
CSA E0 235: Cryptography (01/04/2015)

Lecture #10

Instructor: Arpita Patra Submitted by: Pradeep Kudikala(#11404)

In previous lecture, we have seen the notion public-key encryption scheme, the equiva-
lence between COA-Security(distinguishable encryptions in the presence of an eavesdropper)
and CPA security and El Gamal Encryption Scheme for CPA-secure PKE. Today we see
a more efficient notion of security called Hybrid Encryption, combination of Public key
encryption(PKE) and private key encryption(SKE).

Outline

• Hybrid Encryption (PKE from PKE + SKE with almost the same efficiency of SKE)

• Key Encapsulation Mechanism (KEM) (Similar to PKE CPA Security)

• CPA-secure KEM + COA-secure SKE ⇒ CPA-secure PKE

• CPA-secure KEM from HDH Assumption (Similar to DDH assumption)

• CCA Security for PKE

• Single message CCA ⇒ Multi message CCA

• CCA KEM

• CCA KEM + CCA SKE ⇒ CCA PKE (Hybrid encryption)

1 Need for Hybrid Encryption

As we have seen PKE is computationally expensive and cipher text length is increased sig-
nificantly. Whereas PKE is significantly faster and has lower cipher text expansion which
asks for shared key assumption.
It is possible to construct a better efficient encryption scheme by using private-key en-
cryption in tandem with public-key encryption.The resulting combination is called hybrid
encryption and is used extensively in practice.
The basic idea (shown in Figure 1) is to use public-key encryption to obtain a shared key
k, and then encrypt the message m using a private-key encryption scheme and key k. The
receiver can use its private key to derive k, and then uses private-key decryption (with key
k) to recover the plain message.
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Figure 1. Hybrid encryption. Enc - PKE, Enc
′

- SKE

Advantage of Hybrid encryption
Let α, β be the cost of encrypting 1 bit message using PKE,SKE. α is orders of magnitude
greater the β.
The cost of encrypting 1 bit message using Hybrid Encryption is

nα+ |m|β
|m|

=
nα

|m|
+ β

where n is the key length and |m| is message length. The above expression approaches β for
sufficiently long m, same as the cost per bit of the private-key scheme. Hybrid encryption
thus allows us to achieve the functionality of public-key encryption at the efficiency of
private-key encryption, at least for sufficiently long messages.

2 Key-Encapsulation Mechanism

In the above implementation the sender would share k by

1. choosing a uniform value k

2. encrypting k using a public-key encryption scheme

Instead we can use a more direct approach called key-encapsulation mechanism(KEM) to
accomplish both of these ”in one shot.”.
We define KEM as follows:

DEFINITION 1 A key-encapsulation mechanism (KEM) is a tuple of probabilistic
polynomial-time algorithms (Gen, Encaps, Decaps) such that:

1. Gen: The key-generation algorithm takes input the security parameter 1n and outputs
a public-/private-key pair (pk, sk).
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2. Encaps: The encapsulation algorithm input a public key pk, security parameter 1n.
It outputs a ciphertext c and a key k ∈ {0, 1}n where l(n) is the key length. We write
this as (c, k)← Encapspk(1n).

3. Decaps: The deterministic decapsulation algorithm takes as input a private key sk
and a ciphertext c, and outputs a uniform key k or a special symbol ⊥ denoting failure.
We write this as k := Decapssk(c).

It is required that with all but negligible probability over (sk, pk) output by Gen(1n), if
Encapspk(1n) outputs (c,k) then Decapssk(c) outputs k.

Note∗∗: Any public-key encryption scheme trivially gives a KEM by choosing a random
key k and encrypting it. However, construction KEMs can be more efficient.

2.1 Hybrid encryption using the KEM/DEM

As shown in the Figure 2 sender runs Encapspk(1n) to obtain c along with a key k; sender
then uses a private-key encryption scheme(called data-encapsulation mechanism - DEM in
this context) to encrypt its message m as c

′
, using k as the key.

Figure 2. Hybrid encryption using KEM/DEM

The Decryption at the receiver end is followed in similar lines. Here we give the formal
specification:

CONSTRUCTION 1
Let Π = (Gen, Encaps, Decaps) be a KEM with key length n, and let Πpk = (Genpk, Encpk, Decpk)
be a private-key encryption scheme. Construct a public-key encryption scheme Πhy =
(Genhy, Enchy, Dechy) as follows:

1. Genhy: on input 1n run Gen(1n) and use the public and private keys (pk,sk) that are
output.

2. Enchy: on input a public key pk and a message m 0, 1 do:
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(a) Compute (c, k)← Encapspk(1n).

(b) Compute c← Encpkk (m).

(c) Output the ciphertext 〈c, c′〉.

3. Dechy:on input a private key sk and a ciphertext 〈c, c′〉 do:

(a) Compute k := Decapssk(c).

(b) Output the message m := Decpkk (c).

Security of Πhy:

• Π is a CPA-secure KEM and Πpk has indistinguishable encryptions in the presence of
an eavesdropper, then Πhy is a CPA-secure public-key encryption scheme. Here we
only need weaker definition of security(indistinguishable encryptions). The reason is
that a fresh, uniform key k is chosen each time a new message is encrypted. Since
each key k is used only once, indistinguishability of a single encryption of Πpk suffices
for security of the hybrid scheme Πhy.

• If Π is a CCA-secure KEM and Πpk is a CCA-secure private-key encryption scheme,
then Πhy is a CCA-secure public-key encryption scheme.

3 CPA-Security in Public Key World

3.1 CPA-Security of KEM

Let Π = (Gen,Encaps,Decaps) be a KEM and A an arbitrary adversary. The CPA
indistinguishability experiment KEM cpa

A,Π(n):

• keys = (pk, sk)← Gen(1n), Then (c, k)← Encapspk(1n), k ∈ {0, 1}n

• A uniform bit b ∈ {0, 1} is chosen. If b = 0 set k̂ := k. If b = 1 then chose a uniform
k̂ ∈ {0, 1}n.

• Give (pk, c, k̂) to A, who outputs a bit b
′
. The output of the experiment is defined to

be 1 if b
′

= b, and 0 otherwise.

In the above experiment, A is given the ciphertext c and either the actual key k correspond-
ing to c, or an independent, uniform key. The KEM is CPA-secure if no efficient adversary
can distinguish between these possibilities.

DEFINITION 2: CPA-Security of KEM.
A key-encapsulation mechanism Π is CPA-secure if for all PPT adversaries A there exists
a negligible function negl(.) such that

Pr[KEM cpa
A,Π(n) = 1] ≤ 1

2
+ negl(n).
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3.2 CPA-Security Hybrid Encryption

Theorem 1. If Π is a CPA-secure KEM and Πpk is a private-key encryption scheme that
has indistinguishable encryptions in the presence of an eavesdropper, then Πhy as in Con-
struction 1 is a CPA-secure public-key encryption scheme.

Fix an arbitrary PPT adversary Ahy, and consider experiment PubKeav
Ahy ,Πhy(n). Our goal

is to prove that there is a negligible function negl such that Before proving the theorem, we
recollect the proposition:

PROPOSITION 1 If a public-key encryption scheme has indistin- guishable encryp-
tions in the presence of an eavesdropper, it is CPA-secure.

Proof We prove that Πhy has indistinguishable encryptions in the presence of an eaves-
dropper; by above Proposition, this implies it is CPA-secure.

Fix an arbitrary ppt adversary Ahy , and consider experiment PubKeav
Ahy ,Πhy(n). We

prove that there is a negligible function negl(.) such that

Pr[PubKeav
Ahy ,Πhy(n) = 1] ≤ 1

2
+ negl(n).

By definition of the experiment, we have
Pr[PubKeav

Ahy ,Πhy(n) = 1]

= 1
2 · Pr[A

hy(pk,Encaps
(1)
pk (1n), Enc

′
(m0)) = 0]

+ 1
2 ·Pr[A

hy(pk,Encaps
(1)
pk (1n), Enc

′
(m1)) = 1] . . . [3.1]

where in each case k equals Encaps
(2)
pk (1n). Consider the following PPT adversary AΠ

1

attacking Π. (Encaps
(1)
pk (1n), Encaps

(2)
pk (1n) denote the ciphertext(resp., key) output by

Encaps.)

Adversary AΠ
1 :

1. AΠ
1 is given (pk, c, k̂).

2. AΠ
1 runs Ahy(pk) to obtain two messages mo,m1. Then AΠ

1 computes c
′ ← Enc

′

k̂
(m0),

gives ciphertext 〈c, c′〉 Ahy , and outputs the bit b
′

that Ahy outputs.

Consider the behavior of AΠ
1 when attacking Π in experiment KEM cpa

AΠ
1 ,Π

(n).

When b = 0 in that experiment, then AΠ
1 is given (pk, c, k̂) where c and k̂ were both

outputs by Encapspk(1n). This means that Ahy is given a ciphertext of the form 〈c, c′〉 =
〈c, Enc′k(m0)〉, where k is the key encapsulated by c. So,

Pr[AΠ
1 outputs 0|b = 0] = Pr[Ahy(pk,Encaps

(1)
pk (1n), Enc

′
k(m0)) = 0].

On the other hand, when b = 1 in experiment KEM cpa

AΠ
1 ,Π

then AΠ
1 is given (pk, c, k̂) with

k̂ uniform and independent of c. If we denote such a key by k
′
, his means Ahy is given a
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ciphertext of the form 〈c, Enc′
k′

(m0)〉, and

Pr[AΠ
1 outputs 1|b = 1] = Pr[Ahy(pk,Encaps

(1)
pk (1n), Enc

′

k′
(m0)) = 1].

Since Π is a CPA-secure KEM, there is a negligible function negl1 such that

1
2 + negl1(n) ≥ Pr[KEM cpa

AΠ
1 ,Π

(n) = 1]

= 1
2 · Pr[A

Π
1 outputs 0|b = 0] + 1

2 · Pr[A
Π
1 outputs 1|b = 1]

= 1
2 · Pr[A

hy(pk,Encaps
(1)
pk (1n), Enc

′
k(m0)) = 0]

+ 1
2 · Pr[A

hy(pk,Encaps
(1)
pk (1n), Enc

′

k′
(m0)) = 1] . . . [3.2]

where k is equal to Encalps
(2)
pk (1n) and k

′
is a uniform and independent key.

Next, consider the following PPT adversary Apk that eavesdrops on a message encrypted
using the private-key scheme Πpk .
Adversary Apk:

1. Apk(1n) runs Gen(1n) on its own to generate keys (pk, sk). It also computes c ←
Encaps

(1)
pk (1n).

2. Apk runs Ahy(pk) to obtain two messages m0,m1. These are output by Apk, and it is
given in return a ciphertext c

′
.

3. Apk gives the ciphertext 〈c, c′〉 to Ahy, and outputs the bit b
′

that Ahy outputs.

When b = 0 in experiment PrivKeav
Apk,Πpk(n), adversary Apk is given a ciphertext c

′
which is

an encryption of m0 using a key k
′
that is uniform and independent of anything else. So Ahy

s given a ciphertext of the form 〈c, Encpk
k′

(m0)〉 where k
′
is uniform and independent of c, and

Pr[Apk outputs 0|b = 0] = Pr[Ahy(pk,Encaps
(1)
pk (1n), Enc

′

k′
(m0)) = 0].

On the other hand, when b = 1 in experiment PrivKeav
Apk,Πpk(n) then Apk is given an en-

cryption of m1 using a uniform, independent key k
′

This means Ahy is given a ciphertext
of the form 〈c, Encpk

k′
(m1)〉 and also

Pr[Apk outputs 1|b = 1] = Pr[Ahy(pk,Encaps
(1)
pk (1n), Enc

′

k′
(m1)) = 1].

Since Πpk has indistinguishable encryptions in the presence of an eavesdropper, there is a
negligible function neglpk such that

1
2 + neglpk(n) ≥ Pr[PrivKeav

Apk,Πpk(n) = 1]

= 1
2 · Pr[A

pk outputs 0|b = 0] + 1
2 · Pr[A

pk outputs 1|b = 1]
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= 1
2 · Pr[A

hy(pk,Encaps
(1)
pk (1n), Enc

′

k′
(m0)) = 0]

+ 1
2 · Pr[A

hy(pk,Encaps
(1)
pk (1n), Enc

′

k′
(m0)) = 1] . . . [3.3]

Proceeding exactly as we did to prove Equation (3.2), we can show that there is a neg-
ligible function negl2 such that

1
2 + negl2(n) ≥ Pr[KEM cpa

AΠ
2 ,Π

(n) = 1]

= 1
2 · Pr[A

Π
2 outputs 0|b = 0] + 1

2 · Pr[A
Π
2 outputs 1|b = 1]

= 1
2 · Pr[A

hy(pk,Encaps
(1)
pk (1n), Enc

′
k(m0)) = 0]

+ 1
2 · Pr[A

hy(pk,Encaps
(1)
pk (1n), Enc

′

k′
(m0)) = 1] . . . [3.4]

Summing Equations [3.2]− [3.4] and using the fact that the sum of three negligible functions
is negligible, we see there exists a negligible function negl such that

3
2 + negl(n) ≥

1
2 · (Pr[A

hy(pk, c, Enc
′
k(m0)) = 0] + Pr[Ahy(pk, c, Enc

′

k′
(m0)) = 1]

+ Pr[Ahy(pk, c, Enc
′

k′
(m0)) = 0] + Pr[Ahy(pk, c, Enc

′

k′
(m1)) = 1]

+ Pr[Ahy(pk, c, Enc
′
k(m1)) = 1] + Pr[Ahy(pk, c, Enc

′

k′
(m1)) = 0])

where c = Encaps
(1)
pk (1n) in all the above. Note that

Pr[Ahy(pk, c, Enc
′

k′
(m0)) = 1] + Pr[Ahy(pk, c, Enc

′

k′
(m0)) = 0] = 1,

since the probabilities of complementary events always sum to 1. Similarly,

Pr[Ahy(pk, c, Enc
′

k′
(m1)) = 1] + Pr[Ahy(pk, c, Enc

′

k′
(m1)) = 0] = 1.

Therefore,

1
2 + negl(n) ≥ 1

2 · (Pr[A
hy(pk, c, Enc

′
k(m0)) = 0] + Pr[Ahy(pk, c, Enc

′
k(m1)) = 1])

= Pr[PubKeav
Ahy ,Πhy(1n) = 1]

(using Equation [3.1] for the last equality), proving the theorem.
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4 “El Gamal-Like” KEM

El Gamal encryption discussed in earlier lectures can be used as part of a hybrid encryption
scheme by simply encrypting a uniform group element m and using a hash of that element
as a key.But this is not necessary! The proof of security for El Gamal encryption shows
that cx1(where c1 is the first component of the ciphertext, and x is the private key of the
receiver) is already indistinguishable from a uniform group element, so the sender/receiver
may as well use that. Construction 2 illustrates the KEM that follows this approach.
Note that the resulting encapsulation consists of just a single group element. In contrast,
if we were to use El Gamal encryption of a uniform group element, the ciphertext would
contain two group elements.

CONSTRUCTION 2 Let G be a polynomial-time algorithm that takes as input
1n and (except possibly with negligible probability) outputs a description of a cyclic group
G, its order q (with ‖q‖ = n ),and a generator g. Define a KEM as follows:

• Gen: on input 1n run G(1n) to obtain (G, q, g). choose a uniform x ∈ zp and set
h := gx. Also specify hash function H : G→ {0, 1}m. The public key is 〈G, q, g, h,H〉
and The private key is 〈G, q, g, x〉

• Encaps: on input a public key pk = 〈G, q, g, h,H〉 choose a uniform y ∈ Zp and
output the ciphertext gx and the key H(hy)

• Decaps: and output the ciphertext sk = 〈G, q, g, x〉 and a ciphertext c ∈ G, output
the key H(cx)

HDH(Hash Diffie-Hellman) Assumtion
HDH problem is hard relative to (G, o) and hash function H : G → {0, 1}m if for

every PPT A it is hard to distinguish H(gxy) from a random string r ∈ {0, 1}m even given
gx, gy.

Pr[A(G, o, q, g, gx, gy, H(gxy)) = 1]− Pr[A(G, o, q, g, gx, gy, r) = 1] ≤ negl()

HDH assumption is that there exists a group and hash function H so that HDH is hard
relative to them. It is weaker than DDH but stronger than CDH when Hash function is
implemented using known practical hash functions.

Theorem 2 If HDH assumption is hard the the scheme in construction 2 is CPA-
Secure KEM.
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5 CCA-Security in Public Key World

We had already seen the equivalence between CPA-Security and indistinguishability in pres-
ence of eavesdropper. Unlike the above two notions of security CCA attacks which have
access to decryptio oracle are more powerfull than CPA attack

Launching the CCA Attacks in public key world is relatively easier than the private key
world. In the symmetric-key setting, a message encrypted with the (secret) key k can origi-
nate only from a source who has the key k where as in the public-key world, an entity can
receive encrypted messages from multiple sources who knows the public key for that entity

If the private-key encryption scheme Πpk is not itself secure against chosen-ciphertext at-
tacks, then (regardless of the KEM used) neither is the resulting hybrid encryption scheme
Πhy . If underlying Πpk is not CCA-Secure then given 〈c, c′〉 the output of Enchy, where

c
′ ← Encpkk (m) as shown in the construction 1, an attacker can modify c

′
(which is an en-

cryption of an unknown message) such that modified ciphertext. Attacker can now ask for
decryption of modified cipher text which decrypts to m

′
= f(m). for some known function

f. This is called Malleability.

Note∗∗ If an encryption scheme is CCA-secure then its non-malleable and vice versa.
El Gamal Encryption scheme is malleable, Given El Gamal encryption (c1, c2) of m under
the public key h, an adversary can give encryption of 2m just by multiplying c2 by 2.

Hence we need a CCA-Secure private-key encryption scheme. But this is clearly not enough
if the KEM is susceptible to chosen-ciphertext attacks. We now define the notion of se-
curity of KEM against cca attacks. In Definition 2 we defined the CPA-security of KEM.
Now, we additionally allow the attacker to request decapsulation of ciphertexts of its choice.

Let Π = (Gen,Encaps,Decaps) be a KEM with key length n and A an adversary, and
consider the following experiment:

The CCA indistinguishability experiment KEM cca
A,Π(n) :

1. Gen(1n) is run to obtain keys (pk, sk). Then Encapspk(1n) is run to generate (c, k)
with k ∈ {0, 1}n.

2. A uniform bit b ∈ {0, 1} is chosen. If b = 0 set k̂ := k. If b = 1 then choose a uniform
k̂ ∈ {0, 1}n.

3. A is given (pk, c, k̂) and access to an oracle Decapssk(.), but may not request decap-
sulation of c itself.

4. A outputs a bit b
′
. The output of the experiment is defined to be 1 if b

′
= b, and 0

otherwise.
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DEFINITION 3 A key-encapsulation mechanism Π is CCA-secure if for all PPT
adversaries A there is a negligible function negl such that

Pr[KEM cca
A,Π(n) = 1] ≤ 1

2
+ negl(n).

We can show that using a CCA-secure KEM in combination with a CCA-secure private-
key encryption scheme results in a public-key encryption scheme secure against chosen-
ciphertext attacks.

Theorem 3 If Π is a CCA-secure KEM and Πpk is a CCA-secure private-key en-
cryption scheme, then Πhy as in Construction 1 is a CCA- secure public-key encryption
scheme.

A proof can be obtained by suitable modification of the proof of Theorem 1.

Additional Points

1. CCA Multi-message Security. We can define an Experiment PubKcca−multi
A,Π by

extending the PubKcca
A,Π in similar lines of PrivKcca

A,Πpk which we have seen in the
earlier lectures of this course. We define the scheme Π as CCA-Secure if for any PPT
adversary A there exist negligible function negl(n) such that

Pr[PubKcca−multi
A,Π (n) = 1] ≤ 1

2
+ negl(n)

2. Any single message CCA-Secure scheme is also a multi-message CCA-Secure Encryp-
tion scheme and vice versa. To prove the above claim, we can use a variation of Hybrid
arguments used in the proof of CPA security in this lecture.

3. Given CCA secure scheme Π for bit/small messages, construction of CCA-secure PKE
for long message is possbile. A very non-trivial construction described in the paper
Bit Encryption Is Complete. FOCS 2009: 607-616. by Steven Myers, Abhi Shelat.

4. CCA Security of KEM and CCA Security of Private Key Encryptions(SKE) scheme is
Sufficient but not necessary for CCA Secure Hybrid Encryption scheme. In fact there
are some constructions of CCA secure Hybrid Encryptions from weaker CCA-Secure
KEM and CCA-secure SKE.
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