod N 

      >> a+b mod N, a-b mod N, ab mod N 

      >> Determining if a-1 mod N exists (if it exists)  

        >> a-1 mod N  (if it exists) 

      >> ab  mod N  

      >> Choosing a random element of  
 

N	



N	



q        --- set of integers modulo N: {0, 1, …, N - 1} N	





Group 

Definition(Group): A group is a set G along with a binary operation o satisfying the following axioms : 

Ø  Closure : for every g, h ∈ G, the value g o h ∈ G 

Ø  Associativity:  for every g1, g2, g3 ∈ G, (g1 o g2) o g3  = g1 o (g2 o g3) 

Ø  Existence of Identity Element:  there exists an identity element e ∈ G, such that for all g ∈ G 

v  (e o g) = g = (g o e) 

Ø  Existence of Inverse:  for every g ∈ G, there exists an element h ∈ G, such that  

v  (g o h) = e = (h o g) 

Definition (Order of a Group:) If G has finite number of elements, then |G| denotes the number of 
elements in G and is called the order of G 

Definition(Abelian Group:) If G satisfies the following additional property then it is called a commutative 
(Abelien) group: For every g, h ∈ G,  (g o h) = (h o g) 

Proposition: There exists only one identity element in a group. Every element in a group has a unique 
inverse 



Group Theory 
q  The set of integers ℤ  is an abelian group with respect to the addition operation (+) 

Ø  Closure and associativity holds 

Ø  The  integer 0 is the identity element --- for every integer x, 0 + x = x = x + 0 

Ø  For every integer x, there exists an integer –x, such that x + (-x) = 0 = (-x) + x 

Ø  For any two integers x, y, we have x + y = y + x --- commutativity 

We are interested only in Finite groups 



Finite Groups 

q  Define ℤN = {0, 1, …, N-1} and the operation + in ℤN as 
a +  b   =     (a + b) mod N, for every a, b ∈  N 

def 

Ø  Closure, commutative and associativity holds --- trivial to verify 

Ø  0 ∈ ℤN is the identity element --- for every a ∈ ℤN, (a + 0) mod N = (0 + a) mod N = a 

u  Inverse of a will be (N - a)∈ N --- (a + N - a ) mod N = (N - a + a) mod N = 0 

Ø  Element (N - a) is  additive inverse of a modulo N 

q  The set ℤN = {0, 1, …, N-1} is a group with respect to addition modulo N 

q  Finite groups using modular arithmetic. 

Ø  Will every element have an inverse ? 

u  Element 0 will have no inverse ---  a ∈ ZN such that (a0 mod N) = 1 

u  Element a will have an inverse if and only if gcd(a, N) = 1 

Ø  So        is not a group with respect to multiplication modulo N N 

Ø  Can we construct a set from         which will be a group with respect to multiplication modulo N ? N 

q  Define operation *  in ZN as a *  b   =     (ab) mod N, for every a, b ∈   
def 

N 

Ø  The identity element is 1 as for every a ∈          , we have (a . 1) = (1 . a) = (a mod N) = a N 



Finite Groups 
q  Let ℤN  = {b: {1, …, N-1} | gcd(b, N) = 1). Then ℤN  is a group with respect to multiplication modulo N 

* * 

Ø  The set ℤN  is the set of integers relatively prime to N 
* 

Ø  Element 1 is the identity element. Every element is invertible. Associativity holds. 

Ø  Is        closed with respect to multiplication mod N ?  N 

* --- given a, b ∈        , will [ab mod N] ∈  N 

* 
N 

* 

Ø  Claim: gcd(N, [ab mod N]) = 1 ---  element [ab mod N] has multiplicative inverse [b-1a-1 mod N] 



Group Exponentiation in Groups 

q   Exponentiation: applying same operation on the same element a number of times in a group (G, o) 

Ø  gm   =     g o g o … o g (m times) 

def 

Ø  g-m   =     (g-1 o g-1 o … o g-1) (m times) 

def 

Ø  g0   =     e, the group identity element 

def 

Ø  mg   =     g o g o … o g (m times) 

def 

Ø  -mg   =     (-g + -g + … + -g) (m times) 

def 

Ø  0g   =     e, the group identity element 

def 

Using Multiplication Notation: 

Using Addition Notation: 



Group Order and Identity Element 
Theorem: Let (G, o) be a group of order m, with identity element e. Then for every element g ∈ G: 

g o g o … o g = e 

m times 

I.e. Any group element composed with itself m times results in the identity element 

 Proof: Let G = {g1, …, gm} --- for simplicity assume G to be an Abelian group 

Let g be an arbitrary element of G 

Ø  Claim: elements (g o g1), (g o g2), …, (g o gm) are all distinct 

v  On contrary if for distinct gi, gj, we have (g o gi) = (g o gj)  → (g-1 o g o gi) = (g-1 o g o gj) → gi = gj 

Ø  Thus {(g o g1), (g o g2), …, (g o gm)} = G 

Ø  So g1 o g2 o … o gm = (g o g1) o (g o g2) o … o (g o gm)    -- (both side we have all the elements of G) 

 = (g o g o … o g) o (g1 o g2 o … o gm) –- (by associative and commutative property) 

  e = (g o g o … o g) o e                           -- (multiply by (g1 o g2 o … o gm)-1 both sides) 

  e = (g o g o … o g)                                -- (a o e = a) 



Order of Important Finite Groups 

q  N is a prime number, say p 

 N  = {b: {1, …, N-1} | gcd(b, N) = 1). It is a group with respect to multiplication modulo N 
* 

Ø         = {1, 2, …, p-1} --- every number from 1 to p-1 is relatively prime to p p 
* 

q  N = p.q, where p and q are primes 

Ø                  =  (p-1)(q-1) --- follows from the principle of mutual inclusion-exclusion N 

* 

Ø  Which numbers in {1, 2, …, N-1} are not relatively prime to N ? 

v  Numbers which are divisible by p --- q-1 such numbers 

v  Numbers which are divisible by q --- p-1 such numbers 

v  Numbers which are divisible by both p and q --- 0 such number 

Ø  How many numbers in {1, 2, …, N-1} are not relatively prime to N ? --- p + q - 2 

Ø  How many numbers in {1, 2, …, N-1} are relatively prime to N ? --- N -1 - p – q + 2  = (p-1)(q-1) 

ϕ(N) = order of the above group 



Group Order and Identity Element 

q  Implications of the above theorem in the multiplicative group 
N 

* 

Ø  Take any arbitrary N > 1 and any a ∈       . Then: N 

* 

v  [[[[[a . a mod N] . a mod N] . a mod N] . a mod N] . … . a mod N] = [aϕ(N) mod N] = 1 

ϕ(N) times 

Ø  If N is a prime number, say p, then for any a ∈ {1, 2, …, p-1}, we have : 

Ø  [ap-1 mod p] = 1 

Theorem: Let (G, o) be a group of order m, with identity element e. Then for every element g ∈ G: 

g o g o … o g = e 

m times 

I.e. Any group element composed with itself m times results in the identity element 

Ø  If N is a composite number, p.q, then for any a  we have : 

Ø  [a(p-1)(q-1) mod N] = 1 



Subgroup of a Group & Cyclic Group 

q  Let (G, o) be a group q  Let H ⊆ G 

Definition (Subgroup): If (H, o) is also a group, then H is called a subgroup of 
G w.r.t operation o 

G 

H 

q  Every group (G, o) has two trivial subgroups: 

Ø  The group (G, o) itself and the group (e, o) 

Ø  A group may/may not have subgroups other than trivial subgroups 

q  Given a finite group (G, o) of order m and an arbitrary element g ∈ G, define 

      <g>   =     {g0, g1, …, } --- elements generated by different non-negative powers of g 

Ø  The sequence is finite as gm = 1 and g0 is also 1 

Ø  Let i ≤ m be the smallest positive integer such that gi = 1. Then: 
      <g>   =     {g0, g1, …, gi-1 } --- as gi = 1, after which the sequence starts repeating 

Proposition: (<g>, o) is a subgroup of (G, o) of order i 

Definition (Order of an element):  Smallest positive integer i  such that gi = 1  

Definition (Generator):  If g has order m, then <g> = G --- then g is called a generator of G and G is 
called a cyclic group generated by g 



Examples 
q  Consider (      , * mod 7) --- it is a group with respect to multiplication modulo 7 

q  Ex: Consider the group (       , * mod 8) ---         = {1, 3, 5, 7}    

q  Ex: Consider the group (       , * mod 8) ---         = {1, 3, 5, 7}    

7 

* 

Ø  Does 2 belong to the group ?  --- Yes, as gcd(2, 7) = 1; 2 is relatively prime to 7 

Ø  What is <2> ?  --- <2> = {20 mod 7, 21 mod 7, 22 mod 7} = {1, 2, 4}  

Ø  Is (<2>, * mod 7) a subgroup of (      , * mod 7)  ?  
7 

* 

1 2 4 

1 

2 

4 

1 2 4 

2 4 1 

4 1 2 

ü  Closure ü  Associativity 

ü  Identity --- 1 

ü  Inverse 

v  1-1 = 1,  2-1 = 4, 4-1 = 2 

Ø  Does 3 belong to the group ?  --- Yes, as gcd(3, 7) = 1; 3 is relatively prime to 7 

Ø  What is <3> ?  --- <3> = {30 mod 7, 31 mod 7, 32 mod 7, 33 mod 7, 34 mod 7, 35 mod 7, 36 mod 7 }    
 = {1, 3, 2, 6, 4, 5} = the original group  

Ø  2 does not “generate” the entire group 7 

* 

Ø  3 “generates” the entire group         --- 3 is a generator 7 

* 



Important Finite Cyclic Groups  

Theorem: The group (       , * mod p) is a cyclic group of order p – 1. p 

* 

v  Every element need not be a generator 

v  Ex:  (        ,  * mod 7) is a cyclic group with generator 3  7 

* 

o  Element 2 is not a generator for this group --- <2> = {1, 2, 4} 



Useful Propositions on Order of a Group Element 
q  Let (G, o) be a group of order m and let g ∈ G such that g has order i (1 ≤ i ≤ m) --- gi = e  

Proposition: For any integer x, we have gx = g[x mod i] 

gx =  (g o g … o g) o (g o g o … o g) o … o (g o g o … o g) 
x times 

i times i times x mod i times 

e e g[x mod i] o o o … = g[x mod i] 

… 

Proposition: For any integer x, y, we have gx = gy if and only if x = y mod i; i.e. [x mod i] = [y mod i]  

Proof: If [x mod i] = [y mod i], then from the previous claim gx = gy 

If gx = gy -> gx-y = gx-y mod i  = 1  -> x - y mod i =0 

Proposition: The order of g divides the order of G --- i divides m 

Proof: Element g has order i → gi = e v  For any g, we have gm = e 

v  So gm = gi → [m mod i] = [i mod i] → [m mod i] = 0 

The last claim has several interesting implications 



Finite Cyclic Groups of Prime Order  

Corollary: If (G, o) is a group of prime order p then G is cyclic and all elements of G, except the 
identity element will be generators of G 

v  Any arbitrary element g ∈ G apart from the identity element will have order p --- the only 
positive numbers which divides a prime p are 1 and p 

v  Ex: consider the group (      ,  + mod 7) --- cyclic group, with identity element 1 and generators 
1, 2, 3, 4, 5 and 6 

7 

Instances of Cyclic groups of prime order?? 

Theorem: The group (       , * mod p) is a cyclic group of order p – 1. p 

* 

We can construct cyclic groups of prime order from the above 
group when p has a specific format 



p 
* Prime-order Cyclic Subgroup of  

Definition (Safe Primes): Prime numbers in the format p = 2q+1 where q is also a prime. 

Ø  Example (5, 11), (11, 23), … several such pairs 

Definition (Quadratic Residue Modulo p): Call y ∈         a quadratic residue modulo p if there exists an x 
∈      , with y = x2 mod p. x is called square-root of y modulo p 

p 

* 

p 

* 

Theorem: The set of quadratic residues modulo p is a cyclic subgroup of        of  order q. I.e. p 

* 

Q = {x2 mod p | x ∈      }, then (Q, * mod p) is a cyclic subgroup of (       , * mod p) of order q p 

* 
p 

* 

Proof:  
        Step I: To show that (Q, * mod p) is a subgroup of (      , * mod p)  p 

* 

Step II: Show that (Q, * mod p) is of order q 



p 
* Prime-order Cyclic Subgroup of  

Ø  Closure: (Q, * mod p) satisfies the closure property 

v  Given arbitrary y1, y2 ∈ Q, show that  (y1 * y2) mod p ∈ Q 

o  y1 ∈ Q  → y1 = x1
2 mod p, for some x1 ∈  p 

* 

o  y2 ∈ Q  → y2 = x2
2 mod p, for some x2 ∈  p 

* 

o  (y1 * y2) mod p = (x1 * x2)2 mod p = (x3)2 mod p, where x3 = (x1 * x2) ∈        p 

* 

o  So (y1 * y2) mod p ∈ Q 

Theorem: The set of quadratic residues modulo p is a cyclic subgroup of        of  order q. I.e. p 

* 

Q = {x2 mod p | x ∈      }, then (Q, * mod p) is a cyclic subgroup of (       , * mod p) of order q p 

* 
p 

* 

Proof:  
        Step I: To show that (Q, * mod p) is a subgroup of (      , * mod p)  p 

* 



p 
* Prime-order Cyclic Subgroup of  

Ø  Closure: (Q, * mod p) satisfies the closure property 

Theorem: The set of quadratic residues modulo p is a cyclic subgroup of        of  order q. I.e. p 

* 

Q = {x2 mod p | x ∈      }, then (Q, * mod p) is a cyclic subgroup of (       , * mod p) of order q p 

* 
p 

* 

Proof:  
        Step I: To show that (Q, * mod p) is a subgroup of (      , * mod p)  p 

* 

Ø  Associativity:  trivial to verify that given arbitrary y1, y2, y3 ∈ Q, we have 

(y1 * y2) * y3 mod p = y1 * (y2 * y3) mod p 

Ø  Identity:  The element 1 will be present in Q, which will be the identity element for Q 

1 = 12 mod p 

Ø  Inverse:  Show that every element y ∈ Q has a multiplicative inverse y-1 ∈ Q, with (y * y-1 mod 
p) = 1 y ∈ Q → y = (x2 mod p), for some x ∈  

What can you say about z = (x-1)2 mod p ?  

o  x ∈        → x-1 ∈        , which implies that z ∈ Q 

o  From the above we get that (y * z mod p) = 1 

p 

* 

p 

* 
p 

* 



p 
* Prime-order Cyclic Subgroup of  

Theorem: The set of quadratic residues modulo p is a cyclic subgroup of        of  order q. I.e. p 

* 

Q = {x2 mod p | x ∈      }, then (Q, * mod p) is a cyclic subgroup of (       , * mod p) of order q p 

* 
p 

* 

Proof:  Step I: To show that (Q, * mod p) is a subgroup of (      , * mod p)  p 

* 

Step II: Show that (Q, * mod p) is of order q 

Ø  We will show that f:       → Q is a 2-to-1 function --- exactly 2 elements have the same image p 

* 

                           = (p -1), the above will imply that |Q| = (p - 1)/2 = q | 

Ø  Let g be a generator of        ---         = {g0, g1, …, gp-2} p 

* 
p 

* 

Ø  Consider an arbitrary element gi in         and its corresponding image (gi)2 mod p in Q p 

* 

Ø  Claim: there exists only one more element gj in        , with (gi)2 mod p = (gj)2 mod p p 

* 

v  If (gi)2 mod p = (gj)2 mod p  → [2i mod p -1] = [2j mod p-1] → (p - 1) divides (2i – 2j) → q | (i - j)  

v  The above implies that for a fixed i ∈ {0, …, p-2}, there is only 1 possible j, namely (i + q) mod p-1 

o  (i + 2q) mod (p – 1) = i 

p 

* | 



Generalization 

Theorem: The set of rth residues modulo p is a cyclic subgroup of        of  order q. I.e. p 

* 

Q = {xr mod p | x ∈      }, then (Q, * mod p) is a cyclic subgroup of (       , * mod p) of order q p 

* 
p 

* 

For Prime numbers in the format p = rq+1 where q is also a prime. 



Easy Problems in Finite Cyclic Groups (of Prime 
Order) 

1.  Generating Cyclic Groups / Cyclic Groups of Prime Order 
         >>  How to sample a prime number of n bits /  

              how to sample primes of specific format (safe primes) 

              (Miller-Rabin, Agrawal-Kayal-Saxena) 

         >> Finding a generator 

         >> Given generator, how to generate an element of the group (requires exponentiation) 

2.   Sampling an uniform random group element  

Cyclic Group Prime Order Cyclic Group 

There exists a generator  Every element except the identity element is  
a generator  

Group order (p-1) is not a prime. Every 
exponent may not have multiplicative 
inverse modulo (p-1)  

p 

* Q = {xr mod p | x ∈      } p 

* 

Group order q. Every exponent have 
multiplicative inverse modulo q and easy to 
compute  

If group order (p-1) has small prime factors, 
there exists no-trivial algo to break the hard 
problems that we discuss next 

The attacks does not work here  



Discrete Logarithm    

q  Let (G, o) be a cyclic group of order q (with |q| = n bits) and with generator g 

Ø  {g0, g1, g2, …, gq-1} = G --- g has order q as it is the generator 

Ø  Given any element h ∈ G, it can be expressed as some power of g 

v  ∃ a unique x ∈       = {0, 1, …, q-1}, such that h = gx q 

v  x is called the discrete log of h with respect to g --- expressed as logg h 

q  Discrete log follows certain rules of standard logarithms 

Ø  logg e = 0 

Ø  logg hr = [r logg h mod q] 

Ø  logg [h1 o h2] = [(logg h1 + logg h2) mod q] 



Discrete Logarithm Problem   
q  How difficult is it to compute the DLog of a random group element ? 

For certain groups, there exists no better algorithm than the inefficient brute-force 

q  DLog problem is hard relative to the group G, if for every PPT algorithm A, there exists a negligible 
function negl(), such that:  

Pr[DLogA, G(n) = 1] ≤ negl() 

q  DLog Assumption: there exists some group G, relative to which DLog problem is hard 

Ø  We have seen will see such candidates earlier 

Modeled as a challenge-response experiment:   DLogA, G(n) (G, o, g, q) output by an group gen algo  

DLog solver for G  

PPT A 

Challenger 

y 
[y ∈R G]  Find logg y 

x 

Experiment output 

1, if gx = y 0,  otherwise 



Computational Diffie-Hellman (CDH) Problem   
q  Given a cyclic group (G, o) of order q and a generator g for G. 

Modeled as a challenge-response experiment:   CDHA, G(n) 

CDH solver for G  

PPT A 

Challenger 

x, y ∈R   
q 

gx,   gy   

gz 

Experiment output 

1, if gx . y = gz 0,  otherwise 

q  The CDH problem for the group (G, o) is to compute gx . y for random group elements gx , gy
 

CDH problem is hard relative to the group G, if for every PPT algorithm A:  

Pr[CDHA, G(n) = 1] ≤ negl() 

(G, o, g, q)  



Relation between CDH and DLog Problems 
q  Given a cyclic group (G, o) of order q and a generator g for G: 

Hardness of CDH Hardness of DLog 

q  If CDH is hard in (G, o) then DLog is hard in (G, o). 

PPT Algorithm ADLog 

x ∈       

Algorithm ACDH 

q 

gx,  gy ∈R G 

? 

gx 

(gy)x  

q  Advantage of           same as 

q  If DLog is hard in (G, o) then CDH is hard in (G, o) ?  --- nothing is known 

q  CDH (hardness) is a stronger assumption than DLog (hardness) assumption 

Ø  CDH might be solved even without being able to solve the DLog problem 



Decisional Diffie-Hellman (DDH) Problem   

q  The DDH problem for the group (G, o) is to distinguish gx . y from a random group element gz , if gx, gy 
are random 

    DDH problem is hard relative to  (G, o) if for every PPT algorithm A: 

Pr[A(G, o, q, g, gx, gy, gxy ) = 1] Pr[A(G, o, q, g, gx, gy, gz ) = 1] | | - ≤ negl() 

Probability over uniform choice of x and y Probability over uniform choice of x, y and z 

q  Claim: If DDH is hard relative to (G, o) then CDH is also hard relative to (G, o) 

Ø  If CDH can be solved, then given gx and gy, compute gxy and compare it with the third element 

q  Nothing is known regarding the converse --- DDH is a stronger assumption than CDH 

Ø  DDH might be solved even without being able to solve CDH 



Cryptographic Assumptions in Cyclic Groups   

DDH CDH DL 

Cyclic Groups of Prime Order is best choice. 
     >> DL is harder in this group compared to cyclic group      (Pohlig-Hellman Algo) 

     >> DDH can be broken in cyclic group         but believed to hold good it its prime order subgroup 
p 

* 

p 

* 

6th Chalk and Talk topic  
Attacks on Discrete Log Assumptions-  

(i)  Pohlig-Hellman Algorithm 

(ii)  Shanks Baby-step/Giant-step algorithm 

(iii) Discrete Logs from Collisions 



Diffie-Hellman Key-Exchange Protocol  

Common colors (publicly known) 

+ + 

Secret colors 

= = 

Public exchange 

Assume mixture separation 
is expensive 

= = 

+ + 

Original secret colors 

Common secret color 

Idea illustration through colors 



Diffie-Hellman Key-Exchange Protocol  

+ + 

Secret colors 

= = 

Public exchange 

Assume mixture separation 
is expensive 

= = 

+ + 

Original secret colors 

Common secret color 

Actual Protocol 

Common parameters (publicly known) Common colors (publicly known) 
((G, o), g, q) 

(G, o) is a cyclic group of order q with generator g 

((G, o), g, q) 

Secret exponents x ←  q 
y ←  q 

hS:= gx hR:= gy 

Assume computing x, y from 
gx, gy is expensive 

hR:= gy 
hS:= gx 

Original secret exponents x y 

Common key k:= (hR)x = gxy  k:= (hS)y = gxy  



Key-Exchange Protocol: Security  

q  Given an arbitrary key-exchange protocol, whose execution is monitored by a PPT eavesdropper 

Ø  What security property we demand from such a protocol ? 

Protocol transcript 

k ∈ k ∈ 

v  Option I: the output key k should remain 
hidden from the eavesdropper 

v  Option II: the output key k should remain 
indistinguishable for the eavesdropper from a 
uniformly random key from the key-space  

Ø  We actually want to have option II 

v  If we want the key to be used as the secret-key for some higher level primitive 



Key-Exchange Protocol: Security Experiment 

Protocol transcript k ∈ k ∈ 

Should not be able to distinguish k from a random element in  

Key-exchange protocol Π 

Experiment KE       (n) 
A, Π 

eav 
≈ 

I can break Π 

PPT attacker A 

Let me verify 

Runs an instance of Π in mind 
simulating the role of S, R 

k ∈ k ∈ trans 

trans 

k, if b = 0 

k’ ∈R       , if b = 1 

b’ ∈ {0, 1} 

q  Experiment output is 1 if and only if b’ = b 

q  Π is a secure KE protocol if: ½ + negl(n) 

 

Pr KE        (n) 
A, Π 

eav 
= 1  ≤ 



Diffie-Hellman Key-Exchange Protocol: Security 

Protocol transcript k = (hS)x = gxy   

Should not be able to distinguish k = gxy from a random element gz in G  

Experiment KE       (n) 
A, DH 

eav 

I can break Π 

PPT attacker A 

Let me verify 
Runs an instance of DH in mind 

simulating the role of S, R 

hS = gx,  hR = gy 

gxy, if b = 0 

gz ∈R G, if b = 1 

b’ ∈ {0, 1} 

hS = gx, where x ←   q 

hR = gy, where y ←   q 

k = (hR)y = gxy   

q  Same as the DDH problem 
k = (hS)x  k = (hR)y  

hS = gx  

hR = gy  

q  What is the probability that the output of the experiment is 1 ? 

Ø  Same with which A can distinguish gxy from a random group element gz 



Uniform Group Elements vs Uniform Random Strings 
q  DH key-exchange protocol enables the parties to agree on a (pseudo)random group element gxy 

o  But Q does not contain all possible bit-strings of length log p --- |Q| = q ≈ 2log2 p / 2  

q  In reality, the parties would like to agree on (pseudo)random bit string which can be used as a  
secret-key for higher level primitive, such as PRF, MAC, etc 

q  Required: a method of deriving (pseudo)random bit strings from (pseudo)random group elements 

Ø  Potential solution (used in practice) 

v  Use the binary representation of the group element gxy as the required key 

v  Claim: the resultant bit-string will be (pseudo)random if the group element is (pseudo)random 

Ø  The above claim need not be true --- dangerous solution 

Ø  Ex: consider the prime-order group (       , * mod p), where p = 2q+1 is a safe prime 
p 

* 

Ø  Subgroup (Q, * mod p), where Q = {x2 mod p | x ∈       }  --- order of Q is q 
p 

* 

v  In practice, the DH protocol is executed over (Q, * mod p) 

v  The agreed key gxy is a (pseudo)random element of Q --- g is a generator of Q, x, y ∈  

v  Number of bits to represent elements of Q = Number of bits to represent elements of  p 

* 

o  So binary representation of the agreed key does not correspond to a random log2 p-bit string  

q 

q  A suitable key-derivation function (KDF) is 
applied to gxy to derive pseudorandom key 

Ø  Typically KDFs are based on hash functions 

Ø  Details out of scope of this course 



Active Attacks Against DH Key-Exchange Protocol 
q  DH key-exchange protocol assumes a passive attacker --- only listens the conversation 

q  In reality, the attacker may be malicious/active --- can change information, inject its own messages, etc 

q  Two types of active attacks against DH key-exchange protocol 

Ø  Impersonation attack : 

DH key-exchange protocol 
k = gxy  k = gxy  

k = gxy  

c ← Enck(m) 

m:= Deck(c) 



Active Attacks Against DH Key-Exchange Protocol 
q  DH key-exchange protocol assumes a passive attacker --- only listens the conversation 

q  In reality, the attacker may be malicious/active --- can change information, inject its own messages, etc 

q  Two types of active attacks against DH key-exchange protocol 

Ø  Impersonation attack :  

Ø  Man-in-the-middle attack : 

x ← 
q 

hS = gx h’S = gx1 

x1 ← 
q 

y ← 
q 

hR = gy 

kR = (h’S)y = gx1y  kR = (hR)x1 = gx1y  

y1 ← 
q 

h’R = gy1 

kS = (h’R)x = gxy1  

kS = (hS)y1 = gxy1  

kR  kS   

Complete control 

q  In practice, robust mechanisms are used in the DH key-exchange protocol to deal with the man-in-the-
middle attack --- ex: TLS protocol 



The Public-key Revolution 
q  In their seminal paper on the key-exchange, Diffie-Hellman also proposed the notion of public-key 

cryptography (asymmetric-key cryptography) 

pk sk 

Public domain 

Enc m c 
Dec m 



Public-key Crypto vs Private-key Crypto 

- Key distribution has to be done apriori. 

- In multi-sender scenario, a receiver need 
to hold one secret key per sender  

q  Diffie and Hellman could not come up with a concrete construction; though a public-key 
encryption scheme was “hidden” in their key-exchange protocol 

q  Cryptography spread to masses just due to advent of public-key cryptography 

+ Better suited for open environment (Internet) 
where two parties have not met personally but 
still want to communicate securely (Internet 
merchant & Customer) 

Private-Key Crypto Public-Key Crypto 

+ Key distribution can be done over public channel !! 

+ One receiver can setup a single public-key/
secret key and all the senders can use the same 
public key 

- Well-suited for closed organization 
(university, private company, military). Does 
not work for open environment (Internet 
Merchant)  

+ Very fast computation. Efficient 
Communication. Only way to do crypto in 
resource-constrained devices such as 
mobile, RFID, ATM cards etc 

- Orders of magnitude slower than Private-key. 
Heavy even for desktop computers while 
handling many operations at the same time  

- Anyone can send message including unintended 
persons 

+ only those who shares a key can send a 
message 

- Relies on the fact that there is a way to 
correctly send the public key to the senders (can 
be ensured if the parties share some prior info or 
there is a trusted party) 




