
CSA E0 235: Cryptography February 20, 2015

Scribe for Lecture 12

Instructor: Arpita Patra Submitted by: Biswajit Nag

1 Prelude

In the last lecture we revisited the notions of pseudo-random functions(PRFs) and pseudo-
random generators(PRGs). We saw a construction of a PRF using a length doubling PRG.
We were also introduced to the hybrid way of thinking in cryptography, and using this
new-gained versatile tool, we proved that the construction we proposed is indeed a PRF.

In today’s lecture we will formally define a one-way function. We discuss their current
status of existence, we see a few examples of candidate one-way functions. We also define
the notion of a hard-core predicate, we see a (partial) proof of their existence. We then
revisit the topic of construction of the major theoretical motifs of cryptography, and sign-off
by discussing the road-map for constructing a PRG using the ideas of today’s lecture.

2 One-way Functions

We briefly visited the notion of one-way-ness of functions in Lecture 5. The notion of having
functions which are ‘easy’ to compute but ‘difficult’ to invert seemed to be a direct way
to utilize and limit the probabilistic polynomial time bounded capabilities of real world
computing systems.

Definition 1 (One-way Function) A function f : {0, 1}n 7→ {0, 1}m; n,m ∈ N is called
a one-way function if the following holds true.

1. Computation time for f(x) is polynomially bounded in n ∀x ∈ {0, 1}n.

2. For all probabilistic polynomial time adversaries A which take an input y = f(x0), x0 ∈R
{0, 1}n and output an x ∈ {0, 1}n, there exists corresponding negligible functions neg
such that

Pr[x ∈ f−1(y)] < neg(n)

Here we must realize that inversion of a one-way function is easily achievable by using
a unbounded powerful adversary.

2.1 Some simple non-one-way functions

Negating the conditions for a function being one-way, we observe that a function f is not
one-way if the computation

1. there does not exist any polynomial p in n such that ∀x ∈ {0, 1}n the computation
time of f(x) is bounded by p(n), or,

[Lecture 12] -1

2. there exists an adversary A and a polynomial p in n such that

Pr
[
A(f(x), 1n) ∈ f−1(f(x))

]
x∈R{0,1}n

≥ 1

p(n)

for infinitely many n ∈ N.

Examples

1. If f : {0, 1}n 7→ {0, 1}m; n,m ∈ N is a function such that there exists an adversary A
such that

Pr
[
A(f(x), 1n) ∈ f−1(f(x))

]
x∈R{0,1}n

>
1

n10
When n is odd

≤ neg(n) otherwise

for some negligible function neg. Clearly, f is not a one-way function.

2. For x ∈ {0, 1}n, the function f : {0, 1}n 7→ {0, 1}n−1; n ≥ 1 ∈ N

f(x) =f(x1x2 · · ·xn)

=x1x2 · · ·xn−1

Here both x1, x2, · · ·xn−11 and x1, x2, · · ·xn−10 are valid inverses. Hence we have an
adversary which produces an inverse with probability 1.

Currently there is no proof for the existence of one-way functions. It’s existence will
prove the fact that P 6= NP, (as any one-way function will lie in NP but not in P) which
itself is considered by many as the most important open problem in theoretical computer
science. Here it is to be noted that P 6= NP does not imply the existence of one-way
functions, since for a function f , it’s inversion problem being NP-complete for a particular
point in it’s range doesn’t make it a one-way function, rather it has to be NP-complete for
functional values for a proportion of the domain which is at least greater than 1 − neg(n)
for some negligible function neg.

The following are some functions which are believed to be one-way due to a long-standing
lack of efficient algorithms for solving them.

• Subset Sum Problem.

f(x1, x2, · · · , xn, I) =
∑
Ij=1

xj mod 2n

where I, x1, x2, · · · , xn ∈ {0, 1}n.

• Prime Factorization.

f(p, q) = pq where p, q are primes in N.

Now we define a slight variant of the one-way function, a one-way permutation. These
two are very similar, and almost all the major results about one hold for the other. Our
current motivation for defining a one-way permutation is that it will reduce th complexity
of the proofs towards the end.

[Lecture 12] -2

Definition 2 (One-way Permutation) A one-way function f is a one-way permutation
if

• f is length preserving

• f is one-to-one.

Both the candidate examples for one-way functions we saw before are also candidate
one-way permutations (modulo some trivial modifications).

Later in this lecture we use the ideas of one-way functions to construct more (closer to
practical) cryptographic functions. One interesting thing to note here is that the notion of
one-way functions, despite being the fundamental block supporting the whole of theoretical
foundations of cryptography, is surprisingly easy to perceive. This greatly enhances the ease
of study of one-way functions. Also, the conditions in the definition of one-way function is
rather weak, and we have not made many additional assumptions. This also makes one-way
functions a suitable starting point for practical cryptography.

3 Hard-core Predicates

When we look at a functional value of a candidate one-way functionf , we observe that
since inversion of f is non-trivial, we will almost certainly not be able to guess a complete
and correct inverse. But we might get a lot of information, say, the first half of all the
bits, about the input x. Stated in a neat way, it is easy to prove that given f : {0, 1}n 7→
{0, 1}m; n,m ∈ N a one-way function, the function g : {0, 1}2n 7→ {0, 1}n+m; n,m ∈ N
and when x1, x2 ∈ {0, 1}m, g(x1||x2) = x1||f(x2) is also one way. In general, to keep
away an adversary from blindly guessing the inverse just by looking at the functional value,
the functional value must conceal at least O(log(|x|)) many bits of x. Since a one-way
function does not reveal the whole input, a hard-core predicate can be thought to be
a function which takes the form of some information not revealed in the output. If we
model a hard-core predicate as a Boolean function {0, 1}n 7→ {0, 1} then no probabilistic
polynomial timeadversary will be able guess hc(x), the hard-core predicate of x given only
the knowledge of f(x), with a probability which is significantly greater than 1

2 .

Definition 3 (Hard-core Predicate) For a given function f : {0, 1}n 7→ {0, 1}m; n,m ∈
N, a function hc : {0, 1}n 7→ {0, 1} is called a hard-core predicate of f if

1. hc(x) can be computed within some polynomial time function of the input size.

2. For any adversary A which takes the input f(x), x ∈R {0, 1}n and outputs a bit , there
exists a negligible function neg such that

Pr [A(f(x), 1n) = hc(x)]x∈R{0,1}n ≤
1

2
+ neg(n)

Even if a function is not one-way, it might still have a hard-core predicate. As seen
before, f(x1, x2, · · ·xn) = (x1, x2, · · ·xn−1) (where ∀i, xi ∈ {0, 1}) is not a one-way function,
but hc(x1, x2, · · ·xn) = xn is a hard-core predicate for f . But since an arbitrary function is

[Lecture 12] -3

in general of no cryptographic interest, we will consider studying about hard-core predicates
only for one-way functions/one-way permutations.

Currently we do not have a proof for or against the fact that every one-way function(or
one-way permutation) has a hard-core predicate. A naive argument for the last statement
can be that any bit which is not exposed by a one-way function f can be a candidate for
it’s hard-core predicate. This is not true in general as a one-way function might a reveal all
of it’s bits (not at a single functional value, obviously) for different inputs from it’s domain
with finite probability, without exposing too much of information about an inverse at a
particular functional value. Also, if hc being a hard-core predicate for a particular one-way
function will not make it a hard-core predicatefor all the other one-way functions, as there
can be a one-way function precisely revealing hc at all of it’s functional values.

Even though we do not have any result about existence of hard-core predicates for one-
way functions in general, it is known that for every one-way function, there is a different
one-way function with a hard-core predicate. In the next section we state and look at the
proving technique for a slightly weaker version of this theorem.

4 Existence of one-way permutations with hard-core predi-
cates

Theorem 4.1 (Golreich-Levin) If there exists a one-way permutation f : {0, 1}n 7→
{0, 1}n , n ∈ N then there exists another one-way permutation g : {0, 1}2n 7→ {0, 1}2n and g(x, r) =
(f(x), r) where x = (x1, x2, · · · , xn), r = (r1, r2, · · · , rn) ∈ {0, 1}n with the hard-core predi-
catehc(x, r) = x1r1 ⊕ x2r2 ⊕ · · · ⊕ xnrn.

Proving this theorem is equivalent to proving the reduction that given there exists a
probabilistic polynomial time adversary A which can break the given candidate hard-core
predicate hc with a probability non-negligibly greater than 1

2 for infinitely many values of
n, there is another probabilistic polynomial time adversary A′ which can invert the one-way
permutationf with non-negligible probability for infinitely many n.

∃A s.t. Pr [A(g(x, r)) = hc(x, r)]x,r∈R{0,1}n ≥
1

2
+

1

p1(n)

⇒ ∃A′ s.t. Pr
[
A′(f(x)) = x

]
x∈R{0,1}n

≥ 1

p2(n)

Where p1 and p2 are polynomials in n.

The entire proof of this theorem is beyond the scope of this lecture and was not discussed
in it’s full completeness. Instead, we prove two similar but weaker results which provide a
strong flavour of the reduction used in the original proof.

Proposition 4.2 For f, g and hc defined as in 4.1, ∀n ∈ N

∃A s.t. Pr [A(g(x, r)) = hc(x, r)]x,r∈R{0,1}n = 1

⇒ ∃A′ s.t. Pr
[
A′(f(x)) = x

]
x∈R{0,1}n

= 1

[Lecture 12] -4

Proof Given A for some particular n ∈ N we can construct A′ for the same n as follows.
In the one-way function inverting game if A′ is given with f(x) ∈ {0, 1}n, then A′ queries
A with g(x, ei) = (f(x), ei) with i = 1, 2, · · ·n0, where ei ∈ {0, 1}n has 0s in all of it’s bits
except at the ith one. Since A can give back hc(x, ei) = xi with probability 1, in the n queries
made A′ gets all the bits of x with probability 1. Hence Pr [A′(f(x)) = x]x∈R{0,1}n = 1.

Proposition 4.3 For f, g and hc defined as in 4.1, ∀n ∈ N, if there is a probabilistic
polynomial time adversary A with a polynomial p(n) such that for infinitely many n ∈ N

Pr [A(g(x, r)) = hc(x, r)]x,r∈R{0,1}n ≥
3

4
+

1

p(n)

then there is another adversary A′ such that

Pr
[
A′(f(x)) = x

]
x∈R{0,1}n

≥ 1

4p(n)

Proof

Lemma 4.3.1 Given there exists an adversary A as denoted in 4.3 for some n, there exists
a subset S ⊂ {0, 1}n such that |S| ≥ 2n

2p(n) , and ∀x ∈ S

Pr [A(g(x, r)) = hc(x, r)]r∈R{0,1}n ≥
3

4
+

1

2p(n)

Proof Let S be the set as defined above. Let U denote the set {0, 1}n. Also, let S′ = U\S.

Pr [A(g(x, r)) = hc(x, r)]x,r∈R{0,1}n

=Pr [A(g(x, r)) = hc(x, r)|x ∈R S]r∈R{0,1}n · Pr [x ∈R S|x ∈R U]

+ Pr
[
A(g(x, r)) = hc(x, r)|x ∈R S′

]
r∈R{0,1}n

· Pr
[
x ∈R S′|x ∈R U

]
(1)

Since

1. Pr [A(g(x, r)) = hc(x, r)|x ∈R S]r∈R{0,1}n and Pr [x ∈R S′|x ∈R U] are at most 1 ;

2. Pr [A(g(x, r)) = hc(x, r)|x ∈R S′]r∈R{0,1}n ≤
3
4 + 1

2p(n) as x /∈ S;

3. Pr [A(g(x, r)) = hc(x, r)]x,r∈R{0,1}n ≥
3
4 + 1

p(n) ;

4. Pr [x ∈R S|x ∈R U] = |S|
|U | = |S|

2n ;

using these in equation 1 we get

3

4
+

1

p(n)
≤ 3

4
+

1

2p(n)
+
|S|
2n
⇒ |S| ≥ 2n

2p(n)

[Lecture 12] -5

Lemma 4.3.2 With S defined in 4.3.1 and ei defined in 4.2, ∀x ∈ S,∀i = 1, 2, · · · , n

Pr [A(g(x, r)) = hc(x, r) ∧A(g(x, r ⊕ ei)) = hc(x, r ⊕ ei)]r∈R{0,1}n ≥
1

2
+

1

p(n)

Proof

Pr [A(g(x, r)) = hc(x, r) ∧A(g(x, r ⊕ ei)) = hc(x, r ⊕ ei)]r∈R{0,1}n

=Pr [A(g(x, r)) = hc(x, r)]r∈R{0,1}n + Pr [A(g(x, r ⊕ ei)) = hc(x, r ⊕ ei)]r∈R{0,1}n

− Pr [A(g(x, r)) = hc(x, r) ∨A(g(x, r ⊕ ei)) = hc(x, r ⊕ ei)]r∈R{0,1}n

≥3

4
+

1

2p(n)
+

3

4
+

1

2p(n)
− 1

=
1

2
+

1

p(n)

Lemma 4.3.2 tells us that for a random choice of r ∈ {0, 1}n and for a fixed 1 ≤ i ≤ n
we will obtain the correct xi (by taking xor of the two hard-core predicate outputs) with
probability significantly greater than 1

2 . Since for a single r, the probability of getting the
correct ith bit is quite low compared to 1, we repeat this process for multiple independently
chosen r values and take the most frequent xi appearing in these trials as the correct
output. We now wish to compute the probability that after running this process m times
the true value of xi is not the most frequent value. Using Chernoff bound and a little bit
of probability calculations we get

Pr
[
Xxi <

m

2

]
< e
− m

2p2(n)

Here Xxi denotes the random variable for the number of outputs of the correct bit, xi, after
m such trials.

Since we want this probability to tend to zero for n → ∞, if we choose e
− m

2p2(n) = 1
2n ,

we get m = 2p2(n)ln(2n). (We note that m here is bounded by a polynomial.) Now the
probability of failure in getting xi is at most 1

2n . Hence after running this algorithm for each
i, 1 ≤ i ≤ n, the probability of failure in getting at least one of the bits wrong is bounded
below by 1

2 by the union bound. Hence, for an adversary which guesses each bit xi using
above mentioned procedures for a given f(x) with x ∈R 0, 1n, it’s probability of winning is

Pr
[
A′(f(x)) = x

]
x∈R{0,1}n0

=Pr
[
A′(f(x)) = x

]
x∈RS

· Pr [x ∈R S|x ∈R U]

+ Pr
[
A′(f(x)) = x

]
x∈RS′ · Pr

[
x ∈R S′|x ∈R U

]
≥1

2
· 2n

2p(n)
· 1

2n

=
1

4p(n)

[Lecture 12] -6

5 Conclusion

In the following road-map of theorems

1. Existence of a one-way permutation imply existence of another one-way permutation
with a hard-core predicate.

2. Existence of a one-way permutation with a hard-core predicate imply the existence
of a PRG with single bit expansion.

3. Existence of a PRG with single bit expansion imply the existence of PRGs with
polynomailly many bit expansions.

4. Existence of a length doubling PRG imply the existence of a PRF.

So far we have proved 1 (partially) in this lecture and 4 (thoroughly) in the previous
one . In the following lecture by concatenating a one-way permutation and it’s hard-core
predicate we construct a PRG of length expansion 1. We expect this to be a proper
PRG as for a random seed, since our one-way permutation is a permutation, the one-way
permutation value of the seed itself should be a random string with no length expansion.
But since the hard-core predicate bit appended to this is almost independent of the one-way
permutation functional value (it’s independent in the sense that no probabilistic polynomial
time adversary will be able to find any causality within these two parts, due to it’s hard-
core property), the resultant string will look like a random string of length n+ 1, where the
seed is of length n. Since the step 3 comes almost trivially by repeating this initial PRG
generation process, we have now almost completely traversed the road-map for proving the
existence of all the major theoretical constructions of cryptography used in this course.

References

[1] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, 2nd Edition.
CRC Press, 2015.

[2] Arpita Patra. http://drona.csa.iisc.ernet.in/ arpita/Cryptography16.html . Course Ma-
terials.

[Lecture 12] -7

	Prelude
	One-way Functions
	Some simple non-one-way functions

	Hard-core Predicates
	Existence of one-way permutations with hard-core predicates
	Conclusion

