
CSA E0 235: Cryptography April 9 ,2015

Plain RSA and CPA-Secure RSA

Instructor: Arpita Patra Submitted by: Abdullah.S & Pankaj K

1 Introduction

The RSA cryptosystem, invented by Ron Rivest, Adi Shamir, and Len Adleman, is one of
the practical public-key cryptosystems. It was first publicized in the August 1977 at MIT.
The cryptosystem is most commonly used for providing privacy and ensuring authenticity
of digital data. These days RSA is deployed in many commercial systems.

2 RSA Problem

2.1 RSA Assumption

RSA problem is based on the factoring assumption [Given N, product of two large n-bit
primes , it is hard to factor N into p and q]. We define GenRSA as the following:

• GenRSA is given N,p,q.

• Find ϕ(n) = (p-1) * (q-1).

• Choose e > 1, such that gcd(ϕ, e) = 1.

• Calculate d := e−1 mod ϕ(n) i.e. ed = 1 mod ϕ(n).

RSA experiment calculates y = (xe mod N). The RSA problem, informally, is to compute
[y1/e mod N] for a modulus N of unknown factorization. We define the RSA experiment
formally as follows:

• Run GenRSA(1n to obtain N,e,d).

• Choose a uniform y ∈ Z∗
N.

• Adversary A is given N,e,y and it outputs x ∈ Z∗
N.

• A is successful if xe = y mod N.

The RSA assumption is that there exists a GenRSA algorithm relative to which the RSA
problem is hard. RSA problem is hard if for all PPT adversaries A, probability of success
of the above experiment ≤ negl (n) for some negligible function n.

10-1

3 Plain RSA Encryption

Plain RSA Encryption is built on the RSA problem without any changes. We use 〈e,N 〉
as the public key and 〈d,N 〉 as the private key.Sender computes cipher text c:=me mod N.
Receiver gets back m as cd mod N = m mod N as ed = 1 mod ϕ(n). Encryption relies on
the fact that only by knowing d, one can decrypt c. Formally we describe Plain RSA as
follows :
Plain RSA:

• Gen: Run GenRSA(1n to obtain N,e,d).〈e,N 〉 is the public key, pk and 〈d,N 〉 is the
private key, sk.

• Enc: For a message m and public key pk ∈ Z∗
N,Calculate c := [me mod N]

• Dec: For given ciphertext c and private key sk, compute m := [cd mod N].

3.1 Security of Plain RSA

Plain RSA is built on the factoring assumption. So it is computationally infeasible for any
poly-time algorithms to find d and break the plain RSA. But it does not guarantee security
against any other attacks by the adversary for recovering the message . Infact plain RSA is
a deterministic algorithm and public key algorithms are insecure even against CPA attack
if they are deterministic . Thus we have the following attacks that can be mounted on the
plain RSA without finding d that show the weakness in the plain RSA scheme.

4 Attacks on plain RSA

4.1 Attack on small messages

If messages are small such that that the message lengths are less than N1/e, then the
ciphertext c := [me mod N] becomes equal me. Thus the attacker finds the message by
finding the eth root of c. Thus for small e , it is a serious weakness . Say e=3, N is 1024
bits , then the attack works for all uniform message of around 300 bits long.

4.2 Low Public exponent Attack

It happens in practice to keep the encryption exponent e small so as to have faster en-
cryptions. The most powerful attacks on low public exponent RSA are due to Coppersmith
theorem which states

Theorem 1 Let p(x) be a polynomial of degree e. Then in time poly(N ,e) one can find all
m such that p(m) = 0 mod N and |m| ≤ N1/e.

The theorem provides an algorithm for efficiently finding all roots of f modulo N that are less
than X=N1/e. As X gets smaller, the algorithm’s running time decreases. The theorem’s
strength is its ability to find small roots of polynomials modulo a composite N for small
e. In what follows we assume e = 3 for concreteness. Suppose the sender wants to send
m1||m2 and that m1 is known. So c = (m1||m2)e mod N. Say m2 is k bits long , attacker

10-2

defines p(x)=(2k.m1+x)e)− c. This gives a eth degree polynomial which has m2 mod N as
a root.

4.3 Common modulus attack

Consider a scenario where the same message is sent with the same modulus N and with
different pk,sk. This might happen in an organisation when some supremo wants to send
the same message to all his subordinates. Say we have c1 = me mod N1 and c2 = me mod
N2 . An eavesdropper has access to the public keys N,e1, e2 and the encrypted messages
c1, c2 . Since gcd(e1, e2) = 1, the eavesdropper applies the extended Euclidean algorithm to
compute integers x and y such that x ∗ e1 + y ∗ e2 = 1. Then he computes cx1 ∗ c

y
2 mod N

and this gives the message m as the above expression evaluates to me1∗x+e2∗y.

4.4 Attack on homomorphic property

Plain RSA exhibits the homomorphic property i.e. the ciphertext corresponding to the
plaintext m = m1||m2 mod N is c = c1||c2 mod N.This leads to the following adaptive
chosen-ciphertext attack on RSA encryption. Suppose that an active adversary wants to
decrypt a particular ciphertext c = me mod N. The adversary conceals c by selecting a
random integer x ∈ Z∗

N and computes c̄ = cxe mod N. Upon presentation of c̄, challenger
sends m̄ = c̄d. Since m̄ = cd(xe)d , adversary gets the message m.

4.5 Iterated encryption attack

This attack is based on the Euler-Fermat theorem. On getting the ciphertext c, the adver-
sary does the following iteratively. Keep finding c1 = ce mod N, c2 = ce1 mod N ... ck + 1
= cek mod N. At some stage of the iteration ,if we get ck + 1 = c whick implies that ck = m.
This means that merely through repeating the encryption process, we eventually decrypt
the originally encrypted message.

4.6 Common exponent attack

It is similar to the common modulus attack in the sense that the same message is sent to
different receivers.But all receivers have the same public keys and we use a different modulus
for each receiver. So the adversary sees the two different ciphertexts c1 = me mod n1 and
c2 = me mod n2. Then an extended version of the chinese remainder theorem says that
there exists a unique x < n1 ∗ n2 (= n) such that

• x = c1 mod n1

• x = c2 mod n2

Thus the adversary is able to get me and he can find the eth root to recover the message.

10-3

5 Final note on the attack:

There are also other clever attacks that exploit the weakness in the plain RSA. But these
attacks only illustrate the pitfalls to be avoided when implementing RSA and illustrate the
dangers of improper use of RSA. These can all be thwarted by a padded RSA scheme .

6 CPA-Secure Encryption

We start with describe a hard-core predicate for RSA problem and then will see how
to use that hard-core predicate to encrypt the single bit.

This scheme we presenting here is less efficient to other alternative ones but for theo-
retical interest we are presenting the scheme.

Hard-core Predicate for the RSA Problem. Informally the RSA assumption says
that given N,e, and [xemodN] it is very hard to get back x, but it does not says anything
specifically that whether it is difficult to compute any specific information about x. Now the
least significant bit of x denoted by lsb(x) is the hard-core predicate for the RSA problem.

The RSA hard-core predicate experiment RSA− lsbA,GenRSA(1n):

1. Run GenRSA(1n)toobtain(N, e, d).

2. Choose a uniform x ∈ Z∗
n and compute y := [xemodN].

3. A is given N, e, y and outputs a bit b.

4. The output of the experiment is 1 iff lsb(x)=b.

Here lsb(x) is a uniform bit when x ∈ Z∗
n is uniform.Observe that A can guess lsb(x)

with probability 1/2 by simply outputting a uniform bit b.

THEOREM 1 : If the RSA problem is hard relative to GenRSA then for all
probabilistic polynomial-time algorithms A there is a negligible function negl such that
Pr[RSA− lsbA,GenRSA(n) = 1] ≤ 1/2 + negl(n).

We are not providing the full proof, however we provide some intuition for the theo-
rem . We will show that to recover x from N, e, and [xemodN] we can use some other
effective algorithm A, that can calculate lsb(r) while given N, e and remodN such that,
A([remodN]) = lsb(r). Now we can use A(y) to calculate the lsb(x) while given N, e, y =
[xemodN], we can do this to obtain the bits of x. Now we need to consider two cases :
Case 1 : lsb(x) = 0 This implies x is even. So we can use the naive division technique to
learn about lsb(x). See y/2e = (x/2)emodN , and since x is even, so it is just the right-shift
operation by one bit on x, so now lsb(x/2) would be the 2nd-least significant bit of x. So
by setting y

′
= [y/2emodN] and then by A(y

′
) we can get second least significant bit of x.

Case 2 :
Encrypting one bit : Hardcore predicate can be used to encrypt the message m ∈ 0, 1

of single-bit length with the same spirit we explained above. We can select r ∈ Z∗
n uniformly

such that, lsb(r) = m, and then the ciphertext c = [remodN].

10-4

Construction 2 : We use GenRSA described earlier to generate (N, e, d) and then
we define the public key encryption scheme as follows :

• Gen : On input 1n run GenRSA(1n) to obtain (N, e, d). Output the public key
pk =< N, e >, and private key sk =< N, d > in tuples.

• Enc : With having pk =< N, e > , and single bit message m, choose r ∈ Z∗
N uniformly

such that lsb(r) = m and output the cipher text c = [remodN].

• Dec : With having private key sk =< N, d > and ciphertext c, we can compute
r = [cdmodN] and output lsb(r).

.
THEOREM If the RSA problem is hard relative to GenRSA then construction 2 is CPA-
secure.
PROOF: Let Π be the construction 2 and A be the PPT adversary in the experiment
PubKeav

A,Π(n). If we are able to prove that in Π eavesdropper is not able to distinguish the
message encryptions then Π is CPA-Secure .
So Pr[PubKeav

A,Π(n) = 1] = 1/2.P r[A(N, e, c) = 0|cisanencryptionofm0] + = 1/2.P r[A(N, e, c) =
1|cisanencryptionofm1].
Now in the experiment RSA-lsb by definition, we have :

Pr[RSA− lsbA,GenRSA(n) = 1] = Pr[A(N, e, [remodN]) = lsb(r)],
= 1/2.P r[A(N, e, [remodN]) = 0|lsb(r) = 0] + 1/2.P r[A(N, e, [remodN]) =

1|lsb(r) = 1].

We see here that it is exactly same that when we encrypting m ∈ 0, 1 withthe case while
we choosing uniform r such that lsb(r)=m, so we have now:

Pr[PubK −A,Πeav] ≤ 1/2 + negl(n).

10-5

