
CSA E0 235: Cryptography March 2,2016

Scribe for Lecture 12

Instructor: Arpita Patra Submitted by: Kuntal Ghosh

1 One-Way Functions

A one-way function f : {0, 1}n → {0, 1}n is easy to compute, yet hard to invert. Let
f : {0, 1}n → {0, 1}n be a function. Consider the following experiment defined for any
algorithm A and any value n for the security parameter:

The inverting experiment InvertA,f (n)

1. Choose uniform x ∈ {0, 1}n, and compute y := f(x).

2. A is given 1n and y as input, and outputs x′.

3. The output of the experiment is defined to be 1 if f(x′) = y, and 0 otherwise.

A need not find the original pre-image x; it suffices for A to find any value x′ for which
f(x′) = y = f(x). Now, let us define what we mean f to be a one-way funcion(OWF):

Definition 1 A function f : {0, 1}n → {0, 1}n is one-way if the following two conditions

hold:

• Easy to compute: ∀x← 0, 1n, f(x) can be computed in poly(n) time.

• Hard to invert: For every probabilistic polynomial-time algorithm A, there is a negli-
gible function negl such that

Pr[InvertA,f (n) = 1] ≤ negl(n)

We can express the second requirement of the definition as follows:

Prx←{0,1}n [A(1n, f(x)) ∈ f−1(f(x))] ≤ negl(n)

Notice that any function is invertible in principle given enough time/computational power.
The assumption of existence of OWF is about computational hardness. Let us take some
examples to understand which functions are not one-way.

• Example 1: Consider a function f such that,

Prx←{0,1}n [A(1n, f(x)) ∈ f−1(f(x))]

{
> 1

n10 when n is even
≤ negl(n) hen n is odd

Clearly, f is not a one-way function. Because, for infinitely many n, f is not hard to
invert.

12-1

• Example 2: Let f(x, y) = x.y. Then,

Prx←{0,1}n [A(1n, f(x)) ∈ f−1(f(x))] ≥ 3/4

Because, if f(x, y) is even, (2, xy/2) is a pre-image of f . Hence, the probability is 3/4
(when both x and y are odd, we can’t calculate the pre-image efficiently) which is not
negligible. So, f is not one-way.

• Example 3: f(x) = x1, x2, . . . , xn−1 where x ∈ {0, 1}n. Then,

Prx←{0,1}n [A(1n, f(x)) ∈ f−1(f(x))] ≥ 1/2

which is not negligible. Hence, f is not one-way.

1.1 Candidate One-Way Functions

We do not know how to prove one-way functions exist unconditionally, so we must conjecture
or assume their existence. Such a conjecture is based on the fact that several natural
computational problems have received much attention, yet still have no polynomial-time
algorithm for solving them.
Most famous one-way function is integer factorization. Given f(x, y) we need to find two
equal length primes such that f(x, y) = x.y.
Another candidate one-way function is based on subset-sum problem which is defined as,

fss(x1, x2, . . . , xn, J) = (x1, x2, . . . , xn, [Σj∈Jxi mod 2n])

where each xi is an n-bit string interpreted as an integer, and J is an n-bit string interpreted
as specifying a subset of {1, . . . , n}. Inverting fss on an output (x1, x2, . . . , xn, y) requires
finding a subset J ′ ⊂ {1, . . . , n} such that Σj∈J ′xj = y mod 2n.
Note that, P 6= NP does not imply existence of OWF. The former suggests every PPT
algorithm must fail to solve at least for one input whereas the latter suggests every PPT
algorithm must fail to solve almost always (for any random input). Believing that OWF
exist is much more than believing P 6= NP .

2 One-Way Permutations

Definition 2 A function f is if it has the following properties:

1. f is a one-way function.

2. f is length-preserving i.e. ∀x, |f(x)| = |x|.

3. f is one-to-one i.e. every f(x) has a unique pre-image x.

12-2

3 Hard-Core Predicates

By definition, a one-way function is hard to invert. One might get the impression that
nothing about x can be determined from f(x) in polynomial time. This is not necessarily
the case. Indeed, it is possible for f(x) to leak a lot of information about x even if f is one-
way. For a trivial example, let f be a one-way function and define g(x1, x2) = (x1, f(x2))
where |x1| = |x2|. It is easy to show that g is also a one-way function, even though it reveals
half its input. But, f(x) must hide something about x. Something that remains hidden
about x even given f(x) is captured by hard-core predicates. Hard-core predicates are one
bit of info about x that is hard to guess given f(x). We define hard-core predicates for
one-way functions as follows:

Definition 3 A boolean function hc : {0, 1}∗ is a hard-core predicate for a one-way

function f : {0, 1}∗ → {0, 1}∗ if the followings hold:

1. Given x, hc(x) can be computed in poly(n) time.

2. Prx←{0,1}n [A(f(x), 1n) = hc(x)] ≤ 1/2 + negl(n)

Hard-core Predicate may exist even for functions that are not one-way.For example,
consider a non-OWF f(x1, . . . , xn) = (x1, . . . , xn−1). hc(x) for this function is xn. For a
random x, given f(x1, . . . , xn), hc(x1, . . . , xn) = xn can be guessed with probability 1/2.
But, we are not interested in hard-core predicates for functions which are not one-way.
We can also define hard-core predicates for one-way permutations in a similar way.

Definition 4 A boolean function hc : {0, 1}∗ is a hard-core predicate for a one-way

permutation f : {0, 1}∗ → {0, 1}∗ if the followings hold:

1. Given x, hc(x) can be computed in poly(n) time.

2. Prx←{0,1}n [A(f(x), 1n) = hc(x)] ≤ 1/2 + negl(n)

But, finding a hard-core predicate for a OWF/OWP is not simple. Consider, hc(x) =
⊕n

i=1xi. One might hope that if f can’t be inverted then f(x) must hide at least one of the
bits xi for which calculating hc(x) will be hard to compute. Now, construct a new OWF
using f . Let, g(x) = (f(x),⊕n

i=1xi). Here, ⊕n
i=1xi is not a hard-core predicate for g. In

fact, for a given fixed boolean function hc(x), there always exist a OWF f such that hc is
not a hard-core predicate for the function f .

4 Hard-Core Predicates from One-Way Functions

The next step is to show that a hard-core predicate exists for any one-way function. Actu-
ally, it remains open whether this is true; we show something weaker that suffices for our
purposes. Namely, we show that given a one-way function f we can construct a different
one-way function g along with a hard-core predicate of g.

Theorem 1 (GoldreichLevin theorem) Let f be a OWP and define g by g(x, r) =
(f(x), r) where x = x1, . . . , xn and r = r1, . . . , rn. Then the Boolean function hc(x, r) =
r1x1 ⊕ . . .⊕ rnxn is a hard-core predicate for the function g.

12-3

Due to the complexity of the proof, we divide the proof into three successively stronger
results culminating in what is claimed in the theorem.

4.1 A Simple Case

Proposition 1 Let f and hc be as in Theorem 1. If there exists a polynomial-time algorithm
A such that,

Prx,r←{0,1}n [A(f(x), r) = hc(x, r)] = 1

for all n, then there exists a polynomial-time algorithm A′ such that,

Prx←{0,1}n [A′(f(x)) = x] = 1

for all n. ♦

Proof We construct A′ as follows. A′(1n, y) computes xi := A(y, ei) for i = 1, . . . , n,

Figure 1: Simple case

where ei denotes the n-bit string with 1 in the ith position and 0 everywhere else. Then,
A′ outputs x = x1, . . . , xn. Clearly, A′ runs in poly(n) time.
In the execution of A′(1n, f(x′)), the value xi computed by A′ satisfies,

xi = A(f(x′), ei) = hc(x′, ei) = ⊕n
j=1x

′
j .e

i
j = x′i

Thus, xi = x′i for all i and so A′ outputs the correct inverse x = x′. If f is one-way, it

is impossible for any PPT algorithm to invert f with non-negligible probability. Thus, we
conclude that there is no polynomial-time algorithm that always correctly computes g(x, r)
from (f(x), r).

12-4

4.2 A More Involved Case

Proposition 2 Let f and hc be as in Theorem 1. If there exists a polynomial-time algorithm
A and a polynomial p(.) such that,

Prx,r←{0,1}n [A(f(x), r) = hc(x, r)] ≥ 3/4 + 1/p(n)

for infinitely many values of n, then there exists a polynomial-time algorithm A′ such that,

Prx←{0,1}n [A′(f(x)) = x] ≥ 1/4.p(n)

for infinitely many values of n. ♦

Proof Notice that the strategy in the proof of Proposition 1 fails here because it may
be that A never succeeds when r = ei (although it may succeed, say, on all other values
of r). Furthermore, in the present case A′ does not know if the result A(f(x), r) is equal
to hc(x, r) or not; the only thing A′ knows is that with high probability, algorithm A is
correct.
The main observation underlying the proof of this proposition is that for every r ∈ {0, 1}n,
the values hc(x, r ⊕ ei) and hc(x, r) together can be used to compute the ith bit of x (fig.
2).

Figure 2: Computation of xi

This is true because

hc(x, r)⊕ hc(x, r ⊕ ei) =
(
⊕n

j=1xj .rj

)
⊕
(
⊕n

j=1xj .(rj ⊕ eij)
)

= xi.ri ⊕ (xi.ri) = xi

Unfortunately, A′ does not know when A answers correctly and when it does not; A′ knows
only that A answers correctly with “high” probability. For this reason, A′ will use multiple
random values of r, using each one to obtain an estimate of xi, and will then take the
estimate occurring a majority of the time as its final guess for xi.
As a preliminary step, we show that for many x’s the probability that A answers correctly
for both (f(x), r) and (f(x), r ⊕ ei), when r is uniform, is sufficiently high. This allows us
to fix x and then focus solely on uniform choice of r, which makes the analysis easier.

12-5

Figure 3: Proof sketch

Claim 1 Let n be such that

Prx,r←{0,1}n [A(f(x), r) = hc(x, r)] ≥ 3/4 + 1/p(n)

Then there exists a set Sn ⊆ {0, 1}n of size at least 1
2p(n) .2

n such that for every x ∈ Sn it
holds that

Prr←{0,1}n [A(f(x), r) = hc(x, r)] ≥ 3/4 + 1/2p(n)

♦

Proof We have

Prr←{0,1}n [A(f(x), r) = hc(x, r)] =
∑

x′∈{0,1}n Prr∈{0,1}n [A(f(x′), r) = hc(x′, r)] .P r [x = x′]

= 1
2n
∑

x′∈{0,1}n Prr∈{0,1}n [A(f(x′), r) = hc(x′, r)]

= 1
2n
∑

x′∈Sn
Prr∈{0,1}n [A(f(x′), r) = hc(x′, r)]

+ 1
2n
∑

x′ /∈Sn
Prr∈{0,1}n [A(f(x′), r) = hc(x′, r)]

≤ |Sn|
2n + 1

2n
∑

x′ /∈Sn
(3/4 + 1/2p(n))

≤ |Sn|
2n + (3/4 + 1/2p(n)).

Since 3/4+1/p(n) ≤ Prr←{0,1}n [A(f(x), r) = hc(x, r)], straightforward algebra gives |Sn| ≥
1

2p(n) .2
n.

Now, it is easy to prove the highlighted(green) statement in figure 3.
Claim 2 Let n be such that

Prx,r←{0,1}n [A(f(x), r) = hc(x, r)] ≥ 3/4 + 1/p(n)

12-6

Then there exists a set Sn ⊆ {0, 1}n of size at least 1
2p(n) .2

n such that for every x ∈ Sn and
every i it holds that

Prr←{0,1}n [A(f(x), r) = hc(x, r) ∧A(f(x), r ⊕ ei) = hc(x, r ⊕ ei)] ≥ 1/2 + 1/p(n)

♦

Proof We know that for any x ∈ Sn we have

Prx,r←{0,1}n [A(f(x), r) 6= hc(x, r)] ≤ 1/4− 1/2p(n)

Fix i ∈ {1, . . . , n}. If r is uniformly distributed so is r ⊕ ei; thus

Prx,r←{0,1}n [A(f(x), r ⊕ ei) 6= hc(x, r ⊕ ei)] ≤ 1/4− 1/2p(n)

Hence, A is correct on both hc(x, r) and hc(x, r ⊕ ei) is at least

1− (1/4− 1/2p(n) + 1/4− 1/2p(n)) = 1/2 + 1/p(n).

Now from the previous claim we construct a probabilistic polynomial-time algorithm A′

that inverts f(x) with probability at least 1/2 when x ∈ Sn (3rd statement of figure 4).

Figure 4: Proof sketch

This suffices to prove Proposition 2 since then, for infinitely many values of n,

Prx←{0,1}n [A(1n, f(x)) ∈ f−1(f(x))]

≥ Prx←{0,1}n [A(1n, f(x)) ∈ f−1(f(x))|x ∈ Sn]Prx←{0,1}n [x ∈ Sn]

1
2 .

1
2p(n) = 1

4p(n).

12-7

Figure 5: Prob. Boosting/Amplification technique

Algorithm A′, given as input 1n and y, works as follows (figure 5):

1. For i = 1, . . . , n do:

• Repeatedly choose a uniform r ∈ {0, 1}n and compute A(y, r)⊕A(y, r⊕ei) as an
estimate for the ith bit of the preimage of y. After doing this sufficiently many
times (say m), let x′i be the “estimate” that occurs a majority of the time.

2. Output x′ = x′1, . . . , x
′
n.

We sketch an analysis of the probability that A′ correctly inverts its given input y. Say,
y = f(x) and for x ∈ Sn the previous claim ensures that for Prr←{0,1}n [A(y, r) ⊕ A(y, r ⊕
ei) = hc(x, r)] ≥ 1/2 + 1/p(n). Now, if we take sufficiently many estimates(say m) and
letting x′i be the majority value, by Chernoff bound we can ensure that

Prr←{0,1}n(x′i 6= hc(x, ei)) ≤ e(−m/2p(n)2 = 1/2n

We can calculate m from the above equation and repeat the experiment m times. A union
bound thus shows that A′ is incorrect for some i with probability at most n. 1

2n = 1
2 . That is,

A′ is correct for all iand thus correctly inverts ywith probability at least 1
2 . This completes

the proof of Proposition 2.

Full proof of theorem 1 is out of the scope of this course.

References

[1] Katz, Jonathan, and Yehuda Lindell. Introduction to modern cryptography.. CRC Press,
2014.

[2] Arpita Patra. http://drona.csa.iisc.ernet.in/arpita/Cryptography16.html. Course Mate-
rials.

12-8

