CSA EO 235: Cryptography 27-01-2016

Scribe for Lecture 5

Instructor: Arpita Patra Submitted by: Indumathy.J

1 PSEUDORANDOMNESS:

N“ Why Pseudorandomness /Pseudorandom Generator???

We adopted the world of Computational Security to overcome the 2 inherent limita-
tions of Perfect security. That is in Computational Security,

e We make the ’threat’ Computationally Bounded - PPT COA adversary.(Polynomial eff-
cient & Probablistic adversary)

e We allow 'Break’ with a small negligible probability.

e Small keyspace which is not as big as message space is used.

e And Key can be reused.

To encrypt PT - Plain Text with a key we need to have 'random’ key whose length is
equal to that of the PT’s. But to generate truly random bits of large size is an expen-
sive, difficult and a slow process. Hence its enough in computational security if we go for
Pseudorandomness which ’looks’ random to a PPT adversary , but truly its not. Thus,
Computational Security is practical.

N‘ What is Pseudorandomness /Pseudorandom Generator???
Pseudorandomness is a property of probability distribution on strings. Lets say,
G : Some probability distribution over set of binary strings of length ’n’.
U : Uniform Probability Distribution ( i.e. sampling any string from this set has same
probability) over the same set of strings.
We call a string sampled from the set of string according to G as pseudorandom string

or psedorandomly generated if its indisinguishable from a string sampled according to
U ( which we call truly random string) from the same set of strings to a PPT Distinguisher.
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2 PSEUDORANDOM GENERATOR:

We call a determnistic Polynomial time algorithm G as psedorandom generator if it takes
an uniform input string s e {0,1}" , where s : seed and n : security parameter, The
output G(s) is a string whose length is polynomial in n say 1(n) where 1 is a polynomial
if it satisfies the following condition :

e Expansion : For every n , I[(n) > n must hold. 1 is called expansion factor of G.
e Pseudorandomness : For any PPT Distinguisher D , the following probability
must hold for any negligible function negl:

| Pr[D(G(s) = 1] — Pr[D(r) = 1] | < negl(n)
which means the probability for a PPT distinguisher D to say a string is sampled

according to G or if its a truly random string is almost same. We’ll consider the following
Experiment / Game to understand this better.

3 THE PRG SECURITY / GAME / EXPERIMENT :

The aim of the game is to check if a PPT Distinguisher who can break a PRG system exists
or not.The game is played between a challenger and a PPT Distinguisher D. Consider :

e U : Uniform Distribution over {0, 1}!(®)
e G : PseudoRandom Generator whose seed is a uniform string from {0,1}" and output
G(s) is string of length 1(n) . n - security parameter , I(n) - polynomial over n.

The Distinguisher asks for a string of length 1(n) to the challenger .The challenger then
chooses a random bit b e {0,1}. If b = 0, the the challenger outputs Y er {0, 1}l(”) ,
which is a truly random string of length I(n) to D. Else he invokes G with a uniform seed
chosen from {0, 1}" as input and outputs ¥ = G(s) to D.

Now D outputs a bit say b’.We call G as PRG if D is not able to distinguish wether y was
sampled according to U or by G . This is given by the probability notion where negl is a
negligible function :

[Pr{D(G(s) = 1] - Pr{D(r) = 1]| < negl(n)

i.e Probability of D outputting 1 if he sees Y=G(s) or Y = truly randm string is almost
same. We need to note the randomness involved here is when choosing r (truly random
string of length 1(n)) or s(seed) and that of D who is a PPT Distinguisher.
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3.1 An Example of construction of Pseudo Random generator :

Lets construct a PRG G with input seed s e {0,1}" and expansion factor = n+1 .The
Pseudorandom generator G works as follows : It ouputs the string Y=G(s) as ss’ where the
last bit s’ is exor of 1st n bits.

Is the PRG Construction Secure???

We can easily have a PPT Distinguisher D who can guess that the string is a psudoran-
dom string or truly random string in the PRG Security Game with a probability which is
not < a negligible value.

D can check if the last bit of Y is exor of the previous n bits and if so and if Y was
output of G then Pr[D(G(s)=1] =1

If suppose Y was a truly random string of length n+1 outputed in the game , then
Pr[D(r) = 1] = 1/2 as Y ss’ is a truly random string and no matter how s’ was generated
the probability that it would be equal to the ex-or of 1st 'n’ bits is 1/2. Hence ,

|Pr[D(G(s) = 1] — Pr[D(r) = 1]| < 1/2 which is (non-negligible)

Thus G is not a PRG.

Construction of PRG is a hard task!!!

3.2 OBSERVATION :

It can be shown that distribution on the output of a PRG G is far from Uniform distribution.
This can be shown by considering the following scenario :

e Let G be a length doubling PRG , i.e I(n) = 2n, where n is the length of the input seed.
Under uniform distribution on {0,1}?" , the probability to choose a string is 272",
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e In contrast, consider the distribution of the output of G . G’s input is of length n and
the number of different strings on the range of G is thus atmost 2. Thus the fraction of
string of length 2n that are in the range of G is atmost 2" /22" = 27" which dont occur
as output of G.

Thus we can make an important observation that given an unbounded D (or unbounded
time) PRG can be cracked.

3.3 Brute Force on seed space by an unbounded Distinguisher D / or
given an unlimited amount of time, can actually crack PRG :

In the example above where G is a length doubling PRG , consider an unbounded
Distinguisher D or consider he has been given exponential amount of time.D outputs 1 iff
s er {0,1}" such that Y = G(s) by exhaustively computing G(s) for every s e {0,1}" as
by Kerchkhoff’s law the entire specification of the Scheme (here PRG G) must be public
except the secret key used in encryption. Thus , Pr[D(G(s)=1] =1 if Y = G(s).

In contrast if Y was actually sampled from 0, 12" uniformly , then the probability that
there exists an s with G(s) =Y is atmost 1/2™ and so D outlputs 1 with probability atmost
1/2™ Thus , Pr[D(r) = 1] = 27" . Hence,

| PriD(G(s) = 1]—Pr[D(r) =1| > 1—1/2" which is (non-negligible)

Hence we can see an unbounded attacker can perform an brute force attack and crack PRG.
Thus we must make sure that we select n sufficiently large so that an efficient Distinguisher
D cant perform brute force attack on the seed space.

4 EXISTENCE OF PSEUDORANDOM GENERATORS:

We certainly understood that its hard to construct PRG , but there is no concrete proof
for the existence PRG.But in the world of cryptography its strongly believed that PRG
exists. (like the unproven assumption P # N P) This assumption may be constructed under
2 basis :

e First under the weak assumption that one — way functions exist.Not practical and is due
to the works of Goldreich-Levin, Yao .(Explained in section.7)

e Second based on a highly practical candidate for PRG called StreamCipher. Stream
Cipher can be understood as a determnistic algorithm (just like G) which outputs pseu-
dorandom bits gradually and as requested . Thus it offers greater efficiency in terms of
only required number of bits can be requested and flexibility as there is no upper bound
on the number of bits that can be requested.
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Now we’ll prove the security of a COA- SKE that uses PRG :

5

PROOF OF SECURITY OF THE PRG -BASED SKE:

This proof is done by the method of REDUCTION. Informally, to prove an Encryption
construcion is secure by proof by Reduction is to start with an assumption that some math-
ematical problem is Hard which is believed to be true, or some known secure cryptographic
pimitive and prove the security of the given construction using this problem or the primitive
under the assumptions made.

This is done by contrapositive rule or proof by contradiction . Lets see the following

simple scenario to show how we can use proof by reduction to prove a Cryptographic scheme
T 1S secure.

5.1

Understanding proof by reduction:

e INITIAL ASSUMPTION: We start with the assumption that some problem X is
hard, i.e it cannot be solved by any Polynomial time algorithm except with some negligible
probability.

e Our goal is to prove that 7 is secure.Lets do that using proof by contradiction.

Lets fix some PPT Adversary A who can break m with good success probability &(n).
Now we’ll construct an efficient adversary say A’ (called the reduction) who attempts
to solve X using adversary A as a black box. i.e A’ doesnt know how A works except
the fact that he is good at attacking .

So given an instance  of X A’ has to simulate it into an instance of 7 in some manner
and ask adversary A to break 7 for the simulated z. - REDUCTION STEP.

If A breaks the instance of w simulated by A’ it must allow A’ to solve the instance z
atleast with an inverse probability 1/p(n).

It implies that A’ solves X with probability £(n)/p(n) as A solving 7 is independent
of solving X.

If £(n) is a non-negligible probability , Then it means B can break X with non-negligible
probability which contradicts with our initial assumption. - CONTRADICTION.

e Thus given our assumption that X is hard, we can conclude that there is no efficient PPT
sdversary A who can break 7 with non- negligible probability.
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Now lets see the Construction of the PRG Based COA-Secure SKE Scheme and later
prove the security of thus constructed scheme.

5.2 The PRG BASED COA- Secure SKE Scheme:

Construction of the scheme 7 :

Let G be a PRG with expansion factor [(n) , where n - security parameter and
input seed length. Lets define a private-key encryption scheme for messages of length
I(n) as follows:

e GEN : outputs a uniform key k {0, 1}"
e ENC : takes k and message m ¢ {0, 1}*(") as input and outputs cipher text c:=m®G (k).
e DEC : takes k and Ciphertext c £ {0, 1} as input and outputs message m:=c®G (k).

G(k)- Pseudorandom key.

CORRECTNESS OF THE SCHEME:

Its easy to check that DECK(ENCy(m)) = m.

PROOF:

From the definition of ENC algorithm we get , ENCj(m) := m & G(k).

From the definition of DEC algorithm we get , DECL(ENCk(m)) = DECKj(
m @ G(k)) =
m®dG(k)dG(k) :=m
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5.3 THEOREM : If G is a PRG , then the above fixed-length private-key
encryption scheme 7 is secure in the presence of an eavesdropper. i.e
, COA-Secure.

PROOF:

e INITIAL ASSUMPTION : PRG Exists. and G is PRG

e Now we prove the security of m by reducing it to Pseudorandomness of the PRG G. We
prove this by the proof by contradiction and lets assume the scheme is not COA-secure
and there exists a PPT adversary who can break the scheme with non-negligible proba-
bility. Hence ,

V A Pr[A wins in PrivK{s(n)] > 1/2 + negl(n)

e For the negligible function negl(n) we can find a polynomial function P(n) and a N
such that n> N and negl(n) < 1/P(n) :

V A Pr[A wins in PrivK{3(n)] > 1/2+1/P(n) for infinitely many n

e Now we use the PPT adversary A who could break 7 to emulate a PPT Distin-
guisher D who can distinguish the output of G from a truly random string. This is
done as follows there is a PRG verifier who chooses a bit b eg {0,1} and If b = 0
, the challenger outputs Y ez {0, 1} to D. Else he inputs a uniform seed chosen
from {0,1}" to G and outputs Y = G(s) to D.

e If we can somehow show that D can break G with non-negligible probability we
arrive at a contradiction to our inital assumption and we can thus prove that if
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PRG exists then 7 is COA-Secure.
e TO SHOW THAT:

|Pr[D(G(s)) = 1] — Pr[D(r) = 1]| > 1/P(n) which is (non-negligible)

e Now the 7’s adversary A sends two equal length (= 1(n)) messages mg and m; to
D.

e The D chooses another bit bl g {0,1} and encrypts the message my; with Y |
C < my @ Y and sends back to A. (Here D acts as PrivK % (n) verifier.)

e The above step represents how D uses instance of PRG problem Y to simulate an
instance C for the 7. — REDUCTION STEP.

e We must note that D is completly unaware of how A works , he just knows A breaks
7w with non-negligible probability.

e NOTE: If suppose Y was actually a pseudorandom string then this game is simiar
to PrivKy:(n) .

If not it would be similar to an OTP instance problem where C < my; & Y is
encrypted with a truly random key.

e Now A outputs a bit b’ to D.

e D outputs 11i.e the string Y is pseudorandomly generated by G if b=b’. As he knows
that A is good at breaking m which uses Pseudorandom Key and the chances that
Y was pseudorandom is high due to this fact.

e Else he outputs 0 i.e String Y must be a truly random string.

e Thus Pr[D(G(s))=1] > 1/2+ 1/P(n) — Probability of A breaking =

e PR[D(r) = 1] = 1/2 as Y is truly random string and no matter how A is powerful
his probability of guessing b’ would be 1/2 as for any message mg or m; we can
find a random key Y with 1/2 probability.

| PriD(G(s)) = 1] = Pr[D(r) = 1] | >(1/2+1/P(n)) - 1/2)
> 1/P(n) (non-negligible)

o Thus we see that G is not a PseudoRandom Generator which contradicts our initial
assumption. Thus our assumption that 7 is not COA-SECURE is incorrect.

CONCLUSION: IF G IS PRG , THEN 7 Constructed using psedorandom key is COA-
SECURE.

Now we have seen that using PRG , we have overcome one of the drawbacks of infor-
mation theoritic perfect security i.e smaller keyspace than that of the message space can be
used. To overcome the next drawback i.e Key reusability lets analyse MULTI -MESSAGE
COA Secure Scheme.
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6 MULTI MESSAGE COA - SECURITY :

Unlike Single-Message COA Security where the adversary over the channel can capture
only one Cipher Text , But in reality he can observe the channel for longer time and can
capture more than 1 cipher texts.This notion of multi-message COA- Secure SKE Scheme
is defined by the following experiment / game :

The game PrivKgo,‘ffm“lt(n) is played between a challenger and a PPT adver-
sary. The adversary picks two sets of Message vectors : My := < mg1 , Mo2 , -... ,

moy > and My = < my;, myga, ...., my; > and sends them to the challenger. The
challenger then chooses a uniform bit b ez {0, 1} and sends the encrypted cipher text
C := Enc(M,) := < Enci(mp) , Encg(myz) , ...... , Enci(my: >. The adversary

then guesses b’. If b = b’, the adversary wins and otherwise the adversary loses.

6.1 DEFINITION:

A symmetric key encryption scheme 7 is said to be ciphertext-only-attack multiple
message secure if for all PPT Adversaries A, there exists a negligible function
negl(n) such that

Pr[A wins in Priva;’ffr’m“”(n)] < 1/2 + negl(n)

6.2 RELATIONSHIP BETWEEN COA-SECURE AND COA-MULTI SE-
CURE SCHEMES :

We need to note the relationship between the two notions of security i.e single message
COA- Secure scheme and Multi message COA secure scheme. It is easy to observe
that the single message security is a special case of multi message security when the
2 message vectors are of unit length.Hence any scheme that is COA-Multi secure is
also COA-Secure. But The converse is not true.

6.3 SECURITY OF COA-MULTI SECURE SCHEME :

By allowing access to multiple messages, an adversary can figure out some information
about the combination of the multiple messages. For Example :In the PrivK e ™" (n)
game let adversary A chooses My = < A,A > and M; = < A,B > such that A and
B are 2 different strings and ENC(A) # ENC(B).The challenger outputs C = < cl
, €2 > . Its easy for A to check if ¢c1 = ¢2 , if so he knows that the 1st message
vector has been chosen for encryption otherwise he the other message vector has been

encrypted. Hence the adversary’s output is always right by the choice of My and M,

The above break is due to the fact that encryption of same message always yields the
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same cipher texts. In particular if any Encryption algorithm is determnistic one can
exploit the above fact and break the system. Hence wee need to go for RANDOM-
IZED ENCRYPTION ALGORITHM.

7 ONE-WAY FUNCTION:

We just made 2 Assumptions that PRG Exists and this implies COA-Secure Schemes
that use Pseudorandom key exists. Inorder to prove these assumptions we need to
understand what is One-Way function.A short description of One-Way Function is
outlined in this section.Informally One-way functions are those that are easy to com-
pute but "difficult” to invert (almost always).

7.1 DEFINITION :

A Function f: {0,1}* — {0,1}* is said to be One-Way Function if for a x ¢
Domain of f and for a y ¢ Range of f it satisfies the below 2 properties :

e EASY TO COMPUTE : y = f(x) is easy computed easily in polynomial
time.
e HARD TO INVERT : But the pre-image of y is difficult to compute.

7.2 THE INVERTING EXPERIMENT :

The Experiment Inverta s(n) is played by a PPT Adversary A(1") and a Verifier.
A challenges the verifier that he can find the invert image of the one-way function
f.

The verifier picks any x g {0,1}" from the Domain of f compute y=f(x) and gives
y to the adversary.

A outputs 1 if he find any one of the pre-image of Y say x’ such that x'=f"1 (y)
and he wins. x” may not be same as x

If x’ # f~ (y) A outputs 0 and he looses.

Hence f is ONE-WAY FUNCTION if there exists a negligible function negl(n)
such that :

Pr[A wins in Inverts ¢(n) | < negl(n)

7.3 CONSEQUENCE OF ONE WAY FUNCTION :

One can prove that

o If PRG exists then One-Way Function exists and hence,
o If coa-secure SKE exists, then One-Way Function exists.
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