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Quick Recall and Today’s Roadmap 

>> Assumptions in Cyclic Groups (of prime order); how to construct such creatures using     
NT and GT 

>> DH Key Agreement  

>> Intro to PKE. Plus and Minus  

>> PKE Security Definition 

>> CPA Security 

>> CPA Multi-message Security 
>> CPA Single Message Security Implies CPA Multi-message Security Proof: Fantastic 
application of hybrid arguments 

>> El Gamal CPA Secure Scheme 

>> RSA (maybe) 



Public-key Cryptography: Syntax 
q  A public-key cryptosystem is a collection of 3 PPT algorithms (Gen, Enc, Dec) 

Gen 
1n pk, sk ∈ {0, 1}n Syntax:   (pk, sk) ← Gen(1n) 

Enc 
m∈ {0, 1}* c 

pk 

Syntax:   c ← Encpk(m) 

Most often randomized to achieve 
meaningful notion of security 

Dec 
c m 

sk 

Syntax:   m:= Decsk(c) 

Except with a negligible probability over (pk, 
sk) output by Gen(1n), we require the following 
for every (legal) plaintext m 

Decsk(Encpk(m)):= m 

Randomized Algo 

Deterministic (w.l.o.g) 



Public-key Encryption: Security Definition  
Let Π = (Gen, Enc, Dec) be a public-key encryption key 

q  What is the least possible security guarantee expected from Π ? 

Gen 
1n sk pk 

Public domain 

c ← Encpk(.) 

I know that the message is 
either “I am not fine” or “I 
am fine Ram” 

q  We expect that even after seeing the ciphertext c, the adversary should not be able to find 
out the password, except with probability negligibly better than ½ 

Ø  Semantic security/IND security 



Indistinguishability Experiment for PKE (Ciphertext-
only Attack) 

Π = (Gen, Enc, Dec) 

I can break Π Let me verify 

m0, m1, |m0|=|m1| 

Gen(1n) 

b ← {0, 1} 

c ← Encpk(mb) 

b’ ∈ {0, 1} 

(Attacker’s guess about encrypted message) 

Game Output 
b = b’ 

1 --- attacker won 

b ≠ b’ 
0 --- attacker lost 

Indistinguishability experiment PubK         (n) 
A, Π 

coa 

PPT A 

pk, sk 

pk 

In the real-world, everyone 
including the attacker will 
have the public key pk  

 Π  COA-secure if for every PPT  attacker A taking part in the above experiment, the probability 
that A wins the experiment is at most negligibly better than ½ 

½ + negl(n) 

 

Pr PubK     (n) 
A, Π 

coa 
= 1 ≤ 

How is the above experiment 
different from the corresponding 
symmetric-key encryption 
experiment ? 



l 

Ciphertext-only Attack: Symmetric-key vs 
Asymmetric-key World 

Π = (Gen, Enc, Dec) 

I can break Π 

Verifier 
m0, m1, |m0|=|m1| 

Gen(1n) 

c ← Enck(mb) 

b’ ∈ {0, 1} 

PPT A 

k 

Symmetric-key Encryption 

Π’ = (Gen’, Enc’, Dec’) 

Asymmetric-key Encryption 

b ∈ {0, 1} 

I can break Π 

Verifier 
m0, m1, |m0|=|m1| 

Gen’(1n) 

c ← Enc’pk(mb) 

b’ ∈ {0, 1} 

PPT A 

pk, sk 

b ∈ {0, 1} 

pk 

q  Consequence of giving the public-key pk to the attacker ? 

Ø  Attacker can encrypt any message of its choice !! 

Ø  Free-encryption oracle for the attacker 

v  Not possible in the symmetric-key world --- attacker is not given the private key 

q  Already captures CPA!! 

q  COA is equivalent to CPA security for PKE 

Attention: No deterministic public-key encryption 
can be even COA-secure, whereas we have seen 
deterministic scheme to be COA-secure in SKE 
 

Extremely dangerous for small message space. Adv 
can keep a table of encryptions of all the message 
and then compares to find the message encrypted. 



Multi-message CPA Security 

Π = (Gen, Enc, Dec) 

Gen(1n) 

b ← {0, 1} 

Multi-CPA experiment PubK         (n) 
A, Π 

cpa-mult 

PPT A 

pk, sk 

pk 

(m0,1, m1,1) 

c1 ← Enck(mb,1) 

>> Important to see the effect of using the same key for multiple messages 
>> In reality multiple messages are encrypted under the same public key.  

  LRpk,b 

(m0,1, m1,1) 



Multi-message CPA Security 

Π = (Gen, Enc, Dec) 

Gen(1n) 

b ← {0, 1} 

Multi-CPA experiment PubK         (n) 
A, Π 

cpa-mult 

PPT A 

pk, sk 

pk 

(m0,2, m1,2) 

c2 ← Enck(mb,2) 

>> Important to see the effect of using the same key for multiple messages 
>> In reality multiple messages are encrypted under the same public key.  

  LRpk,b 

(m0,2, m1,2) 



Multi-message CPA Security 

Π = (Gen, Enc, Dec) 

Gen(1n) 

b ← {0, 1} 

Multi-CPA experiment PubK         (n) 
A, Π 

cpa-mult 

PPT A 

pk, sk 

pk 

(m0,t, m1,t) 

ct ← Enck(mb,t) 

>> Important to see the effect of using the same key for multiple messages 
>> In reality multiple messages are encrypted under the same public key.  

  LRpk,b 

(m0,t, m1,t) 

b’ ∈ {0, 1} 

(Attacker’s guess about encrypted vector) 

Game Output 
b = b’ 

1 --- attacker won 

b ≠ b’ 
0 --- attacker lost 

Π has mult-CPA secure if for every PPT  attacker A taking part in the above experiment, the 
probability that A wins the experiment is at most negligibly better than ½ 

½ + negl(n) 

 

Pr PubK     (n) 
A, Π 

cpa-mult 
= 1 ≤ 



(Single vs Multi-message CPA Security) 

Theorem: single-message CPA security) → multi-message CPA security). 

Proof: On the board (power of hybrid argument) 



Hybrid Arguments 

PPT Adv PPT Adv 

World/View 1 

World/View 2 

Cannot 
distinguish 

between View1 
and View2 

Otherwise, Can 
break a known 
hard problem 

World/View 1.1 

World/View 1.2 

World/View 1.i 

World/View 1.t 

Instance of 
his hard 
problem 

Used to create 
View1 /View2 

Answer whether View1 /View2 
Answer to hard 

problem 

Polynomially Many 

The intermediate 
views are called 

hybrids 

|Pr[A(View1) = 1 – Pr[A(View1.1) = 1]| < negl(n) 

|Pr[A(View1.1) = 1 – Pr[A(View1.2) = 1]| < negl(n) 

|Pr[A(View1.t) = 1 – Pr[A(View2) = 1]| < negl(n) 

|Pr[A(View1) = 1 – Pr[A(View2) = 1]| < t. negl(n) 

+  

+  

+  



Implications of Single-message CPA security à Multi-
message CPA Security 

PKE 

q  Given CPA secure scheme Π for bit/small messages, constructing CPA-secure PKE for long message is 
not an issue. 

Enc Enc Enc Enc Enc Enc 

m1 m2 m3 m4 m5 m6 

l l l l l l 

c1 c2 
c4 c3 c5 c6 pk 

m 

c1c2…c6 ← Encpk(m) 

q  Why the above PKE, say  Π’  is CPA-secure ? 

Ø  The above construction is equivalent to encrypting a vector of message M = (m1, …, m6) 

Ø  Reduction of CPA-security of  Π’ for LARGE single message  → CPA-security for  Π  for multi 
messages 

→

SKE 

COA ≈ 

≈ 

COA-mult 

≈ 
CPA-mult CPA 

≈ 

COA COA-mult 

CPA-mult 

CPA 

≈ 
→ →

Heads-up; Surprize: 
Sames does not hold 
for CCA security. 
Term paper 



CPA-secure Public-key Encryption Based on DDH  
(El Gamal Encryption Scheme) 

q  Invented by Taher El Gamal in 1985 

Ø  Based on the observation that the DH key-exchange protocol can be “converted” into a public-
key encryption algorithm by incorporating an additional step 

Protocol transcript k = (hR)x = gxy   

Unable to distinguish k = gxy from a random element gz in G (if DDH is hard in G)  

hS = gx, where x ←   q 

hR = gy, where y ←   q 

k = (hS)y = gxy   

q  Recall the DH key-exchange protocol 

Public Info: Cyclic group of prime order q,  (G, ., q, g) 

(For concreteness, consider (      , * mod p) and the subgroup (G, * mod p), with G = {x2 mod p}) p 

* 

q  How to convert this protocol into a public-key encryption scheme ? 

Ø  The encryptor can use the agreed upon key k to mask its message !! 

m ∈ G [k.m mod p] 

[k.m. k-1 mod p] 



El Gamal Public-key Encryption 

hS = gx, where x ←   q 

m = c2 / (c1)
x  

    = c2 . [(c1)
x]-1 

Theorem: If the DDH problem is hard relative to (G, o), then El Gamal encryption scheme is CPA-secure 

Ø  Adversary will be unable to distinguish the mask gxy  from a random group element gz, given 
h=gx, c1 = gy. Otherwise, we can use him to break DDH assumption. 

m ∈ G x  ←  q 

Secret key 

Imagine this like sending the 
1st message in DH key-
exchange protocol 

y ← G 

c1 = gy
 c2 = m . gxy 

Message masked with 
the common key, 
as hy = gxy 

Contribution  for 
common key 

G, o, q, g, h=gx 

Ø  If an random element gz was used for masking,  then the encryption perfectly hides m (it is an 
OTP in fact). So even an unbounded powerful adversary will have no clue about the message 

Public Info: Cyclic group of prime order q,  (G, o, q, g,           ) 

h = gx 



Security Proof of El Gamal 

Theorem. If DDH is hard, then Π is a CPA-secure scheme. 

Proof: Assume Π is not CPA-secure 

m,pk= (G,o,q,g,h=gx) c   

Public Key pk = (G,o,q,g,h=gx) 

c,sk=x 
Encpk(m) 
c1 = gy  for random y  

c2 = gxy.. m  

Decsk(c) 
c2 / (c1)x = c2 . [(c1)x]-1 

A, p(n):  ½ + 1/p(n) Pr PubK     (n) 
A, Π 

cpa 
= 1 > 

A D (G,o,q,g, gx, gy, gz) 

Let us run PubK     (n) 
A, Π 

cpa 

m0, m1∈R         , |m0| = |m1| 

b 

c = (gy, gz .mb) 

b’ ∈ {0, 1} 

DDH or non-DDH tuple? 

½  

 

Pr PubK     (n) 
A, Π 

cpa 
= 1 = 

1 if b = b’  

0 otherwise 

Pr [D(non-DDH tuple) = 1] Pr [D(DDH tuple) = 1] 
= = 

pk = (G,o,q,g,gx) 

-  1/p(n) > 

For any z’, Pr[gz.m = gz’] = 1/|G|
when z is chosen uniformly 
from G 



El Gamal Implementation Issues 

q  Sharing public parameters 

Ø  The public parameters (G, q, g, h) can be publicly shared once-and-for-all 

Ø  NIST has published standard parameters suitable for El Gamal encryption scheme 

Ø  Sharing public parameters does not hamper security --- contrast to RSA 

q  Choice of groups 

Ø  Option I: prime order subgroup (G, * mod p) of       , where p = 2q+1 and G = {x2 mod p | x ∈       } p 

* 
p 

* 

Ø  Option II (Practically popular): groups based on points on elliptic curves 

q  Message Space --- not bit strings, but rather group elements. Two possible solutions to deal with this 

Ø  Option I: Use some efficient reversible encoding mechanism from bit strings to group elements 

Ø  Option II: Use the El Gamal encryption scheme as a part of a Hybrid encryption scheme 

m,pk= (G,o,q,g,h=gx) c   

Public Key pk = (G,o,q,g,h=gx) 

c,sk=x 
Encpk(m) 
c1 = gy  for random y  

c2 = hy.. m  

Decsk(c) 
c2 / (c1)x = c2 . [(c1)x]-1 



El Gamal Implementation Issues 

q  Mapping bit strings to group elements 

Ø  For concreteness, consider prime order subgroup G of      , where p = 2q+1 and G = {x2 mod p | x ∈       } p 

* 
p 

* 

Squares modulo 11: 
Values: 

12 22 32 42 52 62 72 82 92 102 

1 4 9 5 3 3 5 9 4 1 

11 

* 1 2 3 4 5 6 7 8 9 10 : p = 11, q = 5 

Group G 

Plaintext and 
ciphertext space 

Ø        =  {1, 2, …, q, q+1, …, 2q} p 

* 

Ø  Consider the mapping f: {1, …, q} → G 

f(x)    =    [x2 mod p] 
def 

Ø  Function f is a bijection 

v  A quadratic residue [x2 mod p] has two 
modular square roots: [x mod p], [-x mod p] 

v  Only one square root lies in the range {1, …, q} 

v  Function f is efficiently invertible Ø  Let ||  q || = n bits  

Ø  Given an (n-1)-bit string x ∈ {0, 1}n-1, map it to an element of G as follows: 

v  Compute f(1 || x) --- 1 || x will be an n-bit string, will be an integer in the range {1, …, q} 

m,pk= (G,o,q,g,h=gx) c   

Public Key pk = (G,o,q,g,h=gx) 

c,sk=x 
Encpk(m) 
c1 = gy  for random y  

c2 = hy.. m  

Decsk(c) 
c2 / (c1)x = c2 . [(c1)x]-1 



7th Chalk and Talk topic  
Goldwasser-Micali Cryptosystem based on Quadratic 

Residuacity 
8th Chalk and Talk topic 

Miller-Rabin Primality Testing 


