CSA EO 235: Cryptography 3rd February 2016

Scribe for Lecture #7
Instructor: Arpita Patra Submitted by: Aditi Rai

1 Recall

In last lecture we discussed new definitions for secret key encryption (SKE), these definitions
were: choosen plaintext attack (CPA), CPA security and CPA-mult-security. Also, we
learned to use the notion of pseudorandomness in CPA-security and in this process we
defined Pseudorandom functions, permutations (PRF,PRP) and strong PRP, also modelled
PRF as an indistinguishability game.

In today’s lecture we will construct a CPA-secure scheme from PRF and also give a
proof of security of such a scheme.Later we will look at practical CPA-secure schemes from

PRF/PRP /SPRP.
2 Encryption using PRFs

2.1 Pseudo Random Functions (PRFSs)

Intutively a pseudorandom funtion (PRF) is a function wjose output begaviour looks like
that of a TRF for an observer who is computationally bounded.This can be formally stated
as:

| Pr [DF(k)(ln) = 1} — Pr [Df(')(ln) = 1} |< negl(n)

where the first probability is taken over uniform choice of k € {0,1}" and the randomness of

D, and the second probability is taken over uniform choice of f € Func, and the randomness
of D.

2.2 PRF based fixed length CPA-secure scheme

Let F be a pseudorandom function. We define a private-key encryption scheme II (Gen, Enc, Dec)
for message length n as follows:

e Gen: generates uniform key k& € {0,1}" on 1" as input

e Enc: takes a key £ € {0,1}" and a message m € {0,1}" as output, outputs ciphertext
¢ by choosing r € {0,1}" as

c=(r,m® F(r))

e Dec: takes a key k € {0,1}" and a ciphertext ¢ = (¢, ¢1) as input and outputs the
plaintext message as
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m = (Fj, (co) ® 1 (r))
Theorem 1 If F}. is a PRF, then Il is a CPA-secure scheme.

Proof We prove the theorem using proof by reduction. Assume II is not a CPA secure
scheme. Then there exists an adversary Acpa, who can break the scheme II with some
non-negligible probability. Thus, there exists a polynomial p(n) such that
K EPA 1 1
Pr [ PerKHACPA:J <35+ o)

Now we want to construct a good distinguisher who can distinguish Fj from a TRF with
the help Acpa such that

[0 ] e [0 <]
where ¢(n) is a polynomial and this will lead to a contradiction showing that the assumption
was wrong. D represents the distinguisher who has given oracle access to some function and
its goal now is to determine whether the function is PRF or TRF. The indistinguishability
experiment emulated by D for Acpa can be explained as:

e Training Phase: Acpa submits its plaintext messages m to D. D picks a random
string r € ({0,1})™ and submits it to oracle ’O’. O’ returns the value of function f
say y. D then returns ciphertext, ¢ := (r, (m @ y)) to Acpa.

e Challenge Phase: Acpa submits mg and my to D . These are the challenge plain-
texts and Agp4 can submit any message of its choice, the messages can be one of the
messages Acopa has already queried during training phase. D picks a random string
r* €p ({0,1})™ and forwards it to D. Oracle returns the value of function f say y*
to Aprr.Aprr flips a coin and choose a bit b € {0,1} and then returns ciphertext
c:= (rx, (mp ® y*)) to Acpa

e Post Challenge Phase: This phase is same as training phase.

e Response Phase: Acpy finally submits a bit, b’ as its guess regarding the encrypted
challenge plaintext. If &’ = b, then D outputs 1 else outputs 0.

The points to be noted here are:
e If D’s oracle is a PRF, then the experiment emulated by D for Acp4 is identical to

the experiment PriVKchilcpA (n) as the key k is chosen at random and then every
encryption is carried out by choosing random r, computing y := Fj(r).This gives us,

(k) .
Pr [DF (1m) = 1] = PrviCHF?ZCPA (n) =1,

where key k €r ({0,1})"
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e If D’s oracle is a truly random function, then an experiment I = (égz, Evnc, E/ec)
can be looked at to understand the view of D in this case. The scheme II =
(Gen Enc Dec) the only difference between II and IT is that a truly random function
is used in encryption in place of Fj.. Let Repeat denotes the event where the random
string r* chosen to generate challenge ciphertext c, is queried somewhere in Challenge
or Post-challenge phase.

— Case 1: r+* = r, chosen for some query in the training phase. In this case A
obtains both ¢ := (r,(m @ f(r))),c := (r*, (mp ® f(rx))) as ciphertexts to m and
my respectively. XORing these ciphertext will give the value m 4+ m; and thus
Acpa can distinguish between mg and mq and can succeed in the expreiment
with the probability 1.

—

Pr(Repeat) < (]2(—2

Since Acpa can make at most q(n) queries and since r* is chosen uniformly from
{0,1}".

— Case 2: rx # r for any query in the training phase.Here A learns nothing about
the value of f(r*) from its interaction with encryption oracle and Acpa can

succeed in the experiment only by guessing b, which happens with probability
1/2.

Now consider the probability that Acpa succeeds in the experiment Il

Pr |PrivK? _(n)=1| = Pr vaKCpa ~(n)=1A Repeat} +

Acpa,ll Acpa,

Pr vaKCpa ~(n)=1A Repeat}

Acpa,

= Pr vaKCpa ~(n)=1] Repeat} .Pr[Repeat] +

Acpa,l

Pr vaKcPa ~(n)=1] Repeat] .Pr |Repeat

Acpa,ll
< Pr[Repeat] + PrivKZpa ~(n)=1] Repeat]
C

pa,ll
gn) 1
< —
AL + 2

Now calculating the probability with which D can win PRF inddinguishability exper-

1-3



1 qn)

p(n) 2»
!

q'(n)

But this contradicts our assumption that Fj is a pseudo-random function.Hence
proved.

3 CPA-security for arbitrary length messages

Let IT = (Gen, Enc, Dec) be a fixed-length CPA secure based on PRF/SPRP/PRF, and
it encrypts messages of size n. Now to encrypt a message m of length t.n, a theoretical
construction can be described as, we will first divide m into t n-length blocks and then
encrypt each block using scheme II. The ciphertext is obtained by appending the ciphertexts
obtained from encryption of each block.

3.1 Block-cipher Modes of Operations

We are given a length-preserving block cipher F (may be a PRF/PRP/SPRP) with block
length, n. It takes a key & € {0,1}" and a value z € {0,1}" as input and outputs Fj(x) =
F(k,z) € {0,1}" and our goal is to encrypt a message m = myms....m; (Without loss of
generality m; € {0,1}" using F with ciphertext length as small as possible and with least
randomness.The different modes that are explained in this section are:

e Electronic Code Block (ECB) Mode
e Cipher Block Chaining (CBC) Mode
e Output Feedback (OFB) Mode

e Counter (CTR) Mode

3.1.1 Electronic Code Book (ECB) Mode

Given a message m = mims...m; and a SPRP Fj, ECB encodes m as:

C; = Fk(mz)
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And the decryption is carried out as:
mi = F ' (e)

For decryption to be possible, we need F~ ! to be efficiently computable and thus we need
F}, to be SPRP.The scheme is deterministic and is not CPA-secure.For example, lets take
two messages mg = aa and m; = ab, the corresponding cipher-text will be ¢; = c,c, and
¢ = cqcp. Just by looking at the ciphertext returned by Challenger, the Attacker can guess
the bit b with probability equals to 1.

m — m, my | TTTmemssesssssseee m,
4 ' f
Enc,(m) Enc, (m) Enc,(m)
r e {0,1}" ref{01} | —————- r e {0,1}"
¢ = (r, Fi(r) ® m) ¢ = (r, Fy(r) ® m) ¢ = (r, Fi(r) ® m)

‘ + '
key k K “ C‘

ciphertext ¢ = ¢,|| ¢j|... ||c, el =2tn ¢ = 2n

Gen (1)

Fig 3a. Electronic Code Book (ECB) Mode

3.1.2 Cipher Block Chaining (CBC) Mode

The scheme used in this mode is non-deterministic as an Initializtion Vector, IV, of block
length, n is chosen uniformly at random from {0,1}", and the encryption for message
m = mima....m; is carried out as:

COZIV
¢ = Fp(m; ® ci—1) for 1<i<t

The resulting ciphertext will be ¢ = ¢gey...¢; which will be of length (t+1)n. The decryption
of ith block requires ¢; and ¢;_1 as:

m; = ¢i—1 B Fr(c)
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Fig 3b. Cipher Block Chaining(CBC) Mode

The CBC scheme explained above is IND-CPA secure but cannot carry out parallel
encryption as each block has to wait for encryption of previous block. There exists a
variant of CBC mode known as Chained CBC mode.

Chained CBC Mode

In chained CBC mode the last block of previous iphetext is used as the IV for the encrptio
of the next message. This helps in reduction of bandwith as we are not sending IV each
time. Say the first message m = mqims...m;is encrypted using some random IV, and then
the next message m’ = m)mj...mj} is encrypted using ¢; as IV. The flaws in this scheme is
that it is vulnerable to chosen-plaintext attack as the adversary knows in advance the IV
for next message.

3.1.3 Output Feedback (OFB) Mode

In this mode, an Initialization Vector, IV, of block length n is chosen uniformly at random
from {0,1}" and a pseudorandom stream of y; is generated using PRF’s. The encryption
of the message m = mymsy...m; is carried out as

yo=1V
vi = Fi(yi-1)
Cc; =Y Dmy

1-6



Ve {0,1}"
O 1

Yo y1= Fu(vo) y2 = Fily) Y= Fi(yi)
l )
@ @ @
! I !
e I R ]
} | l
Co ¢ =m @y, cy=my Dy, ¢ =m Dy,

Fig 3c. Output Feedback (OFB) Mode

The psedorandom stream of pad is independent of m. So the scheme may not be
parallalizable (since each block is dependent on the last) but, is pre-computable as the y;
are independent of m. This scheme is CPA secure.

3.1.4 Counter CTR Mode

This scheme uses a counter, CTR which is basically an Initialization Vector chosen uniformly
at random from {0,1}". Then, a stream y; = Fx(CTR + i) is generated which is used in
the encryption of m = myms...m; as follows:

co =1V (or CTR)
c=m;dy; for 1<i<t

the ciphertext in this scheme will be given as ¢ = ¢ycj....¢; hich will be of length (t+1)n.

The decryption does not require F to be invertible, or even a permutation.But if F is
PRF, then CTR mode can be CPA-secure.

1-7



CTR ey {0,1}

n ] CTR + 1 CTR + 2 CTR + t
key k]‘ l b l l l
F F | ——— F
| l l
v, = Fi(CTR+1) y,=F,(CTR+2) v, = Fy(CTR+t)
| | 1
@ @ ?

T

T

m —

m,

m,

L]

l

m, @y,

l

cy = my By,

m; Dy,

f

all values
taken in
mod 2"

Fig 3d. Counter (CTR) Mode

Here we can see that the scheme is both pre-compuatble and parallelizable as the block
of pseudorandom stream can be computed independently.

3.1.5 Comparison of the modes of operation

Theorectical ECB CBC OFB CTR
construction
Randomness n/Block = t.n | Norandom- | n n n
Usage ness
Ciphertext Ex- | 2n/Block = | t.n (t+1).n | (t+1).n (t+1).n
pansion 2t.n
Ciphertext YES YES NO NO(but pre- | YES
Computation computable)
Parallelizable
Randomness NO - - YES YES
Reusability
Minimal As- | PRF SPRP SPRP | PRF PRF
sumption
CPA Security | YES NO YES YES YES
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