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1 Introduction

In this lecture we introduce the idea of a hybrid public-key encryption scheme which com-
bines a public-key encryption scheme and the private-key encryption scheme. We show how
this scheme can be implemented and highlight its advantage. Next we look at Key encapsu-
lation mechanism(KEM) and prove its CPA security using a hybrid argument based proof.
We also see an El Gamal like KEM based on Hash Diffie-Hellman assumption. Finally we
look at the notion of CCA security in public-key setting.

2 Hybrid Encryption

We have seen Authenticated Encryption - a hybrid of private-key encryption scheme and
MAC in the earlier lectures. Hybrid schemes are developed to combine best properties .
Consider the two worlds of SKE and PKE . Desirable property of PKE is that no assump-
tion of secret key is required for secure comunication as in the case of SKE. However PKE
is expensive whereas SKE which uses only lightweight computation and lower ciphertext
expansion is significantly faster. The resulting combination which combines the best of both
is called hybrid encryption and is used extensively in practice.

Figure 1: Direct implementation of hybrid encryption

Hybrid encryption can be implemented as shown above where the sender would share k by
first choosing a uniform value k and then encypting k using public-key encryption scheme.
The Key-Encapsulation Mecahanism (KEM) does both these actions in a single shot as we
shall see later. In the above implementation suppose (GenPKE,EncPKE,DecPKE)
(GenSKE,EncSKE,DecSKE), (GenHyb,EncHyb,DecHyb) denote the PKE , SKE and Hybrid en-
cryption schemes respectively. Then,
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Implementation of Hybrid Encryption

• GenHyb is same as GenPKE .

• In EncHyb , first GenSKE generates a uniform key k which is encrypted using the
public key pk by EncPKE to generate first part of the ciphertext cPKE. Next EncSKE

encrypts the message m using the private key k and generates the second part of
the ciphertext cPKE as shown.

• Decryption ,DecHyb uses the secret key, first k is obtained from cPKE using DecPKE

and then this k is used by DecSKE to decrypt the message m from cSKE.

Let us now analyze the efficiency of the above hybrid encyption scheme . Let α denote
the cost of encrypting a single-bit message using PKE and let β denote the cost of encrypting
a single bit message using SKE. As we know, encryption using SKE is significantly faster
than PKE say, α is of the order 105 * β. Consider the length of the message m >>>> n (i.e
length of the key) . If we had used PKE scheme , then the cost per bit of plaintext would
be α. If Hybrid scheme is used , the cost would include cost of encrypting n bit key using
PKE and cost of encrypting m bit message using SKE. Thus the cost per bit of plaintext
encrypted using Hybrid PKE is

nα+mβ

m
=
nα

m
+ β (1)

which approaches β for sufficiently long m. In the limit of very long messages, then, the
cost per bit incurred by the public-key hybrid encryption scheme is the same as the cost
per bit of the PKE. Hybrid encryption thus allows us to achieve the functionality of PKE
at the efficiency of SKE , atleast for sufficiently long messages.

A similar calculation can be used to measure the effect of hybrid encryption on cipher
text length. For some fixed value of n , let L denote the length of the ciphertext output by
EncPKE and say EncSKE results in a ciphertext of length m + n (where m is the size of the
message) . The total length of the ciphertext output by EncHyb is

L+ n+m (2)

We now compare to the case when PKE was used to encrypt the message of size m. Suppose
we had used block-by-block encryption , then EncPKE would result in ciphertext of length
L * m

n which will be greater than L + n + m for sufficiently long m.

2.1 KEM and DEM

A KEM has three algorithms similar in spirit to those of a public-key encryption scheme.
As before , the key generation algorithm Gen is used to generate a pair of public and pri-
vate keys . In place of encryption , we now have an encapsulation algorithm Encaps that
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takes only public key as input (and no message) , and outputs a ciphertext along with a
key k. A corresponding decapsulation algorithm Decaps is run by the receiver to recover
k from the ciphertext c using the private key. We present a formal definition of KEM below :

Definition 1 A key-encapsulation mechanism (KEM) is a tuple of probabilistic polynomial-

time algorithms (Gen, Encaps, Decaps) such that :

• The key-generation algorithm Gen takes as input the security parameter 1n and out-
puts a public-/private key pair (pk,sk) . We assume pk and sk each has length at
least n , and that n can be determined from pk.

• The encapsulation algorithm Encaps takes as input a public key pk and the security
parameter 1n . It outputs a ciphertext c and a key k ∈ {0,1}l(n) where l is the key
length. We write this as (c,k) ← Encaps(1n).

• The deterministic decapsulation algorithm Decaps takes as input a private key sk and
a ciphertext c , and outputs a key k or a special symbol denoting failure. We write
this as k := Decapssk(c).

It is required that with all but negligible probability over (sk,pk) , output by Gen(1n)
, if Encapspk (1n ) outputs (c,k) then Decapssk(c) outputs k.

♦

Figure 2: KEM/DEM approach

The above figure shows how KEM is implemented. The sender runs Encaps (1n ) to
obtain c along with a key k , it then uses a private-key encryption scheme to encrypt its
message m,using k as the key. In this context, the private-key encryption scheme is called
a data-encapsulation mechanism(DEM). The ciphertext sent to the receiver includes both
c and the ciphertext cSKE from the private key scheme. The formal construction is as given
below.
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Implementation using KEM/DEM

Let π = (Gen, Encaps, Decaps) be a KEM with key length n, and let πSKE be
a private-key encryption scheme. A hybrid public-key encryption scheme πHyb =
(GenHyb,EncapsHyb,DecapsHyb) is constructed as follows :

• GenHyb : on input 1n run Gen(1n) and use the public and private keys (pk,sk) that
are output.

• EncHyb : on input a public key pk and a message m ∈ {0, 1}∗ do :

1. Compute (c, k) ← Encaps(1n)

2. Compute cSKE ← EncSKEk (m)

3. Output the ciphertext 〈c, cSKE〉

• DecHyb : On input a private key sk and a ciphertext 〈c, cSKE〉 do :

1. Compute k := Decaps(c)

2. Output the message m := DecSKEk (cSKE)

2.2 CPA security for KEM

In the notion of CPA security as seen earlier for PKE / SKE , the challenge for the adversary
was to distinguish whether a ciphertext c is an encryption of some message m0 or some other
message m1. In case of KEM , there is no message - Here the challenge for the adversary
is to distinguish between an encapsulated key k and a uniform key that is independent of
the ciphertext c.Let π = (Gen,Encaps,Decaps) be a KEM and A an arbitrary adversary.The
CPA indistinguishability experiment is formalized as

CPA indistinguishability experiment KEMcpa
A,π(n) :

• Gen(1n) is run to obtain keys (pk,sk). Then Encapspk(1
n ) is run to generate (c,k)

with k ∈ {0,1}n

• A uniform bit b ∈ {0,1} is chosen. If b = 0 , set k’ := k . If b = 1 then choose a
uniform k’ ∈ {0,1}n.

• Give (pk, c, k’) to A, who outputs a bit b’. The output of the experiment is
defined to be 1 if b’ = b , and 0 otherwise.

In the experiment , A is given the ciphertext c and either the actual key corresponding
to c , or an independent uniform key. The KEM is CPA-secure if no efficient adversary can
distinguish between these possibilities. CPA security of KEM is formalized below.

10-4



Definition 2 A key-encapsulation mechanism π is CPA-secure if for all probabilistic polynomial-
time adversaries A there exists a negligible function negl such that

Pr[KEMcpa
A,Π(n) = 1] ≤ 1

2
+ negl(n) (3)

♦
CPA security of public key encryption scheme can be achieved by a hybrid of a CPA

secure KEM and a SKE that has indistinguishable encryptions in the presence of an eaves-
dropper (COA secure). We shall see this in further detail in the following theorem

Theorem 1 (Blum Goldwasser CRYPTO’84):Hybrid πHyb of a CPA-secure KEM π and a
COA-secure SKE πSKE is a CPA-secure PKE.

Proof The proof uses a standard indistinguishability based hybrid argument. Let the
notation X ≡ Y denote the event that no polynomial time adversary can distinguish between
two distributions X and Y. π is CPA-secure KEM means that

(pk,Encaps
(1)
pk (1n),Encaps

(2)
pk (1n)) ≡ (pk,Encaps

(1)
pk (1n), k′)

Here Encaps
(1)
pk (1n ) , Encaps

(2)
pk (1n ) denotes the cipherext and key output by Encaps re-

spectively. pk is generated by Gen(1n ) and k’ is chosen independently and uniformly from
{0,1}n.Similarly the fact that πSKE is COA secure means that for any m0 , m1 output by A
we have EncSKEk (m0) ≡ EncSKEk (m1) if k is chosen uniformly at random. In order to prove
CPA-security of πhy we need to show that

(pk,Encaps
(1)
pk (1n),EncSKEk (m0)) ≡ (pk,Encaps

(1)
pk (1n),EncSKEk (m1)) (4)

The proof proceeds in three steps.

1. First we prove that

(pk,Encaps
(1)
pk (1n),EncSKEk (m0)) ≡ (pk,Encaps

(1)
pk (1n),EncSKEk′ (m0)) (5)

where on the left k is output by Encaps
(2)
pk (1n) and on the right k’ is an independent

uniform key. This follows from a straightforward reduction , since CPA security of π

means that Encaps
(2)
pk (1n) cannot be distinguished from a uniform key k’ even given

pk and Encaps
(1)
pk (1n).

2. Next we prove that

(pk,Encaps
(1)
pk (1n),EncSKEk′ (m0)) ≡ (pk,Encaps

(1)
pk (1n),EncSKEk′ (m1)) (6)

Here the difference is between encrypting m0 or m1 using πSKE and a uniform inde-
pendent key k’. This result follows from the COA security of πSKE.

3. Finally exactly similar to the first case , we prove that

(pk,Encaps
(1)
pk (1n),EncSKEk (m1)) ≡ (pk,Encaps

(1)
pk (1n),EncSKEk′ (m1)) (7)

This follows again from CPA security of π
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Figure 3: High level Structure of Hybrid argument based proof of theorem 1

Equations (5) ,(6) and (7) imply by transitivity the desired result that is equation (4). The
figure 3 gives a high level picture of the proof. We now formalize this intutive argument .

To prove the CPA security of the hybrid public-key encryption scheme , our goal is to prove
that there is a negligible function negl such that

Pr[PubKeav
Ahy,Πhy(n) = 1] ≤ 1

2
+ negl(n) (8)

where PubKeav
Ahy,Πhy(n) denotes the experiment and Ahy is an arbitrary PPT adversary. By

definition of the experiment , we have

Pr[PubKeav
Ahy,Πhy(n) = 1] =

1

2
∗ Pr[Ahy(pk,Encaps

(1)
pk (1n),EncSKEk′ (m0)) = 0]

+
1

2
∗ Pr[Ahy(pk,Encaps

(1)
pk (1n),EncSKEk′ (m1)) = 1]

(9)

where in each case k equals Encaps
(2)
pk (1n ). Consider the following PPT adversary A1 at-

tacking Π .

Adversary A1 :

• A1 is given (pk, c, k”)

• A1 runs Ahy(pk) to obtain two messages m0 and m1 .Then A1 computes c’← EncSKEk′′ (m0))
and gives ciphertext 〈 c, c’ 〉 to Ahy and then outputs the bit b’ that Ahy outputs.

Consider the behavior of A1 when attacking π in the experiment KEMcpa
A1,Π

(n). When b = 0

in the experiment , then A1 is given 〈pk, c, k”〉 where c and k” were output by Encaps
(1)
pk (1n)

. This means that Ahy is given a ciphertext of the form 〈c, c’ 〉 = 〈c, EncSKEk (m0) 〉 where k
is encapsulated by c. So

Pr[A1outputs 0|b = 0] = Pr[Ahy(pk,Encaps
(1)
pk (1n),EncSKEk (m0)) = 0]

On the other hand , when b = 1 in the experiment KEMcpa
A1,Π

(n) then A1 is given 〈 pk, c,

k”〉 with k” uniform and independent of c. If we denote such a key by k’, this means Ahy is
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given a ciphertext of the form 〈 c , EncSKEk′ (m0) 〉 and

Pr[A1 outputs 1|b = 1] = Pr[Ahy(pk,Encaps
(1)
pk (1n,EncSKEk′ (m0)=1]

Since π is a CPA secure KEM, there is a negligible function negl1 such that

1

2
+ negl1(n) ≥ Pr[KEMcpa

A1,Π
(n) = 1]

=
1

2
∗ Pr[A1 outputs 0 |b = 0] +

1

2
∗ Pr[A1 outputs 1|b = 1]

=
1

2
∗ Pr[Ahy(pk,Encaps

(1)
pk (1n, EncSKEk′ (m0)) = 0]

+
1

2
∗ Pr[Ahy(pk,Encaps

(1)
pk (1n, EncSKEk′ (m0)) = 1]

(10)

where k is equal to Encaps
(2)
pk (1n) and k’ is a uniform and independent key .

Next, consider the following PPT adversary A’ that eavesdrops on a message encrypted
using the private-key scheme πSKE.

Adversary A′ :

• A’(1n) runs Gen(1n) on its own to generate keys (pk,sk). It also computes c ←
Encaps

(1)
pk (1n

• A’ runs Ahy(pk) to obtain two messages m0 and m1 . These are output by A’ , and is
given a ciphertext c’ in return.

• A’ gives a ciphertext 〈 c,c’〉 to Ahy, and outputs the bit b’ that Ahy outputs.

When b = 0 in experiment PrivKeav
A′,Π′(n) , the adversary A’ is given a ciphertext c’ which is

an encryption of m0 using a key k’ that is uniform and is independent of anything else. So
Ahy is given a ciphertext of the form 〈 c,EncSKEk′ (m0) 〉 where k’ is uniform and independent
of c , and

Pr[A′ outputs 0|b = 0] = Pr[Ahy(pk,Encaps
(1)
pk (1n,EncSKEk′ (m0)) = 0]

On the other hand when b = 1 in experiment PrivKeav
A′,Π′(n) , the adversary A’ is given a

ciphertext c’ which is an encryption of m1 using a key k’ that is uniform and is independent
of anything else. So Ahy is given a ciphertext of the form 〈 c,EncSKEk′ (m1) 〉 where k’ is
uniform and independent of c , and so

Pr[A′ outputs 1 |b = 1] = Pr[Ahy(pk,Encaps
(1)
pk (1n,EncSKEk′ (m1)) = 1]

Since πSKE has indistiguishable encryptions in the presence of an eavesdropper , there is a
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negligible function negl′ such that

1

2
+ negl′(n) ≥ Pr[PrivKeav

A′,Π′(n) = 1]

=
1

2
∗ Pr[A′ outputs 0|b = 0] +

1

2
∗ Pr[A′ outputs 1 ‖b = 1]

=
1

2
∗ Pr[Ahy(pk,Encaps

(1)
pk (1n, EncSKEk′ (m0)) = 0]

+
1

2
∗ Pr[Ahy(pk,Encaps

(1)
pk (1n,EncSKEk′ (m1)) = 1]

(11)

Proceeding exactly as we did to prove equation (10) , we can show that there is a negligible
function negl2 such that

1

2
+ negl2(n) ≥ Pr[KEMcpa

A2,Π
(n) = 1]

=
1

2
∗ Pr[A2 outputs 0 |b = 0] +

1

2
∗ Pr[A2 outputs 1|b = 1]

=
1

2
∗ Pr[Ahy(pk,Encaps

(1)
pk (1n,EncSKEk′ (m1)) = 1]

+
1

2
∗ Pr[Ahy(pk,Encaps

(1)
pk (1n,EncSKEk′ (m1)) = 0]

(12)

Summing the equations (10) , (11), (12) and using the fact that the sum of three negligible
functions is negligible , we see that there exists a negligible function negl such that

3

2
+ negl(n) ≥ 1

2
∗ (Pr[Ahy(pk, c,EncSKEk′ (m0)) = 0] + Pr[Ahy, c,EncSKEk′ (m0)) = 1]

+ Pr[Ahy(pk, c,EncSKEk′ (m0)) = 0] + Pr[Ahy(pk, c,EncSKEk′ (m1)) = 1]

+ Pr[Ahy(pk, c,EncSKEk′ (m0)) = 1] + Pr[Ahy(pk, c,EncSKEk′ (m1)) = 0])

(13)

where c = Encaps
(1)
pk (1n in all the above . Note that

Pr[Ahy(pk, c,EncSKEk′ (m0) = 1] + Pr[Ahy(pk, c,EncSKEk′ (m0) = 0] = 1,

since the probabilities of complementary events always sum to 1. Similarly ,

Pr[Ahy(pk, c,EncSKEk′ (m1) = 1] + Pr[Ahy(pk, c,EncSKEk′ (m1) = 0]) = 1,

Therefore ,

1

2
+ negl(n) ≥ 1

2
∗ (Pr[Ahy(pk, c,EncSKEk (m0) = 0] + Pr[Ahy(pk, c,EncSKEk (m1) = 1])

= Pr[PubKeav
Ahy,Πhy(n) = 1]

This completes the proof of the theorem.
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3 El Gamal like KEM

In the previous lecture we have seen the construction of El Gamal Encryption scheme based
on the DDH assumption. A variant of this is to use El Gamal encryption as a part of hybrid
encryption scheme. For example , the sender could choose a uniform group element m ∈ G,
encrypt this using a private-key encryption scheme and use hash of that element as the key.
However this is redundant since we know that in El Gamal encryption cx1 is indisinguishable
from a uniform group element , so the sender/receiver may as well use that .Such a resulting
encapsulation consists of only a single group element not two as in the case of El Gamal
encryption.The construction of an El Gamal like KEM is as follows :

Construction of El Gamal like KEM

• Gen : on input 1n , run G(1n ) to obtain (G, q, g), choose a uniform x ∈ Zq and
set h:= gx. Also specify a function H : G → {0,1}m. The public key is 〈 G, q, g,
h, H〉 and the private key is 〈 G, q, g, x 〉.

• Encaps : on input a public key pk = 〈 G, q, g, h, H〉 choose a uniform y ∈ Zq and
output a ciphertext gy and the key H(hy) = H(gxy) .

• Decaps : on input a private key sk = 〈 G, q, g, h, H〉 and a ciphertext c ∈ G ,
output the key H(cx) = H(gxy)

The El Gamal like KEM is an improvement over El Gamal because of two major ad-
vantages achieved . Firstly the ciphertext now contains only of a single element rather than
two as in the case of El Gamal . Secondly the computation is much less expensive than
El Gamal since now there is no need to choose m randomly and also hashing is used in El
Gamal like KEM in contrast to the multiplication used earlier in El Gamal.The security
of El Gamal was based on DDH assumption - We analogously define HDH assumption on
which El Gamal like KEM is based on.

Definition 3 HDH(Hash Diffie-Hellman) Assumption

HDH problem is hard relative to (G, o) and hash function H: G→ {0,1}m if for every PPT
A (it is hard to distinguish H(gxy) from a random string r from {0,1}m even given gx, gy.

|Pr[A(G, o, q, g, gx, gy,H(gxy)) = 1]− Pr[A(G, o, q, g, gx, gy, r) = 1]| ≤ negl().

HDH assumption is that there exists a group and a hash function H so that HDH is hard
relative to them. ♦

HDH is weaker than DDH but stronger than CDH when hash function is implemented using
known practical hash functions. Also, if the HDH assumption holds , then El Gamal like
KEM is CPA secure . The proof is a straightforward reduction and similar to the CPA
security proof of El Gamal based on DDH as seen in the previous lecture.
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4 CCA security in public-key setting

In the Chosen-Ciphertext attack , the adversary is able to obtain decryption of arbitrary
ciphertexts of its choice. These are more significant in the public key setting rather than
private key setting . In the private symmetric key setting , a receiver intends to communicate
only with a single known sender and the message encrypted with the secret key can only
originate from this sender with whom the secret key was shared. However in the public
key setting , a receiver might receive encrypted messaged from multiple sources unknown
in advance since they have access to the public key.Thus launching CCA attacks in public
key world is easier and CCA security of PKE s is a matter of high importance.

4.1 Security of PKE s against Chosen-Ciphertext Attacks

We define CCA security for public key setting analogous to the definition from private key
setting . Given a public key encryption scheme π and an adversary A , we define the public
key CCA indistinguishability experiment below.

The CCA indistinguishability experiment PubKccaA,Π(n) :

• Gen(1n) is run to obtain keys (pk,sk)

• The adversary A is given pk and access to decryption oracle Decsk(.). It outputs
a pair of messages m0 and m1 of the same length.

• A uniform bit b ∈ {0,1} is chosen, and then a ciphertext c ← Encpk(mb) is com-
puted and given to A.

• A continues to interact with the decryption oracle, but may not request a decryp-
tion of c itself. Finally , A outputs a bit b’.

• The output of the experiment is defined to be 1 if b’ = b , and 0 otherwise.

Definition 4 A public-key encryption scheme π = (Gen,Enc,Dec) has indistiguishable
encryptions under a chosen-ciphertext attack (or is CCA secure) if for all probabilistic
polynomial time adversaries A there exists a negligible function negl such that

Pr[PubKccaA,Π(n) = 1] ≤ 1

2
+ negl(n)

♦

4.2 An issue related to CCA attacks : Non - malleability

An issue that is closely related to CCA security is potential malleability of ciphertexts.

Definition 5 An encryption scheme (symmetric/asymmetric) is malleable if it has the
following property - Given an encryption c of some unknown message m , it is possible to
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come up with a ciphertext c’ that is an encryption of a message m’ that is related in some
known way to m. ♦

For example, perhaps given an encryption of m, it is possible to construct an encryption of
2m. It is clear from the definition of malleability that a scheme is CCA secure iff it is non
malleable . This follows from the fact that if the scheme is malleable , the adversary in the
CCA game on receiving the challenge ciphertext c∗ ← Enc(mb) can query the decryption
oracle on c’ ← Enc(f(mb)) and obtain f(mb). A real-life scenario of the use of malleability
to launch an attack is as follows : Consider an e-auction among two bidders A and B who
submit their bids by encrypting using a public key of R who is running the auction. If a
malleable encryption scheme is used , it may be possible for the bidder A to always place
the highest bid ( without bidding the maximum) by carrying out the following attack -
A waits till B submits the ciphertext c corresponding to his/her bid m (unknown to A) .
Then A will now send a cipherext c’ corresponding to the bid m’ = 2m. m is still unknown
to A but using the malleability property of the scheme , A is guaranteed to win. CCA
secure schemes are not vulnerable to such attacks. The El Gamal scheme that we have seen
is malleable and thus not CCA secure. This is because , once we are given an El Gamal
encryption (c1,c2) of m under the public key h , the adversary can easily come up with the
ciphertext c’ corresponding to 2m which is nothing but (c1,2c2)

4.3 CCA Multi-message security

We define CCA Multi-message security for public key setting similar to single message CCA
security. The only difference is that a vector of messages are communicated rather than a
single message. Given a public key encryption scheme π and an adversary A , we define the
public key CCA-multiple indistinguishability experiment.

The CCA indistinguishability experiment PubKcca−mult
A,Π (n) :

• Gen(1n) is run to obtain keys (pk,sk)

• The adversary A is given pk and access to decryption oracle Decsk(.) which returns
the plaintext message vector corresponding to the ciphertext vector queried. Then
the adversary outputs a pair of message vectors m0,t and m1,t of the same length
where t is the number of messages in a vector.

• A uniform bit b ∈ {0,1} is chosen, and then a ciphertext c ← Encpk(mb,t) is
computed and given to A.

• A continues to interact with the decryption oracle, but may not request a decryp-
tion of c itself. Finally , A outputs a bit b’.

• The output of the experiment is defined to be 1 if b’ = b , and 0 otherwise.

Definition 6 A public-key encryption scheme π = (Gen,Enc,Dec) has indistiguishable
multiple encryptions under a chosen-ciphertext attack ( or is CCA-mult secure) if for all
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probabilistic polynomial time adversaries A there exists a negligible function negl such that

Pr[PubKcca−mult
A,Π (n) = 1] ≤ 1

2
+ negl(n)

♦

Theorem 2 If a public-key encryption scheme π is CCA-secure, then it also has indistin-
guishable multiple encryptions under a chosen-ciphertext attack.

The proof uses hybrid argument and is similar to the one seen in the previous lecture for
the analogous theorem for CPA security.

We now know that single-message CCA security implies multi-message CCA security. Let
us now look at how to construct a CCA secure PKE for long message given a CCA secure
scheme π for a single bit/small message.

Figure 4: Trivial construction of PKE for long message

Consider the trivial construction π’ as shown in which the long message is divided into blocks
of fixed length and the ciphertext corresponding to each block is computed using π. This
scheme is not CCA secure since the adversary can take the decryption oracle service and get
the message corresponding to the ciphertext. Now truncation will give a valid ciphertext
which can be used by the adversary to win the CCA game. Thus constructing CCA secure
PKE for long message is not trivial and this construction can be seen in the following paper
- Steven Myers, Abhi Shelat: Bit Encryption Is Complete. FOCS 2009: 607-616

4.4 CCA security of Hybrid Encryption using KEM

We have seen that the Hybrid πHyb of a CPA-secure KEM π and a COA-secure SKE πSKE

is a CPA-secure PKE. Let us look at the conditions needed for CCA security of the hybrid
scheme . Suppose πSKE is malleable like in the case of PRG/PRF scheme . Then the
ciphertext output by the hybrid scheme is say of the form (c , G(k) ⊕ m ) where c is
the KEM ciphertext and G(k) ⊕ m is the SKE ciphertext where G is the PRF/PRG used
in private key encryption scheme. Clearly the hybrid scheme is also malleable since the
adversary can come up with a valid ciphertext easily . Thus πSKE should be CCA secure.
Also , π should be CCA secure as well for the hybrid scheme to be CCA secure.We state
the following theorem without proof
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Theorem 3 If π is CCA-secure KEM and πSKE is a CCA-secure PKE , then πHyb is a
CCA secure public-key encryption scheme.

This theorem only highlights the sufficient conditions for a CCA hybrid encryption. Please
note that these conditions may not be necessary for a hybrid encryption to be CCA secure.
It is known that CCA secure SKE is a must for the hybrid scheme to be secure , but weaker
than CCA secure KEM may also result in a CCA secure hybrid encryption scheme.

10-13


