
Cryptography

Lecture 9

Arpita Patra

Quick Recall and Today’s Roadmap

>> Assumptions in Cyclic Groups (of prime order); how to construct such creatures using
NT and GT

>> DH Key Agreement

>> Intro to PKE. Plus and Minus

>> PKE Security Definition

>> CPA Security

>> CPA Multi-message Security
>> CPA Single Message Security Implies CPA Multi-message Security Proof: Fantastic
application of hybrid arguments

>> El Gamal CPA Secure Scheme

>> RSA (maybe)

Public-key Cryptography: Syntax
q  A public-key cryptosystem is a collection of 3 PPT algorithms (Gen, Enc, Dec)

Gen
1n pk, sk ∈ {0, 1}n Syntax: (pk, sk) ← Gen(1n)

Enc
m∈ {0, 1}* c

pk

Syntax: c ← Encpk(m)

Most often randomized to achieve
meaningful notion of security

Dec
c m

sk

Syntax: m:= Decsk(c)

Except with a negligible probability over (pk,
sk) output by Gen(1n), we require the following
for every (legal) plaintext m

Decsk(Encpk(m)):= m

Randomized Algo

Deterministic (w.l.o.g)

Public-key Encryption: Security Definition
Let Π = (Gen, Enc, Dec) be a public-key encryption key

q  What is the least possible security guarantee expected from Π ?

Gen
1n sk pk

Public domain

c ← Encpk(.)

I know that the message is
either “I am not fine” or “I
am fine Ram”

q  We expect that even after seeing the ciphertext c, the adversary should not be able to find
out the password, except with probability negligibly better than ½

Ø  Semantic security/IND security

Indistinguishability Experiment for PKE (Ciphertext-
only Attack)

Π = (Gen, Enc, Dec)

I can break Π Let me verify

m0, m1, |m0|=|m1|

Gen(1n)

b ← {0, 1}

c ← Encpk(mb)

b’ ∈ {0, 1}

(Attacker’s guess about encrypted message)

Game Output
b = b’

1 --- attacker won

b ≠ b’
0 --- attacker lost

Indistinguishability experiment PubK (n)
A, Π

coa

PPT A

pk, sk

pk

In the real-world, everyone
including the attacker will
have the public key pk

 Π COA-secure if for every PPT attacker A taking part in the above experiment, the probability
that A wins the experiment is at most negligibly better than ½

½ + negl(n)

Pr PubK (n)
A, Π

coa
= 1 ≤

How is the above experiment
different from the corresponding
symmetric-key encryption
experiment ?

l

Ciphertext-only Attack: Symmetric-key vs
Asymmetric-key World

Π = (Gen, Enc, Dec)

I can break Π

Verifier
m0, m1, |m0|=|m1|

Gen(1n)

c ← Enck(mb)

b’ ∈ {0, 1}

PPT A

k

Symmetric-key Encryption

Π’ = (Gen’, Enc’, Dec’)

Asymmetric-key Encryption

b ∈ {0, 1}

I can break Π

Verifier
m0, m1, |m0|=|m1|

Gen’(1n)

c ← Enc’pk(mb)

b’ ∈ {0, 1}

PPT A

pk, sk

b ∈ {0, 1}

pk

q  Consequence of giving the public-key pk to the attacker ?

Ø  Attacker can encrypt any message of its choice !!

Ø  Free-encryption oracle for the attacker

v  Not possible in the symmetric-key world --- attacker is not given the private key

q  Already captures CPA!!

q  COA is equivalent to CPA security for PKE

Attention: No deterministic public-key encryption
can be even COA-secure, whereas we have seen
deterministic scheme to be COA-secure in SKE

Extremely dangerous for small message space. Adv
can keep a table of encryptions of all the message
and then compares to find the message encrypted.

Multi-message CPA Security

Π = (Gen, Enc, Dec)

Gen(1n)

b ← {0, 1}

Multi-CPA experiment PubK (n)
A, Π

cpa-mult

PPT A

pk, sk

pk

(m0,1, m1,1)

c1 ← Enck(mb,1)

>> Important to see the effect of using the same key for multiple messages
>> In reality multiple messages are encrypted under the same public key.

 LRpk,b

(m0,1, m1,1)

Multi-message CPA Security

Π = (Gen, Enc, Dec)

Gen(1n)

b ← {0, 1}

Multi-CPA experiment PubK (n)
A, Π

cpa-mult

PPT A

pk, sk

pk

(m0,2, m1,2)

c2 ← Enck(mb,2)

>> Important to see the effect of using the same key for multiple messages
>> In reality multiple messages are encrypted under the same public key.

 LRpk,b

(m0,2, m1,2)

Multi-message CPA Security

Π = (Gen, Enc, Dec)

Gen(1n)

b ← {0, 1}

Multi-CPA experiment PubK (n)
A, Π

cpa-mult

PPT A

pk, sk

pk

(m0,t, m1,t)

ct ← Enck(mb,t)

>> Important to see the effect of using the same key for multiple messages
>> In reality multiple messages are encrypted under the same public key.

 LRpk,b

(m0,t, m1,t)

b’ ∈ {0, 1}

(Attacker’s guess about encrypted vector)

Game Output
b = b’

1 --- attacker won

b ≠ b’
0 --- attacker lost

Π has mult-CPA secure if for every PPT attacker A taking part in the above experiment, the
probability that A wins the experiment is at most negligibly better than ½

½ + negl(n)

Pr PubK (n)
A, Π

cpa-mult
= 1 ≤

(Single vs Multi-message CPA Security)

Theorem: single-message CPA security) → multi-message CPA security).

Proof: On the board (power of hybrid argument)

Hybrid Arguments

PPT Adv PPT Adv

World/View 1

World/View 2

Cannot
distinguish

between View1
and View2

Otherwise, Can
break a known
hard problem

World/View 1.1

World/View 1.2

World/View 1.i

World/View 1.t

Instance of
his hard
problem

Used to create
View1 /View2

Answer whether View1 /View2
Answer to hard

problem

Polynomially Many

The intermediate
views are called

hybrids

|Pr[A(View1) = 1 – Pr[A(View1.1) = 1]| < negl(n)

|Pr[A(View1.1) = 1 – Pr[A(View1.2) = 1]| < negl(n)

|Pr[A(View1.t) = 1 – Pr[A(View2) = 1]| < negl(n)

|Pr[A(View1) = 1 – Pr[A(View2) = 1]| < t. negl(n)

+

+

+

Implications of Single-message CPA security à Multi-
message CPA Security

PKE

q  Given CPA secure scheme Π for bit/small messages, constructing CPA-secure PKE for long message is
not an issue.

Enc Enc Enc Enc Enc Enc

m1 m2 m3 m4 m5 m6

l l l l l l

c1 c2
c4 c3 c5 c6 pk

m

c1c2…c6 ← Encpk(m)

q  Why the above PKE, say Π’ is CPA-secure ?

Ø  The above construction is equivalent to encrypting a vector of message M = (m1, …, m6)

Ø  Reduction of CPA-security of Π’ for LARGE single message → CPA-security for Π for multi
messages

→

SKE

COA ≈

≈

COA-mult

≈
CPA-mult CPA

≈

COA COA-mult

CPA-mult

CPA

≈
→ →

Heads-up; Surprize:
Sames does not hold
for CCA security.
Term paper

CPA-secure Public-key Encryption Based on DDH
(El Gamal Encryption Scheme)

q  Invented by Taher El Gamal in 1985

Ø  Based on the observation that the DH key-exchange protocol can be “converted” into a public-
key encryption algorithm by incorporating an additional step

Protocol transcript k = (hR)x = gxy

Unable to distinguish k = gxy from a random element gz in G (if DDH is hard in G)

hS = gx, where x ← q

hR = gy, where y ← q

k = (hS)y = gxy

q  Recall the DH key-exchange protocol

Public Info: Cyclic group of prime order q, (G, ., q, g)

(For concreteness, consider (, * mod p) and the subgroup (G, * mod p), with G = {x2 mod p}) p

*

q  How to convert this protocol into a public-key encryption scheme ?

Ø  The encryptor can use the agreed upon key k to mask its message !!

m ∈ G [k.m mod p]

[k.m. k-1 mod p]

El Gamal Public-key Encryption

hS = gx, where x ← q

m = c2 / (c1)
x

 = c2 . [(c1)
x]-1

Theorem: If the DDH problem is hard relative to (G, o), then El Gamal encryption scheme is CPA-secure

Ø  Adversary will be unable to distinguish the mask gxy from a random group element gz, given
h=gx, c1 = gy. Otherwise, we can use him to break DDH assumption.

m ∈ G x ← q

Secret key

Imagine this like sending the
1st message in DH key-
exchange protocol

y ← G

c1 = gy
 c2 = m . gxy

Message masked with
the common key,
as hy = gxy

Contribution for
common key

G, o, q, g, h=gx

Ø  If an random element gz was used for masking, then the encryption perfectly hides m (it is an
OTP in fact). So even an unbounded powerful adversary will have no clue about the message

Public Info: Cyclic group of prime order q, (G, o, q, g,)

h = gx

Security Proof of El Gamal

Theorem. If DDH is hard, then Π is a CPA-secure scheme.

Proof: Assume Π is not CPA-secure

m,pk= (G,o,q,g,h=gx) c

Public Key pk = (G,o,q,g,h=gx)

c,sk=x
Encpk(m)
c1 = gy for random y

c2 = gxy.. m

Decsk(c)
c2 / (c1)x = c2 . [(c1)x]-1

A, p(n): ½ + 1/p(n) Pr PubK (n)
A, Π

cpa
= 1 >

A D (G,o,q,g, gx, gy, gz)

Let us run PubK (n)
A, Π

cpa

m0, m1∈R , |m0| = |m1|

b

c = (gy, gz .mb)

b’ ∈ {0, 1}

DDH or non-DDH tuple?

½

Pr PubK (n)
A, Π

cpa
= 1 =

1 if b = b’

0 otherwise

Pr [D(non-DDH tuple) = 1] Pr [D(DDH tuple) = 1]
= =

pk = (G,o,q,g,gx)

- 1/p(n) >

For any z’, Pr[gz.m = gz’] = 1/|G|
when z is chosen uniformly
from G

El Gamal Implementation Issues

q  Sharing public parameters

Ø  The public parameters (G, q, g, h) can be publicly shared once-and-for-all

Ø  NIST has published standard parameters suitable for El Gamal encryption scheme

Ø  Sharing public parameters does not hamper security --- contrast to RSA

q  Choice of groups

Ø  Option I: prime order subgroup (G, * mod p) of , where p = 2q+1 and G = {x2 mod p | x ∈ } p

*
p

*

Ø  Option II (Practically popular): groups based on points on elliptic curves

q  Message Space --- not bit strings, but rather group elements. Two possible solutions to deal with this

Ø  Option I: Use some efficient reversible encoding mechanism from bit strings to group elements

Ø  Option II: Use the El Gamal encryption scheme as a part of a Hybrid encryption scheme

m,pk= (G,o,q,g,h=gx) c

Public Key pk = (G,o,q,g,h=gx)

c,sk=x
Encpk(m)
c1 = gy for random y

c2 = hy.. m

Decsk(c)
c2 / (c1)x = c2 . [(c1)x]-1

El Gamal Implementation Issues

q  Mapping bit strings to group elements

Ø  For concreteness, consider prime order subgroup G of , where p = 2q+1 and G = {x2 mod p | x ∈ } p

*
p

*

Squares modulo 11:
Values:

12 22 32 42 52 62 72 82 92 102

1 4 9 5 3 3 5 9 4 1

11

* 1 2 3 4 5 6 7 8 9 10 : p = 11, q = 5

Group G

Plaintext and
ciphertext space

Ø  = {1, 2, …, q, q+1, …, 2q} p

*

Ø  Consider the mapping f: {1, …, q} → G

f(x) = [x2 mod p]
def

Ø  Function f is a bijection

v  A quadratic residue [x2 mod p] has two
modular square roots: [x mod p], [-x mod p]

v  Only one square root lies in the range {1, …, q}

v  Function f is efficiently invertible Ø  Let || q || = n bits

Ø  Given an (n-1)-bit string x ∈ {0, 1}n-1, map it to an element of G as follows:

v  Compute f(1 || x) --- 1 || x will be an n-bit string, will be an integer in the range {1, …, q}

m,pk= (G,o,q,g,h=gx) c

Public Key pk = (G,o,q,g,h=gx)

c,sk=x
Encpk(m)
c1 = gy for random y

c2 = hy.. m

Decsk(c)
c2 / (c1)x = c2 . [(c1)x]-1

7th Chalk and Talk topic
Goldwasser-Micali Cryptosystem based on Quadratic

Residuacity
8th Chalk and Talk topic

Miller-Rabin Primality Testing

