
CSA E0 235: Cryptography 12 Apr 2015

Lecture 12

Instructor: Arpita Patra Submitted by: Niranjan Singh

Digital Signatures

In the public-key setting, digital signature is used to provide Integrity (or authenticity). It
allows a signer who has established a public key pk to sign a message using the associated
private key sk in such a way that anyone who knows pk (and knows that this public key
was established by S) can verify that the message originated from S and was not modified
in transit.

The pair (pk, sk) plays different roles in digital signatures and public key encryption.
Digital signatures use sk for signing (the later one uses pk for encryption) and pk for
verification (the later one uses sk for decryption). Digital signatures are often mistakenly
viewed as the inverse of public-key encryption, with the roles of the sender and receiver
interchanged. It was also suggested that digital signatures can be obtained by reversing
public-key encryption. But, in most cases it is simply inapplicable, and if applicable it
results in insecure signature schemes. Also, unlike public key encryption, digital signature
can be constructed just based on the Hash function or a one-way function.

1 Definitions

Definition 1 A triple Π = (Gen, Sign, V rfy) is a Digital Signature Scheme, such that

1. The key generation algorithm Gen(1n) generate a pair of keys (sk, pk) called private
key and public key, respectively. The length of these keys is at least n, and this n can
be determined from any of these keys.

2. The signing algorithm Sign takes private key sk and a message m from some message
space as input and outputs a signature σ, can be written as σ ← Signsk(m).

3. The deterministic verification algorithm Vrfy takes a public key pk, a message m, and
a signature σ as input and outputs a bit b, with b = 1 meaning valid and b = 0
meaning invalid, can be written as b = V rfypk(m,σ).

♦

It is required that except with negligible probability over (pk, sk) output by Gen(1n), it is
required that,

V rfypk(m,Signsk(m)) = 1

Security of digital signatures : A forgery is a message m with a valid signature σ for a
pk generated by S, where m was not signed by S. So, for digital signature to be secure the

12-1



adversary should not be able to output a forgery even if it has the signatures of some of the
messages of his choice.

Consider the scheme Π = (Gen, Sign, V rfy) with following experiment for an adversary
A and parameter n,
The signature experiment Sign− forgeA,Π(n) :

1. The key pair (sk, pk) is produced by Gen(1n).

2. The adversary A has an access to oracle Signsk(.) with public key pk. A does Q
queries to this oracle and outputs (m,σ).

3. A succeeds iff V rfypk(m,σ) = 1 and m /∈ Q.

Definition 2 A signature scheme Π = (Gen, Sign, V rfy) is existentially unforgeable under
an adaptive chosen-message attack, if for all probabilistic polynomial-time adversaries A,
there is a negligible function negl() such that:

Pr[Sig − forgeA,Π(n) = 1] ≤ negl(n).

♦

2 Digital Signature vs. MAC

Digital signature and message authentication codes both are used for integrity assurance of
messages. In MAC, the sender has to establish a secret key with each receiver and compute
corresponding tag for each key, whereas a single signature works for all recipients. So, by
using digital signatures rather than MAC simplifies the key distribution and management,
specially in case of multiple receivers.

A major advantage of digital signatures over MAC is public verifiability of signatures.
If a receiver verifies a signature to be legitimate, then all other parties who received the
same message will also verify it as legitimate. But, this can not be done with MAC.

A signature σ by a signer S of message m can be shown to a third party which verifies
that σ is a legitimate signature from S. It can then make a copy of σ and show it to some
other party and convince that about the authentication of m. Thus, public verifiability also
implies transferability.

Digital signatures also provide non-repudiation. It means that once S has signed a
message he cannot deny it, as the public key is available to all and anyone can verify. But
this is not the case with MAC. To see this, consider that S and R has shared a key kSR.
so, when S sends a pair (m, t) to R, there is no way for a judge J to verify that t is valid
or not, as he does not know kSR. Even if R shares kSR with J, it still don’t know that it is
actual key shared between S and R or some fake key generated by R.

MAC’s are shorter and roughly 2−3 orders of magnitude more efficient to generate/verify
than digital signatures. So, when public verifiability, transferability, non-repudiation are not
needed and sender works with a single receiver, MAC has to be used.

MAC’s are more suitable for closed environments like universities, private companies,
etc. Whereas, digital signatures are more suitable for open environments like Internet.

Also, digital signatures relies on the fact that public key can be sent to the verifiers in
an authenticated manner and requires some way to ensure this.

12-2



3 Digital Certificates and Public-key Infrastructure (PKI)

Public key cryptography can be used successfully once the public keys are distributed suc-
cessfully. Thus, it requires a secure distribution of public keys. The public-key cryptography
itself can be used to securely distribute public keys. Once a single public key, belonging to
a trusted party, is distributed securely, that key can be used to bootstrap the secure distri-
bution of arbitrarily many other public keys. Thus, the problem of secure key distribution
need only be solved once. And digital signatures are used for this purpose.

Digital Certificate is simply a signature binding an entity to some public key and
used to prove the ownership of the public key. To see this, consider a party T has generated
a key-pair (pkT , skT ), and a party S has generated a key-pair (pkS , skS) for a secure digital
signature scheme, and T knows that pkS is the public key of S. Then, T can compute the
signature as,

certT→S = SignskT (pkS is public key of S)

and give the signature to S. certT→S is the certificate of public key of S issued by T.
Now, let S wants to communicate with a party R who already know pkT . Then, S can

send (pkS , certT→S) to R, who can verify that the signature certT→S is valid on the message
”pkS is public key of S” w.r.t. pkT . If the verification is successful than R knows that T has
signed the indicated message, and if he trusts T then he can accept pkS as the public key
of S. If an active adversary interferes with the transmission of (pkS , certT→S), he would not
be able to generate a valid certificate linking S to any other public key pk

′
S unless T had

previously signed some other certificate linking S with pk
′
S , that again is not much like an

attack. All of this in based on assumption that T is honest and pkT is not compromised.
In order for R to learn pkT ; T to be sure that pkS is public key of S; and R trusting T,

a public-key infrastructure (PKI) is required that enables the widespread distribution of
public keys. Some of the PKI’s are discussed.

3.1 A single certificate authority

The simplest PKI assumes a single certificate authority (CA) who is completely trusted by
everybody and who issues certificates for everyone’s public key. CA is typically a company
whose business it is to certify public keys, a government agency, or perhaps a department
within an organization (only be used by people within the organization). A common way
for a CA to distribute its public key in practice is to bundle this public key with some other
software. For example, this occurs today in many popular web browsers as, a CAs public
key is provided together with the browser, and the browser is programmed to automatically
verify certificates as they arrive.

3.2 Multiple certificate authority

Outside a single organization it is unlikely for everyone to trust the same CA. Also, the CA
is a single point of failure for the entire system. If the CA is corrupt, or can be bribed the
legitimacy of issued certificates may be called into question. It is also inconvenient for all
parties who want certificates to have to contact this CA.

12-3



This issue can be taken care using multiple CA’s. A party who wants to obtain a
certificate on his public key can choose which CA(s) it wants to issue a certificate, and a
party who is presented with a certificate, or even multiple certificates issued by different
CAs, can choose which CAs certificates to trusts. These CA’s validates each others keys
regularly after a particular period.

3.3 Transport Layer Security(TLS) protocol

TLS protocol that is used extensively to secure communication over the web. TLS is the
protocol used by the browser any time we connect to a website using https rather than
http. TLS allows a client (e.g., a web browser) and a server (e.g., a website) to agree on a
set of shared keys and then to use those keys to encrypt and authenticate their subsequent
communication. It consists of two parts: a handshake protocol that performs authenticated
key exchange to establish the shared keys, and a record-layer protocol that uses those shared
keys to encrypt/authenticate the parties communication. Although TLS allows for clients
to authenticate to servers, it is primarily used only for authentication of servers to clients
because only servers typically have certificates.

3.3.1 Handshake protocol

Let the client C has a set of CA’s public keys {pk1, pk2, . . . , pkn}, the server S has a pair
(pkS , skS) along with a certificate certi→S issued by one of the CAs whose public key C
knows. To communicate with S, parties takes the following steps,

1. C sends a message to S specifying the information about the versions of protocols
supported by client, the ciphersuites supported by the client like which hash functions
or block ciphers the client allows, and a uniform nonce NC .

2. S replies with selecting the latest version of the protocol it supports and an appropriate
ciphersuite. It also sends its public key pkS , its certificate certi→S , and its own uniform
value NS .

3. C verifies the certificate. If successful, it runs (c, pmk)← EncapspkS (1n) to obtain a
ciphertext and a pre-master key pmk. This pmk is then used to derive a master key
mk using a key-derivation function applied to pmk, NC , and NS . Then, C applies
a pseudorandom generator to mk to derive four keys kC , k

′
C , kS , k

′
S . After that, C

computes τC ←Macmk(transcript), where transcript denotes all messages exchanged
between C and S so far. Then, this τC is send to S.

4. S computes pmk = DecapsskS (c), and derives mk and kC , k
′
C , kS , k

′
S from it just

like the client did. If V rfy(transcript, τC) 6= 1, then S aborts. Otherwise, it sets
τS ←Macmk(transcript

′
), where transcript

′
denotes all messages exchanged between

C and S so far, including last message sent by C. Then, τS is send to C.

5. If V rfymk(transcript
′
, τS) 6= 1, client aborts.

At the end of successful execution C and S shares four symmetric keys kC , k
′
C , kS , k

′
S . The

intuition behind security of the handshake protocol is that since C verifies the certificate, it

12-4



knows that only the legitimate server S can learn pmk and hence mk. Thus, if the protocol
terminates successfully, C knows that it shares keys with the legitimate S.

3.3.2 Record-layer Protocol

After successfully getting the keys kC , k
′
C , kS , k

′
S , these keys are used for all further com-

munication. C uses kC and k
′
C for encryption and authentication, and S uses kS and k

′
S for

encryption and authentication. Also, sequence numbers are used to prevent replay attacks.

12-5


