
CSA E0 235: Cryptography (Chalk and Talk-2) January 22, 2016

OTP Implementation Details and Cryptanalysis of Reusing Key

Instructor: Arpita Patra Submitted by: Sruthi Sekar

1 Brief Overview Of the talk

We begin by recalling the One Time Pad scheme (Vernam Cipher). The scheme Π =
(Gen(),Enc(),Dec()) is as given below:

Figure 1: Vernam Cipher

Correctness: Deck(Enck(m)) = m
Perfect Security: For every distribution over M, every message m ∈ M and every

cipher text c ∈ C, the a priori probability and the posteriori probability are equal, i.e.,
Pr[M = m|C = c] = Pr[M = m].

We now see the following:

• Implementing OTP for plain text in English language: This involves convert-
ing the text into ASCII and performing XOR on the corresponding binary represen-
tation of the key and the message. The output is again converted to plaintext.

• Breaking the OTP when the same key is used to encrypt two different
messages: This is one of the drawbacks of Vernam Cipher, and hence the name One
time Pad. This involves frequency analysis using certain redundancies in the English
language. There are essentially two steps involved in this, which will be discussed.

2 Implementing OTP

2.1 Hex and ASCII

Before explaining the implementation, we see the standard conversion from string to hex-
adecimal representation and then from hex to binary. The following table gives the standard
hexadecimal representations of English characters, including letters, space, punctuations,
numbers and others. Also, the conversion from hex to binary is given.

[Lecture 5] -1



Figure 2: ASCII Table

When a plain-text english message is chosen to be encrypted, it is first converted in a hex-
adecimal string to be stored. In order to perform bitwise XOR, we refer to corresponding
binary representations shown in Figure 2. For example:
‘Asc’ in hex is: 417363 (See the table)
and in binary: 010000010111001101100011

2.2 Actual implementation

Now, knowing how to get the binary representations, we perform the following steps. These
have been implemented in python.

• Message: The message is accepted in string format (English text). This is stored as
a hexadecimal string to be extracted later.

• Key Generation: We need to generate a uniformly random key, with length same
as the message length. This is done using a feature in programming called Crypto
libraries. Although not purely random, but for implementation purposes, it suffices.
It is important that every message is encrypted with a unique key. As seen in later
section, key reusing breaks the security of the Vernam cipher.

• Encryption Algorithm: This takes in two arguments, the message m, and the key

[Lecture 5] -2



k, and outputs the XOR of the binary representations of these. For example:

4865⊕ 146e = 0100100001100101⊕ 0001010001101110 = 0101110000001011 = 5c0b

• Decryption Algorithm: This takes two arguments, the cipher text c, the key k and
outputs the XOR of binary representations of c and k and gives m.

• Verifying Correctness: In the final step we verify the correctness of the scheme.

A screen shot of a single implementation of the algorithm is shown below in Figure 3.

Figure 3: OTP in Python

3 Cryptanalysis to break Two time pad

The Vernam cipher is perfectly secure but it has several drawbacks:

• The key is as long as the message.

• The length of the message to be communicated needs to be known in advance so that
the key of appropriate length is shared a priori to the communication.

• We cannot reuse a key. If two messages are encrypted using the same key, it can be
used to gain additional information about the messages sent and hence, the a priori
and posteriori probabilities will not remain same. This breaks the perfect security.

c1 = m1 ⊕ k; c2 = m2 ⊕ k

=⇒ c1 ⊕ c2 = (m1 ⊕ k)⊕ (m2 ⊕ k) = m1 ⊕m2

In the particular scenario where the information being communicated uses messages in
English text, we can use several features listed below to actually break the two time pad,
i.e., one time pad with a key being re-used, and get the messages which are encrypted using
the same key.

[Lecture 5] -3



• m1 ⊕m2 reveals the positions where both the messages differ, simply because there
xor will be 1 in that position.

• Characteristics of ASCII Conversions: There are some observations which can
be made in the ASCII conversions. This can be used for a start.

• Frequency Analysis: Now, the English language has certain redundancies. A
complete analysis of the rates with which single letters, a pair of letters, trigrams
and other such combinations occur, has been done and this can be used in predicting
chunks of messages. But, this is much more difficult to use on m1 ⊕m2, as XORing
two english language messages tends to smooth out the distributions on the possible
values of the XOR. However, if the message is long enough, or if more than two
messages have been encrypted using the same key, then the cryptanalysis becomes
slightly easier.

Remark : It is important to note that this cryptanalysis is not guaranteed to work all the
time. It is a very hard procedure involving a large amount of guesswork and hence might
take years of observation of the communication to break the cipher. A practical example of
this is mentioned in the next section, the Venona project.

3.1 Properties of ASCII conversions

The first step in the break relies on certain features of the binary representations of letters
vs space. Refer to figure 2. We observe the following:

• The binary representation of all letters begin with 01.

• The binary representation of space begins with 00. (So does that of punctuation
marks)

• Hence the XOR of two letters gives a 00 in the beginning while the XOR of a letter
and a space begins with a 01.
Remark : We could also get a 01 in the beginning if a letter is XORed with a
punctuation mark, but this occurs less frequently than a letter-space combination.
So, we can first check using this assumption and proceed.

Remark : This feature can be used to locate those positions in m1 ⊕m2 which have a
letter XORed with a space. But this can be used only if the encryption procedure does
not involve removing the spaces between words. In that case, we could analyze letter-
punctuation combinations instead.

3.2 Frequency Analysis

This is an involved procedure and there is no definite way of working. We essentially work
through by relying on smart guesswork.

• First, we predict a possible string sequence which might appear in one of the messages.
For this we might use the frequency ranking of any of the word combinations, but for
a start, we use trigram frequency to predict the most possible trigram occurring in

[Lecture 5] -4



either of the two messages. ‘the’ is the most common trigram. So this could occur at
some position in one of the two messages.

• Assuming this, and combining this with the knowledge of appearance of spaces in
either of the two messages (if they exist), we rule out those positions, where ‘the’
can’t occur.

• We then place it at the possible positions, one by one, XOR it with m1 ⊕m2 at that
position and see if the result makes sense. We slide this along, until it does.

• This then shows the position where one of the two messages has ‘the’. By expanding
the corresponding fragments we have found in the second plaintext, we can work out
more of the one time pad, and deduce new fragments in the other message.

• Continue this process back and forth till some sensible messages are deciphered.

3.3 An example to understand the procedure

We begin by taking two ciphertexts c1 and c2, which have been encrypted using the same
key k. So, we have:

c1 = 3759421c15212b1c1a3566

c2 = 0b544b500a7313141a386f

=⇒ c1 ⊕ c2 = 3c0d094c1f523808000d09 = m1 ⊕m2

So, both ciphertexts have 11 characters.

Step 1 (Predicting the position of space-letter combinations): We write out the
first two digits of binary representation of each character.

So, the fourth and sixth characters are such that one message has a space and the other
has a letter. So writing the entire binary representation of space, we get the exact letter at
the two positions:

[Lecture 5] -5



Step 2(Using trigram frequency): Assume that ‘the’ occurs in atleast one of the
two messages. Since, there is a space in the fourth position, we might guess that ‘the’ occurs
as the first three characters. This guess gives us:

So, this makes sense, as we have the 4th letter: ‘l’. So, one of the messages contains:
‘Hello’. And hence:

Now, 6th character in the second message will be ‘r’. We guess a 7 letter word starting
with ‘pr’ and check if it gives a meaningful result for the other message:
Guess: ‘program’, which gives:

This gives us the two messages m1 and m2.
Remark : We worked here assuming several things, which might not be our first guess.
I have only included those guesses which gave me a sensible result for the plaintext. One
could try a different guess and see that it might not give us a meaningful chunk of the other
message.

3.4 Venona Project

This is an example where the Vernam cipher was used in practice for communicating delicate
messages during war. But a blunder was made when the keys were used repeatedly to
encrypt several messages. This led to an ultimate break of the cipher text, revealing the
message.

During the initial years of the Cold war, the Venona project was a source of information
on Soviet intelligence-gathering activity that was directed at the Western military powers.

Most decipherable messages were transmitted and intercepted between 1942 and 1945.
Sometime in 1945, the existence of the Venona program was revealed to the Soviet Union
by theUS ArmySIGINTanalyst andcryptologistBill Weisband.These messages were slowly
and graduallydecryptedbeginning in 1946 and continuing through 1980, when the Venona
program was terminated.

The Soviet company that manufactured the one-time pads produced around 35,000 pages
of duplicate key numbers, as a result of pressures brought about by the German advance on
Moscow during World War II.

The duplication, which undermines the security of a one-time system, was discovered
and attempts to lessen its impact were made by sending the duplicates to widely-separated
users. Despite this, the reuse was detected by cryptologists in the US.

[Lecture 5] -6



References

[1] Jonathan Katz https://www.coursera.org/learn/cryptography/home/week/1. Online
course,2016.

[2] Simon Singh The Code Book. Thompson Press, 1999.

[3] David Kahn The Codebreakers.

[Lecture 5] -7


	Brief Overview Of the talk
	Implementing OTP
	Hex and ASCII
	Actual implementation

	Cryptanalysis to break Two time pad
	Properties of ASCII conversions
	Frequency Analysis
	An example to understand the procedure
	Venona Project


