Cryptography
Lecture 8

Arpita Patra



Quick Recall and Today's Roadmap

>> Hash Functions- stands in between public and private key world

>> Key Agreement

>> Assumptions in Finite Cyclic groups - DL, CDH, DDH
Groups
Finite groups
Finite cyclic groups

Finite Cyclic groups of prime orders (special advantages)



Division for Modular Arithmetic

Q Ifbisinvertible modulo N (i.e. b’ exists) then division by b modulo N is defined as:

d
(/b mod NI 9% b mod N

> Ifab=cb modNandifb isinvertible thena=cmodN

< “Dividing" each side by b (which actually means multiplying both sides by b1)

O Which integers b are invertible modulo a given modulus N ?

Proposition: Given integers b and N, with b =1 and N > 1, then b is invertible modulo N if and only if
gcd(b, N) = 1 (i.e. b & N are relatively prime).

Proof (<=): Inverse finding algorithm (if the number is invertible) --- Extended Euclid (6CD)
algorithm

» Givenany b, N, the Extended Euclid algorithm outputs X and Y such that
bX + NY = gecd(b, N)

> If gcd(b, N) =1 then above equation implies that bX + NY =1

> Taking mod N both sides gives bX = 1 mod N — bl = [X mod N]J




Algorithms for Modular Arithmetic

Q Z’:N --- set of integers modulo N: {0, 1, ..., N - 1}

Q Let [N| = n --- number of bits to represent N : n = 6(log N)

O Leta,b€e ZN——— each represented by at most n bits

Theorem: Given integers N> 1, a and b, it is possible to perform the following operations in poly time in
la|, |b| and n:

>> amod N

>> a+b mod N, a-b mod N, ab mod N

>> Determining if a!mod N exists (if it exists)
>> almod N (if it exists)

>>af mod N

>> Choosing a random element of 7/,
N




Group

Definition(Group): A group is a set G along with a binary operation o satisfying the following axioms :

» Closure : for every g, h € G, the valuego he G

» Associativity: for every gy, 9,,935€ 6,(9;09,) 093 =g;0 (g, 0g3)

> Existence of Identity Element: there exists an identity element e € 6, such that forallgE€ 6

% (eo0g)=g=(goe)

> Existence of Inverse: for every g € G, there exists an element h € 6, such that

* (goh)=e=(hog)

Definition (Order of a Group:) If G has finite number of elements, then |G| denotes the number of
elements in G and is called the order of G

Definition(Abelian Group:) If G satisfies the following additional property then it is called a commutative
(Abelien) group: For everyg,h€ 6, (goh)=(hog)

Proposition: There exists only one identity element in a group. Every element in a group has a unique

inverse




Group Theory

O The set of integers Z is an abelian group with respect to the addition operation (+)
> Closure and associativity holds

> The integer O is the identity element --- for every integer x, 0+ x=x=x+0
> For every integer x, there exists an integer -x, such that x + (-x) = 0 = (-x) + x

> For any two integers x, y, we have x +y =y + x --- commutativity

We are interested only in Finite groups




Finite Groups

O Finite groups using modular arithmetic. def
e

0 Define Zy = {0, 1, .., N-1} and the operation + in Zyas a* b = (a+b)mod N, for every a,b &
> Closure, commutative and associativity holds --- trivial fo verify
> 0& Z, is the identity element --- for every a € Zy, (a+ 0)mod N= (0 +a) mod N =a
> Element (N - a) is additive inverse of a modulo N

@ Inverse of awillbe (N-a)e ---(@+N-a)modN=(N-a+a)modN=0

Q Theset Zy={0,1, .., N-1} is a group with respect to addition modulo N
def
O Define operation™ inZyasa* b = (ab) mod N, for everya, b EZN

» The identity element is 1 as for every a € ZN ,wehave (a.1)=(1.a)=(amodN)=a
> Will every element have an inverse ?

€ Element O will have no inverse --- a € Z,, such that (a0 mod N) = 1

€ Element a will have an inverse if and only if gcd(a, N) = 1
> So :“JN is not a group with respect to multiplication modulo N

» Can we construct a set from ZN which will be a group with respect to multiplication modulo N ?



Finite Groups

Q Let Zs ={b: {1, .., N-1} | gcd(b, N) = 1). Then Z; is a group with respect to multiplication modulo N
» The set Z,\T is the set of integers relatively prime o N
> Element 1is the identity element. Every element is invertible. Associativity holds.

"/* . "'f*
> Is u,: closed with respect to multiplication mod N ? ---givena, b€ &, will [ab mod N]€ Z

» Claim: gcd(N, [ab mod N]) =1 --- element [ab mod N] has multiplicative inverse [b'la'1 mod N]



Group Exponentiation in Groups

O Exponentiation: applying same operation on the same element a humber of times in a group (G, o)

Using Multiplication Notation:

def
> g" = gogo..og(mtimes)

def
> g™ = (gloglo..og?)(mtimes)

0 def
> g- = e, the group identity element

Using Addition Notation:

def

» mg = gogo..og(mtimes)
def

» -mg = (-g+-g+..+-g)(mtimes)
def

> Og = e, thegroup identity element



Group Order and Identity Element

Theorem: Let (G, o) be a group of order m, with identity element e. Then for every element g € G:

gogo..og=e

\_Y_/

m times

I.e. Any group element composed with itself m times results in the identity element

Proof: Let G = {gy, ..., gy} --- for simplicity assume G o be an Abelian group
Let g be an arbitrary element of G
> Claim: elements (g 0 91), (g 0 g5), ..., (9 0 g,,y) are all distinct
% On contrary if for distinct g;, g;, we have (g0 g) = (g0 gj) — (g'ogog)=(glogo gJ-) — 9= 9;
» Thus{(g09gy).(909p),..(g0gL)}=6
> 50910950..09,=(gog)o(gogy)o..0(gog,) --(bothsidewe have all the elements of &)

=(gogo..0g)o(g9109,0 ..0g,)-- (by associative and commutative property)
e=(gogo..og)oe -- (multiply by (g; 0 g, 0 ... 0 g,,)! both sides)
e=(gogo..0gQ) --(aoe=aq)




Order of Important Finite Groups

*x
Ziy = {b: {1, .., N-1} | gcd(b, N) = 1). It is a group with respect to multiplication modulo N

¢@(N) = order of the above group

0 Nis a prime humber, say p

*
> “p ={1,2, ., p-1} --- every number from 1 to p-1 is relatively prime to p

0 N =p.q, where p and q are primes

x
> | “0 1 = (p-1(g-1) --- follows from the principle of mutual inclusion-exclusion

» Which numbers in {1, 2, ..., N-1} are not relatively prime to N ?

< Numbers which are divisible by p --- g-1 such numbers
< Numbers which are divisible by q --- p-1 such numbers

< Numbers which are divisible by both p and q --- O such number

» How many numbers in {1, 2, .., N-1} are not relatively prime foN? ---p+q -2

» How many numbers in {1, 2, .., N-1} are relatively prime toN? ---N-1-p-q+2 = (p-1)(q-1)



Group Order and Identity Element

Theorem: Let (G, o) be a group of order m, with identity element e. Then for every element g € G:

gogo..og=e

\_Y_/

m times

I.e. Any group element composed with itself m times results in the identity element

Q Implications of the above theorem in the multiplicative group Al
* N

> Take any arbitrary N> 1and any a € :iN . Then:

% [[[[[a.amod N].amod N].amodN].amodN]J....amodN]=[a®N) mod NJ=1
< ¢@(N) times >

» If Nisaprime number, say p, then foranya ({1, 2, ..., p-1}, we have :
> [aPTmodp]=1
» If Nisacomposite number, p.q, then for any a we have :

> [a®P DA mod N= 1



Subgroup of a Group & Cyclic Group

Q Let (G, 0) be agroup Q LetHCG G

Definition (Subgroup): If (H, o) is also a group, then H is called a subgroup of
G w.r.t operation o

Q Every group (6, o) has two trivial subgroups:
» The group (6, o) itself and the group (e, o)

> A group may/may not have subgroups other than trivial subgroups

O Given a finite group (6, o) of order m and an arbitrary element g € G, define
«@ = {0 gl, ..} --- elements generated by different non-negative powers of g

> The sequence is finite as g™ = 1 and ¢ is also 1

» Leti=m be the smallest positive integer such that g' = 1. Then:
«@ = {g% g%, ... g1} -—asg' = 1, after which the sequence starts repeating

Proposition: (<g>, 0) is a subgroup of (G, o) of order i

Definition (Order of an element): Smallest positive intfeger i such that g' =1

Definition (Generator): If g has order m, then<g> = G --- then g is called a generator of G and G is
called a cyclic group generated by g




Examples

*
0 Consider ( L7 ,* mod 7) --- it is a group with respect to multiplication modulo 7

> Does 2 belong to the group ? --- Yes, as gcd(2, 7) = 1; 2 is relatively prime to 7
> What is <2>? ---<2>={2%mod 7, 2! mod 7, 22 mod 7} = {1, 2, 4}

» TIs (<2>,* mod 7) a subgroup of (1: ,*mod7) ?

1 2 4
v' Closure v’ Associativity
111 4
v’ Identity ---1
2 4 1
v’ Inverse
41 4 2 o 11=1, 271=4,41:=2

> Does 3 belong to the group ? --- Yes, as gcd(3, 7) = 1. 3 is relatively prime to 7

> Whatis<3>? ---<3>={3%mod 7, 31 mod 7, 32 mod 7, 33 mod 7, 3* mod 7, 3° mod 7, 3¢ mod 7 }
={1,3,2,6, 4,5} = the original group

*x
» 2 does not "generate” the entire group L7

x

> 3 "generates” the entire group L, --3isa generator

7



Important Finite Cyclic Groups

*x

Theorem: The group ( Zp , * mod p) is a cyclic group of order p - 1.

K/

< Every element need not be a generator
x
<+ Ex: ( 27 , *mod 7) is a cyclic group with generator 3

o Element 2 is not a generator for this group --- <2>={1, 2, 4}




Useful Propositions on Order of a Group Element

0 Let (6, 0) be a group of order m and let g € G such that g has order i (1<i<=m)--—-g' =e

Proposition: For any integer x, we have g* = glX mod i

< X times >

«

g¥=(gog..0g)o(gogo..0g)o..0(gogo..oq)

i times \i& x mod i times
e o e 0 .. 0 9[x modi] - 9[x mod i]

Proposition: For any integer x, y, we have g* = g if and only if x =y mod i; i.e. [x mod i] = [y mod i]

Proof: If [x mod i]= [y mod i], then from the previous claim g* = g¥

If gx=¢g¥->g<Y=gxymodi =1 ->x-ymodi=0

Proposition: The order of g divides the order of G --- i divides m

Proof: Element g has order i —g' = e < For any g, we have g™ = e

% SogM=g — [mmodi]=[imodi]— [mmodi]=0

The last claim has several interesting implications



Finite Cyclic Groups of Prime Order

Corollary: If (G, o) is a group of prime order p then G is cyclic and all elements of G, except the
identity element will be generators of G

< Any arbitrary element g € G apart from the identity element will have order p --- the only
positive numbers which divides a prime p are 1 and p

< Ex: consider the group (.4 , + mod 7) --- cyclic group, with identity element 1 and generators
1,2,3,4,5and 6

Instances of Cyclic groups of prime order??

x
Theorem: The group ( :ﬂp , * mod p) is a cyclic group of order p - 1.

We can construct cyclic groups of prime order from the above
group when p has a specific format



Prime-order Cyclic Subgroup of Z;

Definition (Safe Primes): Prime numbers in the format p = 2q+1 where q is also a prime.

> Example (5, 11), (11, 23), ... several such pairs

*

-

Definition (Quadratic Residue Modulo p): Call y € “p aquadratic residue modulo p if there exists an x
€ 77, withy = x° mod p. x is called square-root of y modulo p

*x
Theorem: The set of quadratic residues modulo p is a cyclic subgroup of Lo of orderq.Ie.
*x

Q={x®modp | x€E Zp }, then (Q, * mod p) is a cyclic subgroup of ( :p' * mod p) of order g

Proof:
Step I: To show that (Q, * mod p) is a subgroup of (Z; , ¥ mod p)

Step IT: Show that (Q, * mod p) is of order q




x

Prime-order Cyclic Subgroup of Z

Theorem: The set of quadratic residues modulo p is a cyclic subgroup of Zp of ordergq.Ie.

x

x ,
Q = {x° mod plxe Zp }, then (Q, * mod p) is a cyclic subgroup of ( lp, * mod p) of order g

Proof:
Step I: To show that (Q, * mod p) is a subgroup of (Z; , ¥ mod p)

» Closure: (Q, * mod p) satisfies the closure property

X/

< Given arbitrary yq, y> € Q, show that (y; * y,) mod p € Q
x
o Y1E Q — Y1 = X12 mod P. for some X1 € *‘p

*

P
o (y1™yz)modp=(x;* Xz)z mod p = (><3)2 mod p, where x3 = (x; * x,) € 1'*

o Y2EQ —>Y2:X22modp,for‘somex2€ Z

o So(y;*y2)modpEQ




Prime-order Cyclic Subgroup of Z;

Theorem: The set of quadratic residues modulo p is a cyclic subgroup of Zp of ordergq.Ie.

x

x
Q = {x° mod plxe Zp }, then (Q, * mod p) is a cyclic subgroup of ( Zp' * mod p) of order q

Proof:
Step I: To show that (Q, * mod p) is a subgroup of (Z; , ¥ mod p)
> Closure: (Q, * mod p) satisfies the closure property
> Associativity: trivial to verify that given arbitrary yq, y,, y3 € Q, we have
(Y1 ™ y2) " yz3mod p=y; * (y2 * y3) mod p
» Identity: The element 1 will be present in Q, which will be the identity element for Q
1=12mod p
> Inverse: Show that every element y € Q has a multiplicative inverse yl € Q, with (y * y'! mod
P)=1 y €EQ —y = (x% mod p), for some x € Z*
What can you say about z = (x1)? mod p ?
o x€E 'L; »>xle 1; , which implies that z€ Q

o From the above we get that (y * z mod p) = 1




Prime-order Cyclic Subgroup of Z;

Theorem: The set of quadratic residues modulo p is a cyclic subgroup of Z_ of order q. ILe.

P
x ‘*
Q = {x° mod plxe Zp }, then (Q, * mod p) is a cyclic subgroup of ( lp, * mod p) of order g

x
Proof: Step I: To show that (Q, * mod p) is a subgroup of ( :ip ,* mod p)
Step IT: Show that (Q, * mod p) is of order q

> We will show that f: :; — Q is a 2-fo-1 function --- exactly 2 elements have the same image
x
| Zpl = (p -1), the above will imply that |Q| = (p-1)/2=q

* x

> Let g be a generator of :ip --- :ﬁp ={q%, ¢!, .., gP%)

> Consider an arbitrary element g' in :; and its corresponding image (g')°> mod p in Q
. ,.‘.* c .

» Claim: there exists only one more element gl in Lo with (g")% mod p = (g)% mod p

% If (g")2 mod p = (g})2 mod p — [2i mod p -1] = [2j mod p-1] — (p - 1) divides (2i - 2j) = q | (i - j)

< The above implies that for a fixed i € {0, ..., p-2}, there is only 1 possible j, namely (i + q) mod p-1
o (i+2¢)mod(p-1)=i




Generalization

For Prime numbers in the format p = rq+1 where q is also a prime.

Theorem: The set of rth residues modulo p is a cyclic subgroup of Z_ of order q. ILe.

*x

Q={x"modp | x€e Zp}, then (Q, * mod p) is a cyclic subgroup of ( 4 b * mod p) of order q

] T X

t




Easy Problems in Finite Cyclic Groups (of Prime
Order)

1. Generating Cyclic Groups / Cyclic Groups of Prime Order

>> How fo sample a prime number of n bits /

how to sample primes of specific format (safe primes)

(Miller-Rabin, Agrawal-Kayal-Saxena)

>> Finding a generator

>> Given generator, how to generate an element of the group (requires exponentiation)

2. Sampling an uniform random group element

Cyclic Group

——

P

Prime Order Cyclic Group
Q= {x"modp | xEL, }

There exists a generator

Group order (p-1) is not a prime. Every
exponent may not have multiplicative
inverse modulo (p-1)

If group order (p-1) has small prime factors,
there exists no-trivial algo to break the hard
problems that we discuss next

Every element except the identity element is
a generator

Group order q. Every exponent have
multiplicative inverse modulo q and easy to
compute

The attacks does not work here




Discrete Logarithm

Q Let (6, o) be a cyclic group of order q (with |q| = n bits) and with generator g
> (g% g1, g%, .., 991} = G --- g has order q as it is the generator
> Given any element h € G, it can be expressed as some power of g
% Jaunique x € Lq={0,1, .., g-1}, such that h = g

X/

% x is called the discretfe log of h with respect to g --- expressed as logg h

O Discrete log follows certain rules of standard logarithms
> Iogg e=0

> logg h" = [r logg h mod q]

> logg [hy 0 hp] = [(logg hy + logg hp) mod q]



Discrete Logarithm Problem

Q How difficult is it to compute the DLog of a random group element ?
For certain groups, there exists no better algorithm than the inefficient brute-force

Modeled as a challenge-response experiment: DLog, 5(n) (6, 0, g, q) output by an group gen algo

< Y
Find log, y
X - — )
DLog solver for G g Challenger =00
Experiment output
1,ifg"=y 0, otherwise

O DLog problem is hard relative to the group G, if for every PPT algorithm A, there exists a negligible
function negl(), such that:

Pr[DLogA, c(n) = 1] = negl()
O DLog Assumption: there exists some group G, relative Yo which DLog problem is hard

> We have seen will see such candidates earlier



Computational Diffie-Hellman (CDH) Problem

0 Given a cyclic group (6, o) of order q and a generator g for G.

O The CDH problem for the group (G, o) is to compute g%-Y for random group elements g%, g¥

Modeled as a challenge-response experiment: CDH, 5(n) (6,0,9.9)

g5, g
<€
9” R
CDH solver for G
Experiment output
1,if g©-v=g? 0, otherwise

CDH problem is hard relative to the group G, if for every PPT algorithm A:

Pr[CDH4 c(n) = 1] =< negl()



Relation between CDH and DLog Problems

0 Given a cyclic group (6, o) of order q and a generator g for G:

Hardness of CDH < > Hardness of DLog

e

Q If CDH is hard in (G, o) then DLog is hard in (G, o).

9%, 99 SR 6 g"

> ¢
'\ v

(9" N x€ L

<
<«

Algor‘IThm ACDH

O Advantage of @ same as g

Q IfDLogis hardin (G, o) then CDH is hard in (G, 0) ? --- nothing is known

A

PPT Algorithm AbLog

0 CDH (hardness) is a stronger assumption than DLog (hardness) assumption

> CDH might be solved even without being able to solve the DLog problem



Decisional Diffie-Hellman (DDH) Problem

Q The DDH problem for the group (6, o) is to distinguish ¢*-¥ from a random group element g7, if g%, g
are random

DDH problem is hard relative to (G, o) if for every PPT algorithm A:

PrlA(6,0,9,.9,9%,¢7,g®)=1] — Pr[A(6.0,9,9,9%.9",9*)=1] | <negl()
&« NN
Probability over uniform choice of x and y Probability over uniform choice of x,y and z

O Claim: If DDH is hard relative to (G, o) then CDH is also hard relative to (G, 0)

> If CDH can be solved, then given g* and g, compute g*¥ and compare it with the third element

O Nothing is known regarding the converse --- DDH is a stronger assumption than CDH

> DDH might be solved even without being able to solve CDH



Cryptographic Assumptions in Cyclic Groups

DDH > CDH > DL

Cyclic Groups of Prime Order is best choice.
>> DL is harder in this group compar'ed ‘ro cyclic group Z (Pohhg Hellman Algo)

>> DDH can be broken in cyclic group ‘“p but believed ‘ro hold good it its prime order subgroup

6t Chalk and Talk topic
Attacks on Discrete Log Assumptions-
(i) Pohlig-Hellman Algorithm
(ii) Shanks Baby-step/Giant-step algorithm

(iii) Discrete Logs from Collisions




Diffie-Hellman Key-Exchange Protocol

Idea illustration through colors

Common colors (publicly known)

Secret colors

Public exchange

441

!
A

Bl

Assume mixture separation
iS expensive

Original secret colors

Common secret color



Diffie-Hellman Key-Exchange Protocol

Actual Protocol

(6, 0) is a cyclic group of order q with generator g

(@) Cdfomenoparalioes épatfbablikhoknywn) @)
.;P Secret ealprsents % Z 5
\

Public exchange

Assume murtpurieregganafiom
5 egpesginpensive

Original secret eafposents @

Coismamsedagt color




Key-Exchange Protocol: Security

< >
< >
< >

v

Protocol transcript

O Given an arbitrary key-exchange protocol, whose execution is monitored by a PPT eavesdropper

> What security property we demand from such a protocol ?
< Option IT: the output key k should remain

% Option I: the output key k should remain indistinguishable for the eavesdropper from a
hidden from the eavesdropper uniformly random key from the key-space

» We actually want to have option II

% If we want the key to be used as the secret-key for some higher level primitive



Key-Exchange Protocol: Security Experiment

Key-exchange protocol I1

~

ey U
Experiment Kl':"A - (n) ke trans ke
PPT attacker A < trans
‘ k,if b= 0
<
I can break IT b' e {0, 1} Let me verify |
>
Runs an instance of I1 in mind
. o . simulating the role of S, R
0 Experiment outputis1if andonly if b'=b eav
O TITis a secure KE protocol if: Pr | KE (M=1< 2. negl(n)

A, 11



Diffie-Hellman Key-Exchange Protocol: Security

hg = g%, where x <_"Zq

hg = g7, where y < Zq

Pass I/Pr'o‘rocol transcript

0 Same as the DDH problem
eav

E iment KE
xperimen A D dn)

PPT attacker A < hg=9%, hg=g'
< gxyl If b = O 4 :
- - T
9”& 6,ifb=1 Let me verify
I can break I b' {0, 1} Runs an instance of DH in mind

simulating the role of S, R

0 What is the probability that the output of the experiment is 1?

> Same with which A can distinguish g*¥ from a random group element g%



Uniform Group Elements vs Uniform Random Strings

O DH key-exchange protocol enables the parties to agree on a (pseudo)random group element g*¥

Q Inreality, the parties would like to agree on (pseudo)random bit string which can be used as a
secret-key for higher level primitive, such as PRF, MAC, etc

0 Required: a method of deriving (pseudo)random bit strings from (pseudo)random group elements

> Potential solution (used in practice)

< Use the binary representation of the group element g*¥ as the required key

% Claim: the resultant bit-string will be (pseudo)random if the group element is (pseudo)random

-

> The above claim need not be_true --

> Ex: consider the prg 4 gyitable key-derivation function (KDF) is rime
applied to g*¥ to derive pseudorandom key
> Subgroup (Q
_ > Typically KDFs are based on hash functions
% Inpractics
> Details out of s f this s -
% The agreed key SRS BRI SRS O T SREes generator of Q, x,y € ‘Lq
x

<+ Number of bits to represen nents v = Number of bits to represent elements of Zp

o But Q does not contain alipossible bit-strings of length log p --- |Q| = q =~ 21°92P / 2

o So binary representation of the agreed key does not correspond to a random log, p-bit string



Active Attacks Against DH Key-Exchange Protocol

O DH key-exchange protocol assumes a passive attacker --- only listens the conversation

Q Inreality, the attacker may be malicious/active --- can change information, inject its own messages, etc

O Two types of active attacks against DH key-exchange protocol

» Impersonation attack :

v

v




Active Attacks Against DH Key-Exchange Protocol

0 DH key-exchange protocol assumes a passive attacker --- only listens the conversation
Q Inreality, the attacker may be malicious/active --- can change information, inject its own messages, etc

O Two types of active attacks against DH key-exchange protocol

» Impersonation attack :

> Man-in-the-middle attack :

ks = (hR)" = g™1 kg = (W's)Y = g*1¥

O Inpractice, robust mechanisms are used in the DH key-exchange protocol to deal with the man-in-the-
middle attack --- ex: TLS protocol



The Public-key Revolution

Q In their seminal paper on the key-exchange, Diffie-Hellman also proposed the notion of public-key
cryptography (asymmetric-key cryptography)

/’ ,
¢ > Dec L)

Public domain

& -
—>Enc




Public-key Crypto vs Private-key Crypto

Private-Key Crypto

Public-Key Crypto

- Key distribution has to be done apriori.

- In multi-sender scenario, a receiver need
to hold one secret key per sender

- Well-suited for closed organization
(university, private company, military). Does
not work for open environment (Internet
Merchant)

+ Very fast computation. Efficient
Communication. Only way to do crypto in
resource-constrained devices such as
mobile, RFID, ATM cards etc

+ only those who shares a key can send a
message

+ Key distribution can be done over public channel !

+ One receiver can setup a single public-key/
secret key and all the senders can use the same
public key

+ Better suited for open environment (Internet)
where two parties have not met personally but
still want to communicate securely (Internet
merchant & Customer)

- Orders of magnitude slower than Private-key.
Heavy even for desktop computers while
handling many operations at the same time

- Anyone can send message including unintended
persons

- Relies on the fact that there is a way to
correctly send the public key to the senders (can
be ensured if the parties share some prior info or
there is a trusted party)

O Diffie and Hellman could not come up with a concrete construction; though a public-key

encryption scheme was “hidden" in their key-exchange protocol

0 Cryptography spread to masses just due to advent of public-key cryptography






