CSA EO 235: Cryptography 19th January 2016

Lecture 3

Instructor: Arpita Patra Scribe: Atlanta Chakraborty

1 Review

From our discussion of Secret Key Encryption (SKE) in light of Modern Cryptography,
we recall the definition of Perfect Security by assuming that our adversary has unbounded
computational power and also can only eavesdrop the cipher text during transit, also called
as Ciphertext Only Attack (COA).

Definition 1.1. (Perfectly Secret). An encryption scheme (Gen, Enc, Dec) over a message
space M 1is perfectly secret if for every probability distribution over M, every message m €
M, and every ciphertext ¢ € C for which Pr|C = ¢c] > 0:

Pr(M =m|C =] = Pr[M =m].

This basically means that the probability with which the adversary knows a plain-text
remains the same before (a priori probability) and after (posteriori probability) seeing the
cipher-text. Thus the adversary gets no advantage on seeing the cipher text.

Accordingly, we have seen that the Vernam Cipher (or one-time pad) achieves this level
of security with few drawbacks.

1) The key must be as long as the message.

2) The key can be used only once to encrypt a single message securely and hence its
name (OTP).

Things start getting really messy when one reuses a one-time pad. As a matter of fact,
US and UK exploited this drawback to decrypt Russian plaintext in the Venona Project.
So we next thought of designing schemes which would overcome these drawbacks, but
unfortunately, the aforementioned drawbacks are inherent to any scheme achieving perfect
secrecy.

2 Limitations of Perfect Secrecy

In this section, we shall prove that the following theorem is inherent to any scheme achieving
perfect-security.

Theorem 2.1. In any perfectly-secure encryption scheme defined by (Gen, Enc, Dec), the
key space K must be atleast as large as the message space M i.e. |K| > |M|.
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Proof. Assume |K| < |M]. Also assume that the message space has such a distribution
wherein every message occurs with non zero probability. Let ¢ € C be a ciphertext that oc-
curs with non-zero probability. Define a new set M(c) which contains all possible messages
that are decryptions of ¢, i.e.,

M(e) := {m|m = Decg(c) for some k € K}.

Thus clearly, |[M(c)| < |K| since for each message there will be atleast one key k € K
for which m = Decy(c) since Dec is deterministic, basically a particular message can be
encrypted by more than one key. Also || < |[M]| from our assumption. Together they
indicate that there exists atleast one message m’ € M which cannot be encrypted by any
key, i.e. m’ ¢ M(c). But then

PrIM =m/|C =¢| =0+ Pr[M =m],
which contradicts Definition 1.1 and implies that the scheme is not perfectly secret. O

One interesting observation is that the Vernam cipher (OTP) is optimal key length-
wise. From the other limitation of key-reusability, which we shall not prove here, we can
also deduce the fact that OTP is optimal key usability-wise too.

3 Equivalent Definitions of Perfectly Secure

We shall now give several equivalent formal definitions of perfect security, which basically
captures different intuitions for achieving the same goal- perfectly secure scheme. Some of
these definitions will be very handy to prove or disprove whether a SKE is perfectly secure
or not.

Definition 3.1. (Perfect Indistinguishability). An encryption scheme (Gen, Enc, Dec)
over a message space M is perfectly secret if for every probability distribution over M,
every message mo, my € M, and every ciphertext c € C:

Pr(C = c¢|M =mg| = Pr|C = c|M = my].

This formulation states that the probability distribution over C is independent of the
plaintext. Also, the ciphertext contains no information about the plaintext. It becomes
impossible to distinguish an encryption of mg from an encryption of m; as the distribution
over the ciphertext depends only on the choice of key and randomness of Enc when it is
probabilistic, thus being the same for both messages mgy and mi, hence known as perfect
indistinguishability.

There is another notion of perfect security given by C. E. Shannon. He then used it to
prove perfect security for OTP.

Definition 3.2. (Shannon’s Theorem). An encryption scheme (Gen, Enc, Dec) over a
message space M with |[M| = |K| = |C| is perfectly secret if and only if:

(i) Every key k € K is chosen with equal probability 1/|KC| by algorithm Gen.
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(ii) For every m € M and every c € C, there exists a unique key k € K such that Encg(m)
outputs c.

Remark: The need for the assumption is as follows:

For a perfectly secure scheme we have || > | M| as proved in Theorem 2.1. Also
for correctness to hold we need |C| > | M| otherwise we would have different ciphertexts
corresponding to the same message which would thus lead to indistinguishability. Thus
|IM| = |K| = |C| is the ideal optimal case.

Proof. We first assume that every key is obtained with probability 1/|K| and that for every
m € M and ¢ € C there exists a unique key k € K such that Enci(m) = c. It follows from
Definition 1.1 that for every m and c,

Pr[C =¢|M =m| = Pr[K =k|] = 1/|K]
irrespective of the probability distribution over M. Thus

PriC = = Z Pr[C = ¢|M = m|Pr[M =m]
meM
=1/|K| > Pr[M =m] (1)
meM
=1/|K].

By applying Bayes’ Theorem, we get

Pr[C = ¢|M = m|Pr[M = m]
Pr[C = (] (2)
= Pr|{M = m)|,

PriM =m|C =¢] =

thus satisfying the definition of perfect security.

To prove the other direction, let (Gen, Enc, Dec) be as in the theorem and assume Enc
to be deterministic. We now prove that if (Gen, Enc, Dec) is perfectly secret, then (i) and
(77) hold.

Let M = {mq,ma,...} and c be a ciphertext that occurs with non-zero probability for
some message. Let K; be the set of all keys that maps m; to some ¢ i.e. Encg(m;) = cif and
only if k£ belongs to ;. We now claim that IC; # @ i.e. there exists atleast one key that can
be used for encryption of a message and K; NK; = & which means that the same key cannot
be used for encrypting more than one message. We assume that Pr[C = ¢|M = m] > 0, for
some m. For arbitrary ¢, m; and mj,, from our definition of perfect security we have,

Pr|C = c¢|M =m;] = Pr[C = c|M = mj].

This implies that K; # @. Now, assume that the same key k maps both the messages
m; and m; to c. For correctness to hold good, our assumption would be contradicted since
it would be impossible to decrypt it correctly. Thus K; N K; = @. Since (M| = |K|, we get
that |/C;| = 1. Thus there exists a unique key k for every m € M and every ¢ € C such
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that Encg(m) = c. This proves condition (ii). Also we know from the definition of perfect
security that
Pr[C = c¢|M =m;] = Pr[C = ¢|M = mj]
which implies that
Pr(K = k] = Pr[K = k;].

Each key in the key space is equally likely hence chosen uniformly by Gen with probability
1/|K]|. This proves condition (3). O

In a Vernam cipher, suppose our key k € K is a [—bit binary string and our message
m € M is m—Dbit binary string, then we have |K| = 2! and also |[M| = 2™. Theorem 2.1
states that

K| > M|
which implies that
ol > om,
Hence,
[ > m,

i.e. the length of the key must be as large as the message length, which we have already
seen as the drawback of the Vernam cipher. Hence perfect secrecy is achieved only for the
optimal case when [ = m which can be further verified using Shannon’s theorem.

3.1 Use of Shannon’s Theorem

Definition 3.2 completely characterizes a perfectly-secret encryption scheme.
1. The conditions (¢) and (i¢) of Definition 3.2 are easy to check.

2. There is no need to analyse any probability distribution in contrast to working with
Definition 1.1.

There is yet another equivalent definition of perfect secrecy which is based on an exper-
iment, call it PrivK}Y; defined for IT = (Gen, Enc, Dec) over a message space M, involving
a private-key encryption setting, an eavesdropping adversary A who tries to break a cryp-
tographic scheme and an imaginary tester who checks if the adversary succeeds.

The experiment is as follows:
1. The adversary A is given the freedom to choose any pair of messages mg, m; € M.

2. The tester then chooses a random key k generated by Gen and also tosses a coin to
select a random bit b — {0,1}. Then a cipher text ¢ — Encg(m;) is computed and
given to A.

3. The adversary A then guesses which message was sent and outputs v’ — {0, 1}.

eav 1

4. A succeeds only when b/ = b, also defined as PrivK A=
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Thus the adversary knows for sure that only of the messages mg or m; will be com-
municated with probability 1/2. It is always possible for A to succeed in the experiment
by guessing b’ randomly with probability 1/2. Thus here we state that perfect secrecy is
achieved if no adversary A can succeed with probability any better than half.

Definition 3.3. (Adversarial Indistinguishability). An encryption scheme (Gen, Enc,
Dec) over a message space M is perfectly secret if for every adversary A it holds that

1
Pr[PrivK3T = 1] = 3

4 Conclusion

Since the limitations discussed in the introduction of the lecture are inherent to any perfectly
secure encryption scheme, there is no point in giving the adversary more power in attacking a
protocol. The hurdles in achieving perfect security outweighs the strength of perfect security.
Therefore, we shall bring about a few relaxations in our assumptions of the adversary,
namely,

1. Our assumption of the adversary having unbounded computational power is now re-
duced to being polynomially bounded.

2. We are also willing to accommodate for a break with a very small probability.

Hence, there is a need to find an alternative relaxed security notion different from perfect
security. This gave rise to the birth of computational security. However there are a few
compromises that we certainly have to make:

1. Perfectly secure schemes are very efficient.

2. Perfectly secure schemes are much faster as compared to the computationally secure
protocols.

Thus we conclude by saying that although a computationally secure scheme comes with a
certain price of efficiency, it is of utmost significance to examine the computational approach
since it helps bypass the inherent limitations of perfect secrecy by allowing the usage of short
keys and also permitting key reusability.
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