
CSA E0 235: Cryptography March 2, 2016

Scribe for Lecture 11

Instructor: Arpita Patra Submitted by: Sameer Shah

Goal -

The main goal in this lecture is to construct a PRF using a PRG.
This is important in the ’roadmap’ picture. We assumed existence of OWFs(- one way
functions) and have proved existence of PRGs(- pseudo random generators). Today we
shall explicitly construct a PRF(- pseudo random function) from a given PRG and hence
prove if PRGs exist then so do PRFs.

Idea -

Intuitively, a random function can be thought of as a very long random string. If we fix
an ordering (natural here) on domain then the mapping could be the respective blocks of
the long string. The same notion could be used for pseudo-random function and a pseudo-
random string. But the problem here is, generating such long strings is not easy. Expansion
factors in pseudo-random generators are very hard to increase keeping the same level of se-
curity. To solve this, we shall recursively use a length doubling PRG and cleverly define
required mapping of a PRF.

Recall -

Recall the security definitions for PRG and PRF. In the indistinguishability security def-
inition of PRG, no adversary should be able to distinguish the output of the PRG from
a truly random string of the same length with non-negligible probability. And for PRF
security, no adversary should be able to distinguish the output of a PRF from the output
of a truly random function with non-negligible probability. The output of a truly random
function is equivalent to a truly random string. So we need to define output of PRF in
terms of output of PRG such that they are indistinguishable from truly random strings.
We will see the exact probability expressions when needed in the proof.

Construction -

Let’s now explicitly construct a PRF from a PRG. Let G be a length doubling PRG on
n-bit strings. Using this we shall get a PRF F .

G : {0, 1}n → {0, 1}2n =⇒ F : {0, 1}n × {0, 1}n → {0, 1}n

We first need to understand what it means to construct a PRF? There are two conditions.
First, we need to define the mapping, an n-bit output string for every input we give to
F . There are 2n such mappings for fixed n-bit key k of F . And second condition is that

11-1

this mapping of F should be poly computable for all x, i.e. Fk(x) should be obtained in
polynomial time.

We shall use a fundamental structure from graphs to define our function - A complete
binary tree.

Figure 1: Complete Binary Tree of depth n = 3

Let us briefly understand some basics of this structure. Considering the arrows shown in
the figure as ’directed edges’, we define some terms. The box or the ’node’ with no edges
coming towards it, shall be called as the ’root’. And a node with no edges going out of it
shall be called as a ’leaf’. In the special case of a complete binary tree, there is a unique
root, and 2n many leaves where n is the ’depth’ of the tree. Depth of the tree can be per-
ceived as the length of the path from the root to the leaf. All the leaves are at the same level.

We can naturally assign each leaf with an n-bit string as follows. Suppose at every node
going to the left node in next level corresponds to 0 and going to right node in next level
corresponds to 1, then the path from the root to any leaf will correspond to an n-bit string
in a complete binary tree of depth n. Each leaf will have a unique path and thus a unique
number corresponding to it. Also every number can be thought of as a path and will corre-
spond to a unique leaf. This establishes a bijection between n-bit strings and the leaves of
a complete binary tree. Now we fill this tree in a certain way with iterates of G, and x will
be mapped to the value in the leaf it corresponds to. And that is how we will define our F .

The key k for a PRF is equivalent to the seed s of the PRG. We fix the root of the
tree to be the key k, same as the seed s of the PRG G. As G is length doubling, and we

11-2

need the output of F to be n-bit, we split the output of G in two parts. Lets denote first
n-bits by G0 and the rest n-bits by G1. The filling of tree is done level-wise. For a given
n-bit string, we follow the procedure shown in figure to fill the values in the nodes of the tree.

Let us see an example for better understanding. Computation of Fk(110) is shown below.

Notice that for every input, we do exactly n iterates of PRG to get the output, which is
poly in n. Let Gx(k) = Gb1(Gb2(...(Gbn(k))...)) be the specific composition corresponding
to x where x = b1b2...bn is the n-bit string and bi are bits. Then

Fk(x) := Gx(k)

completely defines the function F . Now we need to prove that the function F we get by
this construction is indeed a PRF.

11-3

Proof -

We shall give the proof with the help of two intermediate lemmas and using hybrid ar-
guments.

Theorem : If G : {0, 1}n → {0, 1}2n is a PRG, i.e.,

|Pr[D(G(s)) = 1]− Pr[D(r) = 1]| ≤ neglG(n)

then F constructed as above is a PRF, i.e.,

|Pr[DFk(1n) = 1]− Pr[Df (1n) = 1]| ≤ neglF (n)

Proof : We break the proof of this theorem into two parts.

Lemma 1 : If G : {0, 1}n → {0, 1}2n is a PRG, i.e.,

|Pr[D(G(s)) = 1]− Pr[D(r) = 1]| ≤ neglG(n)

then for r1, ..., rt ∈R {0, 1}2n and s1, ..., st ∈R {0, 1}n random strings or respective lengths

|Pr[A(r1, ..., rt) = 1]− Pr[A(G(s1), ..., G(st) = 1] ≤ negl1(n)

Proof of Lemma 1 : We need to play an indistinguishability game between (r1, ..., rt) and
(G(s1), ..., G(st)). But this does not fit into any of our already existing games directly. So
we construct hybrids. Consider Hi to be (G(s1), ..., G(si, ri+1, ..., rt) for i = 1, ..., t− 1 with
H0 as (r1, ..., rt) and Ht as (G(s1), ..., G(st)). Note that any two consecutive hybrids differ
in only place. Consider Hi and Hi−1. They have G(si) and ri at their ith places respectively
with all the other entries same. As G is a PRG, we get

|Pr[A(G(si) = 1]− Pr[A(ri) = 1]| ≤ neglG(n)

Now the simulation of the game is trivial and there is no loss of probability, thus we get

|Pr[A(G(s1), ..., G(si), ri+1, ..., rt) = 1]−Pr[A(G(s1), ..., G(si−1), ri, ..., rt) = 1]| ≤ neglG(n)

i.e.|Pr[A(Hi = 1]− Pr[A(Hi−1) = 1]| ≤ neglG(n)

This holds true for i = 1, ..., t. Using triangle inequality we get

|Pr[A(r1, ..., rt) = 1]− Pr[A(G(s1), ..., G(st) = 1]| = |Pr[A(Ht = 1]− Pr[A(H0) = 1]|

≤
t∑

i=1

|Pr[A(Hi = 1]− Pr[A(Hi−1) = 1]|

≤ t · neglG(n) ≤ negl1(n)

This completes the proof of the first lemma.

11-4

Lemma 2 : If G : {0, 1}n → {0, 1}2n is such that

|Pr[A(r1, ..., rt) = 1]− Pr[A(G(s1), ..., G(st) = 1] ≤ negl1(n)

then F constructed as above is a PRF, i.e.,

|Pr[DFk(1n) = 1]− Pr[Df (1n) = 1]| ≤ neglF (n)

Proof of lemma 2 : We again are going to use hybrid arguments. Defining hybrids in this
case is more subtle. The hybrid Hi is taken to be the distribution obtained on leaves when
the nodes in level i are filled with random strings with H0 corresponding to the distribution
on leaves when only the root was randomly selected, and Hn corresponding to all the
leaves themselves being randomly chosen. Note that H0 is also equivalent to the uniform
distribution on all the keyed functions and Hn is to the uniform distribution on ALL the
functions. The difference between any two consecutive hybrids, say Hi and Hi−1 is that Hi

has truly random strings at level i and Hi−1 has pseudo-random strings at that level. We
need to do polynomial queries in this case to simulate the PRF game. By using Lemma 1
we get

|Pr[AHi(1n) = 1]− Pr[AHi−1(1n) = 1]| ≤ negl2(n)

And this is true for all the steps. Using triangle inequality we get

|Pr[DFk(1n) = 1]− Pr[Df (1n) = 1]| = |Pr[AH0(1n) = 1]− Pr[AHn(1n) = 1]|

≤
n∑

i=1

|Pr[AHi(1n) = 1]− Pr[AHi−1(1n) = 1]|

≤ n · negl2(n) ≤ neglF (n)

This completes the proof of the lemma 2 and thus the proof for the theorem.

Conclusion -

With this theorem we conclude the journey of implications. We have constructed PRFs
with which we built many security schemes in the beginning. These results have profound
theoretical value though these can not be directly implemented practically.

11-5

