CSA EO0 235: Cryptography (15 April, 2015)

Lecture 10
Instructor: Dr Arpita Patra Submitted by : Divya Ravi

1 Introduction

In this lecture we introduce the idea of a hybrid public-key encryption scheme which com-
bines a public-key encryption scheme and the private-key encryption scheme. We show how
this scheme can be implemented and highlight its advantage. Next we look at Key encapsu-
lation mechanism(KEM) and prove its CPA security using a hybrid argument based proof.
We also see an El Gamal like KEM based on Hash Diffie-Hellman assumption. Finally we
look at the notion of CCA security in public-key setting.

2 Hybrid Encryption

We have seen Authenticated Encryption - a hybrid of private-key encryption scheme and
MAC in the earlier lectures. Hybrid schemes are developed to combine best properties .
Consider the two worlds of SKE and PKE . Desirable property of PKE is that no assump-
tion of secret key is required for secure comunication as in the case of SKE. However PKE
is expensive whereas SKE which uses only lightweight computation and lower ciphertext
expansion is significantly faster. The resulting combination which combines the best of both
is called hybrid encryption and is used extensively in practice.
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Figure 1: Direct implementation of hybrid encryption

Hybrid encryption can be implemented as shown above where the sender would share k by
first choosing a uniform value k and then encypting k using public-key encryption scheme.
The Key-Encapsulation Mecahanism (KEM) does both these actions in a single shot as we
shall see later. In the above implementation suppose (GenPKE, EncPKE, DeCPKE)

(GenSKE, EncSKE, DecSKE), (GenHyb, Enchv®, DecHyb) denote the PKE , SKE and Hybrid en-

cryption schemes respectively. Then,
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Implementation of Hybrid Encryption

o Gen™P is same as Gen"KE .

e In Enct'"® | first Gen®XE generates a uniform key k which is encrypted using the

public key pk by EncPKE to generate first part of the ciphertext ¢”KE. Next EncSKE
encrypts the message m using the private key k and generates the second part of
the ciphertext cPXE as shown.

Hyb PKE PKE

using Dec
SKE

e Decryption ,Dec™” uses the secret key, first k is obtained from ¢
and then this k is used by Dec®XE to decrypt the message m from c

Let us now analyze the efficiency of the above hybrid encyption scheme . Let o denote
the cost of encrypting a single-bit message using PKE and let 8 denote the cost of encrypting
a single bit message using SKE. As we know, encryption using SKE is significantly faster
than PKE say, « is of the order 10° * 3. Consider the length of the message m >>>>n (i.e
length of the key) . If we had used PKE scheme , then the cost per bit of plaintext would
be a. If Hybrid scheme is used , the cost would include cost of encrypting n bit key using
PKE and cost of encrypting m bit message using SKE. Thus the cost per bit of plaintext
encrypted using Hybrid PKE is

na +mp _ na L8 ()
m m

which approaches g for sufficiently long m. In the limit of very long messages, then, the

cost per bit incurred by the public-key hybrid encryption scheme is the same as the cost

per bit of the PKE. Hybrid encryption thus allows us to achieve the functionality of PKE

at the efficiency of SKE , atleast for sufficiently long messages.

A similar calculation can be used to measure the effect of hybrid encryption on cipher
text length. For some fixed value of n , let L denote the length of the ciphertext output by
EncPKE and say EncSKE results in a ciphertext of length m + n (where m is the size of the
message) . The total length of the ciphertext output by Enct® ig

L+n+m (2)

We now compare to the case when PKE was used to encrypt the message of size m. Suppose
we had used block-by-block encryption , then EncPKE would result in ciphertext of length
L * ™ which will be greater than L 4+ n + m for sufficiently long m.

2.1 KEM and DEM

A KEM has three algorithms similar in spirit to those of a public-key encryption scheme.
As before , the key generation algorithm Gen is used to generate a pair of public and pri-
vate keys . In place of encryption , we now have an encapsulation algorithm Encaps that
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takes only public key as input (and no message) , and outputs a ciphertext along with a
key k. A corresponding decapsulation algorithm Decaps is run by the receiver to recover
k from the ciphertext ¢ using the private key. We present a formal definition of KEM below :

Definition 1 A key-encapsulation mechanism (KEM) is a tuple of probabilistic polynomial-

time algorithms (Gen, Encaps, Decaps) such that :

e The key-generation algorithm Gen takes as input the security parameter 1™ and out-
puts a public-/private key pair (pk,sk) . We assume pk and sk each has length at
least n , and that n can be determined from pk.

e The encapsulation algorithm Encaps takes as input a public key pk and the security
parameter 1" . It outputs a ciphertext ¢ and a key k € {0,1}/(") where 1 is the key
length. We write this as (c,k) < Encaps(1™).

e The deterministic decapsulation algorithm Decaps takes as input a private key sk and
a ciphertext ¢ , and outputs a key k or a special symbol denoting failure. We write
this as k := Decapsg(c).

It is required that with all but negligible probability over (sk,pk) , output by Gen(1"™)
, if Encaps,;, (1" ) outputs (c,k) then Decapsy(c) outputs k.

&
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Figure 2: KEM/DEM approach

The above figure shows how KEM is implemented. The sender runs Encaps (1™ ) to
obtain ¢ along with a key k , it then uses a private-key encryption scheme to encrypt its
message m,using k as the key. In this context, the private-key encryption scheme is called
a data-encapsulation mechanism(DEM). The ciphertext sent to the receiver includes both
¢ and the ciphertext ¢>KE from the private key scheme. The formal construction is as given
below.
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Implementation using KEM/DEM

Let m = (Gen, Encaps, Decaps) be a KEM with key length n, and let 7°XE be
a private-key encryption scheme. A hybrid public-key encryption scheme 7P =

(Gen™P Encaps™®, Decapst'?) is constructed as follows :
e Gen™P : on input 1" run Gen(1") and use the public and private keys (pk,sk) that
are output.

Hyb .

e Enc™” : on input a public key pk and a message m € {0,1}* do :

1. Compute (c, k) <= Encaps(1™)
2. Compute c>¥E « EncKE(m)
3. Output the ciphertext (c, c>XE)

e Dec™? . On input a private key sk and a ciphertext (c, cSKE> do :
1. Compute k := Decaps(c)

2. Output the message m := DecpKE(cSKF)

2.2 CPA security for KEM

In the notion of CPA security as seen earlier for PKE / SKE | the challenge for the adversary
was to distinguish whether a ciphertext c is an encryption of some message mg or some other
message my. In case of KEM , there is no message - Here the challenge for the adversary
is to distinguish between an encapsulated key k and a uniform key that is independent of
the ciphertext c.Let m = (Gen, Encaps, Decaps) be a KEM and A an arbitrary adversary.The
CPA indistinguishability experiment is formalized as

CPA indistinguishability experiment KEMZ‘?;(n) :

e Gen(1") is run to obtain keys (pk,sk). Then Encaps, (1" ) is run to generate (c k)
with k € {0,1}"

e A uniform bit b € {0,1} is chosen. If b =0, set k> :=k . If b = 1 then choose a
uniform k’ € {0,1}".

e Give (pk, ¢, k’) to A, who outputs a bit b’. The output of the experiment is
defined to be 1 if b> = b , and 0 otherwise.

In the experiment , A is given the ciphertext ¢ and either the actual key corresponding
to ¢, or an independent uniform key. The KEM is CPA-secure if no efficient adversary can
distinguish between these possibilities. CPA security of KEM is formalized below.
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Definition 2 A key-encapsulation mechanism 7 is CPA-secure if for all probabilistic polynomial-
time adversaries A there exists a negligible function negl such that

PT[KEMCAIZ%(n) =1] < % + negl(n) (3)

&

CPA security of public key encryption scheme can be achieved by a hybrid of a CPA
secure KEM and a SKE that has indistinguishable encryptions in the presence of an eaves-
dropper (COA secure). We shall see this in further detail in the following theorem

Theorem 1 (Blum Goldwasser CRYPTO’84):Hybrid w"%* of a CPA-secure KEM w and a
COA-secure SKE 7°XE is a CPA-secure PKE.

Proof The proof uses a standard indistinguishability based hybrid argument. Let the
notation X =Y denote the event that no polynomial time adversary can distinguish between
two distributions X and Y. 7 is CPA-secure KEM means that

(pk, Encaps](;c) (1m), Encapsgg (1)) = (pk, Encaps](;c) (1™), k")

Here Encapsﬁ)(ln ), Encapsﬁ)(ln ) denotes the cipherext and key output by Encaps re-

spectively. pk is generated by Gen(1™ ) and k’ is chosen independently and uniformly from
{0,1}™ Similarly the fact that 7>XE is COA secure means that for any mg , m; output by A
we have EnciKE(mg) = Enc®E(my) if k is chosen uniformly at random. In order to prove
CPA-security of 7" we need to show that

(pk, Encaps!)) (1), Enci¥E(mq)) = (pk, Encaps.}) (1"), EnciE (m1)) (4)

The proof proceeds in three steps.

1. First we prove that

(pk, Encaps() (1), Enci*F(mo)) = (pk, Encapsiy, (1), EnciE (mp)) (5)

where on the left k is output by Encapsﬁ)(ln) and on the right k’ is an independent

uniform key. This follows from a straightforward reduction , since CPA security of 7
)

means that Encapspk (1™) cannot be distinguished from a uniform key k’ even given
pk and Encapsﬁ)(ln).
2. Next we prove that

(pk, Encaps‘fjc)(ln)7 EnciKE(mo)) = (pk, Encaps]g}c)(ln), EnciXE(my)) (6)

Here the difference is between encrypting mg or m; using 7°%E and a uniform inde-
pendent key k’. This result follows from the COA security of 75KE.

3. Finally exactly similar to the first case , we prove that
(pk, Encapsﬁ(l”)7 EncXE(m1)) = (pk, Encapsﬁ)(ln), EncfE(m1)) (7)

This follows again from CPA security of 7
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(by “transitivity”)

(pk. Encaps&?(l”). EncS;E(m.O)) ————— — (b)!c.Encaps;?(ln), Enc:E(-ml))
(by security of II) (by security of IT)
(])!;.Encapsg_)(ln). Enc,s:f(m.gj) - > (p!c.Encaps‘SC)(l”), Enc:(f(-m-l))

(by security of Hw)

Figure 3: High level Structure of Hybrid argument based proof of theorem 1

Equations (5) ,(6) and (7) imply by transitivity the desired result that is equation (4). The
figure 3 gives a high level picture of the proof. We now formalize this intutive argument .

To prove the CPA security of the hybrid public-key encryption scheme , our goal is to prove
that there is a negligible function negl such that

1
Pr[PubKgy 1wy (n) = 1] < 3 + negl(n) (8)

where PubKigY 11, (1) denotes the experiment and A" is an arbitrary PPT adversary. By

definition of the experiment , we have

1
PrlPubKSy iy (n) = 1] = 3 * Pr[A™ (pk, Encapsﬁ)(ln), EnciE(mo)) = 0]
’ (9)

1
+ 3% Pr[A™ (pk, Encapsl(,?(ln), EnciiE(my)) = 1]

where in each case k equals Encapsﬁ)(ln ). Consider the following PPT adversary A at-
tacking II .

Adversary A; :
e A; is given (pk, ¢, k”)

e A; runs A" (pk) to obtain two messages mg and m; .Then A; computes ¢’ < EnciE(myg))
and gives ciphertext ( ¢, ¢’ ) to A" and then outputs the bit b’ that A" outputs.

Consider the behavior of A; when attacking 7 in the experiment KEM;";"H (n). When b =0

in the experiment , then A; is given (pk, c, k”) where ¢ and k” were output by Encapsﬁ,)(l”)
. This means that A" is given a ciphertext of the form (c, ¢’ ) = (¢, Encg¥E(

is encapsulated by c. So

my) ) where k

Pr[Ajoutputs 0[b = 0] = Pr[A™ (pk, Encaps.;) (1"), EnciE (img)) = 0]

On the other hand , when b = 1 in the experiment KEMZPICLH(TL) then A; is given ( pk, c,
k”) with k” uniform and independent of c. If we denote such a key by k’, this means A is
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SKE(

given a ciphertext of the form ( ¢ , Encg/""(mg) ) and

Pr[A; outputs 1|b = 1] = Pr[A™ (pk, Encaps( )(1" EnciKE(mg)=1]

Since 7 is a CPA secure KEM, there is a negligible function negl; such that

1
5T negly(n) > PrKEM7 " (n) = 1]

1 1
=3 * Pr[A; outputs 0 |b = 0] +g Pr[A; outputs 1/b = 1]
(10)
1
= 5 * PriA™ (pk, Encaps.) (1", EncSKE(mg)) 0]

% % Pr[Ahy(pk Encaps( )(1” EncSKE(mo)) =1]

where k is equal to Encaps( )(1”) and k’ is a uniform and independent key .

Next, consider the following PPT adversary A’ that eavesdrops on a message encrypted
using the private-key scheme 73KE.

Adversary A’ :

e A’(1") runs Gen(1™) on its own to generate keys (pk,sk). It also computes ¢ <
Encaps( )(1”

e A’ runs A" (pk) to obtain two messages mg and m; . These are output by A’ , and is
given a ciphertext ¢’ in return.

e A’ gives a ciphertext ( c,c’) to A", and outputs the bit b’ that A" outputs.

When b = 0 in experiment PrivKZa}:’H/(n) , the adversary A’ is given a ciphertext ¢’ which is

an encryption of mg using a key k’ that is uniform and is independent of anything else. So
AY is given a ciphertext of the form ( ¢,EnciE(mg) ) where k’ is uniform and independent
of ¢, and

Pr[A" outputs 0]b = 0] = Pr[A™ (pk, Encaps;k)(ln EnciE(my)) = 0]

On the other hand when b = 1 in experiment PrivK% H,( ) , the adversary A’ is given a
ciphertext ¢’ which is an encryption of m; using a key Kk’ that is uniform and is independent
of anything else. So A" is given a ciphertext of the form ( ¢,EncifE(m;) ) where k’ is
uniform and independent of ¢ , and so

Pr[A" outputs 1 |b=1] = Pr[A™ (pk, Encaps( )(1" EnciKE(my)) = 1]

Since m°XE has indistiguishable encryptions in the presence of an eavesdropper , there is a

10-7



negligible function negl’ such that
1
5+ negl’(n) > Pr[PrivK$y, (n) = 1]

1 1
=3 * Pr[A’ outputs 0[b = 0] +g Pr[A’ outputs 1 [|b = 1]
(11)
1
= 5+ PriA™ (pk, Encaps) (1", EncSKE(mU)) = 0]

% * Pr[Ahy(pk Encaps( )(1” EncSKE(ml)) = 1]

Proceeding exactly as we did to prove equation (10) , we can show that there is a negligible
function negl, such that

1
3T negly(n) > PriKEM% " (n) = 1]

1 1
=g* Pr[As outputs 0 |b = 0] —|— — % Pr[Ay outputs 1|b = 1]
(12)
1
=3 * Pr[A™ (pk, Encaps( )(1” EncSKE(ml)) =1]

1
+ 5 * Pr[A™ (pk, Encapsﬁ?(l”7 EncaiE(m1)) = 0]

Summing the equations (10) , (11), (12) and using the fact that the sum of three negligible
functions is negligible , we see that there exists a negligible function negl such that

s (Pr[A™ (pk, ¢, EncXE(mg)) = 0] + Pr[A", ¢, Enc¥E(myg)) = 1]
+ Pr[AM (pk, ¢, EncS¥E(mg)) = 0] + Pr[AM (pk, ¢, EncSKE(my)) = 1] (13)
+ Pr[AY (pk, ¢, EnciiE(mg)) = 1] + Pr[A™ (pk, ¢, EncaE(mq)) = 0])

l\DM—\

3
-+ negl(n) >

where ¢ = Encaps( )( in all the above . Note that

PriAM (pk, ¢, Enc2¥E(mo) = 1] + Pr[A™ (pk, ¢, Enc3E(mo) = 0] = 1,
since the probabilities of complementary events always sum to 1. Similarly ,
Pr[A™ (pk, ¢, Enc2E(my) = 1] + Pr[A" (pk, ¢, Enc2lE(my) = 0]) =

Therefore ,

1 1
5+ negl(n) > 5 * (Pr[A™ (pk, ¢, Enc2¥E(mg) = 0] + Pr[AMY (pk, ¢, EnciKE(my) = 1))
= Pr[Pub Zi‘; th( n) = 1]

This completes the proof of the theorem. |
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3 El Gamal like KEM

In the previous lecture we have seen the construction of El Gamal Encryption scheme based
on the DDH assumption. A variant of this is to use El Gamal encryption as a part of hybrid
encryption scheme. For example , the sender could choose a uniform group element m € G,
encrypt this using a private-key encryption scheme and use hash of that element as the key.
However this is redundant since we know that in El Gamal encryption cf is indisinguishable
from a uniform group element , so the sender/receiver may as well use that .Such a resulting
encapsulation consists of only a single group element not two as in the case of El Gamal
encryption.The construction of an El Gamal like KEM is as follows :

Construction of El Gamal like KEM

e Gen : on input 1" , run G(1" ) to obtain (G, q, g), choose a uniform x € Z, and
set h:= g”. Also specify a function H : G — {0,1}"™. The public key is ( G, q, g,
h, H) and the private key is ( G, q, g, x ).

e Encaps : on input a public key pk = ( G, q, g, h, H) choose a uniform y € Z, and
output a ciphertext g¥ and the key H(hY) = H(g") .

e Decaps : on input a private key sk = ( G, q, g, h, H) and a ciphertext ¢ € G ,
output the key H(c*) = H(g™)

The El Gamal like KEM is an improvement over El Gamal because of two major ad-
vantages achieved . Firstly the ciphertext now contains only of a single element rather than
two as in the case of El Gamal . Secondly the computation is much less expensive than
El Gamal since now there is no need to choose m randomly and also hashing is used in El
Gamal like KEM in contrast to the multiplication used earlier in El Gamal.The security
of El Gamal was based on DDH assumption - We analogously define HDH assumption on
which El Gamal like KEM is based on.

Definition 3 HDH (Hash Diffie-Hellman) Assumption

HDH problem is hard relative to (G, o) and hash function H: G — {0,1}" if for every PPT
A (it is hard to distinguish H(g"¥) from a random string r from {0,1}" even given g%, g¥.
|Pr[A(G,0,q,9,9%, 9/, H(g™)) = 1] = Pr[A(G,0,q,9.9%,9",7) = 1]| < negl().

HDH assumption is that there exists a group and a hash function H so that HDH is hard
relative to them. &

HDH is weaker than DDH but stronger than CDH when hash function is implemented using
known practical hash functions. Also, if the HDH assumption holds , then El Gamal like
KEM is CPA secure . The proof is a straightforward reduction and similar to the CPA
security proof of El Gamal based on DDH as seen in the previous lecture.
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4 CCA security in public-key setting

In the Chosen-Ciphertext attack , the adversary is able to obtain decryption of arbitrary
ciphertexts of its choice. These are more significant in the public key setting rather than
private key setting . In the private symmetric key setting , a receiver intends to communicate
only with a single known sender and the message encrypted with the secret key can only
originate from this sender with whom the secret key was shared. However in the public
key setting , a receiver might receive encrypted messaged from multiple sources unknown
in advance since they have access to the public key.Thus launching CCA attacks in public
key world is easier and CCA security of PKE s is a matter of high importance.

4.1 Security of PKE s against Chosen-Ciphertext Attacks

We define CCA security for public key setting analogous to the definition from private key
setting . Given a public key encryption scheme 7 and an adversary A , we define the public
key CCA indistinguishability experiment below.

cca

The CCA indistinguishability experiment PubK{f(n) :
e Gen(1™) is run to obtain keys (pk,sk)

e The adversary A is given pk and access to decryption oracle Decg(.). It outputs
a pair of messages mgy and mj of the same length.

A uniform bit b € {0,1} is chosen, and then a ciphertext ¢ <— Enc,y(m;) is com-
puted and given to A.

A continues to interact with the decryption oracle, but may not request a decryp-
tion of c itself. Finally , A outputs a bit b’.

The output of the experiment is defined to be 1 if b> = b , and 0 otherwise.

Definition 4 A public-key encryption scheme 7m = (Gen, Enc, Dec) has indistiguishable
encryptions under a chosen-ciphertext attack (or is CCA secure) if for all probabilistic
polynomial time adversaries A there exists a negligible function negl such that

1
Pr[PubK{f(n) =1] < B + negl(n)

4.2 An issue related to CCA attacks : Non - malleability
An issue that is closely related to CCA security is potential malleability of ciphertexts.

Definition 5 An encryption scheme (symmetric/asymmetric) is malleable if it has the
following property - Given an encryption ¢ of some unknown message m , it is possible to
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come up with a ciphertext ¢’ that is an encryption of a message m’ that is related in some
known way to m. &

For example, perhaps given an encryption of m, it is possible to construct an encryption of
2m. It is clear from the definition of malleability that a scheme is CCA secure iff it is non
malleable . This follows from the fact that if the scheme is malleable , the adversary in the
CCA game on receiving the challenge ciphertext ¢* <— Enc(my) can query the decryption
oracle on ¢’ <= Enc(f(mp)) and obtain f(my). A real-life scenario of the use of malleability
to launch an attack is as follows : Consider an e-auction among two bidders A and B who
submit their bids by encrypting using a public key of R who is running the auction. If a
malleable encryption scheme is used , it may be possible for the bidder A to always place
the highest bid ( without bidding the maximum) by carrying out the following attack -
A waits till B submits the ciphertext ¢ corresponding to his/her bid m (unknown to A) .
Then A will now send a cipherext ¢’ corresponding to the bid m’ = 2m. m is still unknown
to A but using the malleability property of the scheme , A is guaranteed to win. CCA
secure schemes are not vulnerable to such attacks. The El Gamal scheme that we have seen
is malleable and thus not CCA secure. This is because , once we are given an El Gamal
encryption (c¢1,c2) of m under the public key h |, the adversary can easily come up with the
ciphertext ¢’ corresponding to 2m which is nothing but (cg,2cg)

4.3 CCA Multi-message security

We define CCA Multi-message security for public key setting similar to single message CCA
security. The only difference is that a vector of messages are communicated rather than a
single message. Given a public key encryption scheme 7 and an adversary A , we define the
public key CCA-multiple indistinguishability experiment.

The CCA indistinguishability experiment Pubefj‘{m“lt(n) :
e Gen(1™) is run to obtain keys (pk,sk)

e The adversary A is given pk and access to decryption oracle Decgy(.) which returns
the plaintext message vector corresponding to the ciphertext vector queried. Then
the adversary outputs a pair of message vectors mg; and mj; of the same length
where t is the number of messages in a vector.

e A uniform bit b € {0,1} is chosen, and then a ciphertext ¢ < Encpy(mpy) is
computed and given to A.

e A continues to interact with the decryption oracle, but may not request a decryp-
tion of c itself. Finally , A outputs a bit b’.

e The output of the experiment is defined to be 1 if b’ = b , and 0 otherwise.

Definition 6 A public-key encryption scheme m = (Gen, Enc,Dec) has indistiguishable
multiple encryptions under a chosen-ciphertext attack ( or is CCA-mult secure) if for all
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probabilistic polynomial time adversaries A there exists a negligible function negl such that
1
Pr[PubKCAfel’-I_m““(n) =1] < 5 + negl(n)
¢

Theorem 2 If a public-key encryption scheme w is CCA-secure, then it also has indistin-
guishable multiple encryptions under a chosen-ciphertext attack.

The proof uses hybrid argument and is similar to the one seen in the previous lecture for

the analogous theorem for CPA security.

We now know that single-message CCA security implies multi-message CCA security. Let
us now look at how to construct a CCA secure PKE for long message given a CCA secure
scheme 7 for a single bit/small message.

[ L L L L

Enc Enc Enc Enc Enc Enc

I I I A A B

CiC5..Co Encpk(m)

Figure 4: Trivial construction of PKE for long message

Consider the trivial construction 7’ as shown in which the long message is divided into blocks
of fixed length and the ciphertext corresponding to each block is computed using w. This
scheme is not CCA secure since the adversary can take the decryption oracle service and get
the message corresponding to the ciphertext. Now truncation will give a valid ciphertext
which can be used by the adversary to win the CCA game. Thus constructing CCA secure
PKE for long message is not trivial and this construction can be seen in the following paper
- Steven Myers, Abhi Shelat: Bit Encryption Is Complete. FOCS 2009: 607-616

4.4 CCA security of Hybrid Encryption using KEM

We have seen that the Hybrid 7P of a CPA-secure KEM 7 and a COA-secure SKE 7°KE
is a CPA-secure PKE. Let us look at the conditions needed for CCA security of the hybrid
scheme . Suppose m°XE is malleable like in the case of PRG/PRF scheme . Then the
ciphertext output by the hybrid scheme is say of the form (¢ , G(k) & m ) where c is
the KEM ciphertext and G(k) & m is the SKE ciphertext where G is the PRF/PRG used
in private key encryption scheme. Clearly the hybrid scheme is also malleable since the
adversary can come up with a valid ciphertext easily . Thus 7°XE should be CCA secure.
Also , m should be CCA secure as well for the hybrid scheme to be CCA secure.We state
the following theorem without proof
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Theorem 3 If w is CCA-secure KEM and n°KE is o CCA-secure PKE , then Y is a
CCA secure public-key encryption scheme.

This theorem only highlights the sufficient conditions for a CCA hybrid encryption. Please
note that these conditions may not be necessary for a hybrid encryption to be CCA secure.
It is known that CCA secure SKE is a must for the hybrid scheme to be secure , but weaker
than CCA secure KEM may also result in a CCA secure hybrid encryption scheme.
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