
CSA E0 235: Cryptography 07/02/2016

Scribe for Lecture 8

Instructor: Arpita Patra Submitted by: Kaushik Joarder

Contents

8-1

1 Chosen Ciphertext Attack (CCA)

Chosen-Ciphertext Attack (CCA) is the type of attack where the adversary is provided
not only with the ability to encrypt messages of its choice (as in a chosen-plaintext attack
or CPA), but also with the ability to decrypt ciphertexts of its choice (with some restric-
tions). Formally, the adversary is given access to a decryption oracle (DO) in addition to
an encryption oracle (EO).

Figure 1: Diagramatic representation of CCA

2 DO practical example

In practical situation an adversary might be able to influence what gets decrypted, and
learns some partial information about the result. Here are few examples:

1. It is conceivable that the US cryptanalysts might also have tried to send encrypted
messages to the Japanese and then monitor their behavior. Such behavior (e.g., movement
of forces and the like) could have provided important information about the underlying
plaintext.
2. A user communicating with their bank, where all communication is encrypted. If this
communication is not authenticated, then an adversary may be able to send certain cipher-
texts on behalf of the user; the bank will decrypt these ciphertexts, and the adversary may
learn something about the result. For example, if a ciphertext corresponds to an ill-formed
plaintext, the adversary may be able to deduce this from the bank’s reaction (i.e., the pat-
tern of subsequent communication).
3. Encryption is often used in higher-level protocols; e.g., an encryption scheme might be
used as part of an authentication protocol where one party sends a ciphertext to the other,
who decrypts it and returns the result. In this case, one of the honest parties may act
exactly like a decryption oracle.

8-2

3 A little help from DO can be very very detrimental

Availability of Decryption Oracle (DO) service to the Attacker makes him very pow-
erful. Even the knowledge of whether a modified ciphertext decrypted correctly or not can
help an attacker to completely find the underlying plaintext. For example, An Adversary
can get complete knowledge of the plaintext encrypted in CBC mode using padding oracle
attack .

Figure 2: Padding Oracle Attack on CBC Mode

In popular padding system like PKCS#5 padding some extra bytes need to be ap-
pended in the last block of m to make its length L bytes. This procedure is called padding.
Let b be the number of bytes need to be appended where 1 ≤ b ≤ L. So each of this b
bytes are filled with the integer value b before encryption. After decryption the receiver
reads the final byte value b. If the last b bytes of all have value b then strip-off the pad
and output m. Else output bad padding (request for re-transmission).

An attacker can modify the ciphertexts and learn b (|m| leaked) and subsequently the
entire plaintext (m) from only the knowledge of successful/failure decryption by DO.

To know the value of b and therefore |m|:

The Attacker changes the 1st byte of c1 and wait for the response of the receiver. The
change in the 1st byte of c1 also creates a change in the 1st byte of the last block in de-
crypted message. If b=L, the first byte of the last block which should be b is now changed
due to change in c1. So, It will show failure and the Attacker will gain the information b=L.
For b<L, It will show success. Then the Attacker will repeat changing the 2nd byte, 3rd
byte, and so on until the receiver show the result failure. If i is the least indexed modified

8-3

ciphertext corresponding to which Failure comes for then b=L-i+1

To know the encrypted message:

After having the value b, the Attacker tries to know the value of last byte in m2. The
Attacker changes Last b+1 bytes of c1 by 41.
41 = (000...1 (b+1)⊕b (b+1)⊕b (b+1)⊕b
If b=B, then the Receiver will show success, otherwise failure.In that case the Attacker
will change the value of 41 from 1 to 2,3,4...until it shows success. The Attacker need to
run at most 256 times to know B exactly.

Morale: Attacker can have control over what is decrypted which can help the attacker
to break the secrecy. So it is necessary to capture CCA in the security definition.

4 Comparison of security for SKE between CCA and CPA

The Threat and Break model for both CPA and CCA are quite similar.

Threat: Randomized, probabilistic polynomial-time (PPT) adversaries with
capability of Chosen Ciphertext Attack (CCA)
Break: Given the knowledge of two messages (vector of messages), it cannot be
distinguished if the ciphertext corresponds to the first or second message (message
vector).

CCA Security is Stronger Than CPA-security. It comes automatically from the fact
that in CCA, Decryption Oracle service is provided to the adversary (with some obvious re-
striction) in addition to Encryption Oracle service (which is also available to the Adversary
in CPA). So, the protocol which is CCA secure (even after the Adversary has so power!!)
is also CPA secure.
As an example it is possible to show that a CPA secure scheme can be easily broken by an
attacker with a little help from DO.

Indistinguishability Experiment

An Attacker running the indistinguishability experiment can choose m0 = (000..) and
m1 = (111..). Then, upon receiving a ciphertext c = (r, s), the adversary A can flip the

8-4

first bit of s and ask for a decryption of the resulting ciphertext c*. Since c* 6= c, this
query is allowed, and the decryption oracle answers with either (10000...) (in which case it
is clear that b = 0) or (01111..)(in which case b = 1).
This example demonstrates why CCA security is so stringent.

5 CCA indistinguishability experiment

The Adversary(A) is given Oracle access to both Encryption and Decryption Oracle

Pre challenge Training Phase:

A adaptively submits its queries (any query is allowed in any order)to the verifier and
receive ciphertexts as response.

Challenge:

A submits two equal length challenge plaintexts m1,m2. A is free to submit any message
of its choice (including the ones already queried during the training phase). A random bit
b ∈ 0, 1 is chosen by the verifier, and then a ciphertext c ← Enck(mb) is computed and
given to A. We call c the challenge ciphertext.

Post Challenge Training Phase:

The adversary A continues to have oracle access to Enck and Deck, but is not allowed to
query the latter on the challenge ciphertext itself.

Response Phase:

A finally submits its guess regarding encrypted challenge plain-text. A outputs a bit b*.
The output of the experiment is defined to be 1(A Wins) if b* = b, and 0 otherwise.

Figure 3: CCA Indistinguishability Experiment

8-5

SECURITY DEFINITION

A private-key encryption scheme Π has indistinguishable encryptions under a chosen-
ciphertext attack (or is CCA-secure) if for all probabilistic polynomial-time(PPA) adver-
saries A there exists a negligible function negl such that:

Pr[PrivKcca
A,Π (n) = 1]6

1

2
+ negl(n)

6 CCA Multiple Encryption

For multiple encryption CCA indistinguishability experiment is similar to the previous
one except the fact that multiple messages are being encrypted and decrypted.

Figure 4: CCA-Mult Indistinguishability Experiment

SECURITY DEFINITION

Π is CCA-secure for multiple encryptions if for every PPT A, there is a negligible function
negl, such that:

Pr[PrivKcca−mult
A,Π (n) = 1]6

1

2
+ negl(n)

Any cipher that is CCA-secure for multiple encryption is also CCA-secure for single
encryption. The converse is also true, i.e. any cipher that is CCA-secure for single encryp-
tion also satisfy CCA-security for multiple encryption. So, CCA-security for single message
is sufficient.

8-6

7 Malleability

Malleability is the power of the Adversary to easily manipulate known ciphertexts to
obtain new ciphertexts so that the relation between the underlying messages are known to
him. Then he gets DO service on the changed ciphertext to get the message, and retrieves
the original message using the relation.
So, malleability is a big issue in SKE. As we have already seen that how a little help from
DO can cause a break in a CPA secure scheme, it can be concluded that CCA security does
not guarantee non-malleability.

To implement non-malleability a SKE should satisfy the followings:

• It is nearly impossible to create a new ciphertext.

• Changing a ciphertext should either result in an incorrect ciphertext
or should decrypt to a plaintext which is unrelated to the original plaintext.

Message Authentication Codes (MAC) helps us to get such a SKE.

8-7

8 Message Integration and Message Authentication

Message integrity and authentication are also part of secure communication.

Not all security concerns are related to the ability or inability of an adversary to learn
information about messages being sent. In many cases, it is of equal or greater impor-
tance to guarantee message integrity or message authentication in the sense that each party
should be able to identify a message received indeed originated from authentic party (issue
of message authentication) and a message it receives was exactly the message sent by the
other party (issue of message integrity)

In general, one cannot rely on the integrity of communication without taking specific mea-
sures to ensure it. Indeed, any unprotected online purchase order, online banking operation,
email, or SMS message cannot, in general, be trusted to have originated from the claimed
source. Unfortunately, people are in general trusting and thus information like the caller-ID
or an email return address are taken to be ’proofs of origin’ in many cases (even though they
are relatively easy to forge): This leaves the door open to potentially damaging adversarial
attacks.

9 Message Authentication in Private Key Setting

The aim of a message authentication code is to prevent an adversary from modifying
a message sent by one party to another, without the parties detecting that a modification
has been made. As in the case of encryption, this is only possible if the communicating
parties have some secret that the adversary does not know (otherwise nothing can prevent
an adversary from impersonating the party sending the message). Here, we will consider
the private-key setting where the parties share the same secret key.

Two users who wish to communicate in an authenticated manner begin by generating and
sharing a secret key k in advance of their communication. When one party wants to send a
message m to the other, she computes a MAC tag t based on the message and the shared
key, and sends the message m along with the tag t to the other party. The tag is computed
using a tag-generation algorithm that will be denoted by Mac. Upon receiving (m,t), the
second party verifies whether this is a valid tag on the message m with respect to the shared
key or not

8-8

Figure 5: Diagramatic representation of Message Authentication in Private Key Setting

10 Syntax of Message Authentication Codes (MAC)

A message authentication code (or MAC) is a tuple of probabilistic polynomial-time
algorithms (Gen, Mac, Vrfy) such that:

• The key-generation algorithm Gen takes as input the security param-
eter 1n and outputs a key k with |k| ≥ n.

• The tag-generation algorithm Mack(m) takes as input a key k and a
message m∈ (0, 1)*, and outputs a tag t. Since this algorithm may be randomized,
we write this as t← Mack(m).

• The verification algorithm Vrfy takes as input a key k, a message m,
and a tag t. It outputs a bit b, with b = 1 meaning valid and b = 0 meaning invalid.
We assume without loss of generality that Vrfy is deterministic, and so write this as
b← V rfyk(m, t).

It is required that for every n every key k output by Gen(1n) and every m∈ (0, 1)* it
holds that V rfyk(m,Mack(m)) = 1.
If (Gen, Mac, Vrfy) is such that for every k output by Gen (1n) algorithm Mack is only

defined for messages m∈ (0, 1)l(n) and V rfyk outputs 0 for any m /∈ (0, 1)l(n) then we say
that (Gen, Mac, Vrfy) is a fixed-length MAC for messages of length l(n).

Any MAC defines the following three space (sets):

Key space (K): Set of all possible keys output by algorithm Gen.
Plain-text(message)space (M): Set of all possible legal messages.
Tag space (T): Set of all tags output by algorithm Mac.

8-9

11 Security for MAC

Threat Model: Randomized, probabilistic polynomial-time (PPT) adversaries
with capability of Chosen Message Attack (CMA).
Break Model: It is not possible to come up with (m,t) if no tag on m is seen before.

A stronger security definition could be implemented where the threat and break models
are different than the previous.

Threat Model: Randomized, probabilistic polynomial-time (PPT) adversaries
with capability of Chosen Message and Verification Attack (CMVA).
Break Model: It is not possible to come up with (m,t) if (m,t) has not been seen
before.

12 The message authentication experiment: [mac− forgeA,Π(n)]

The Verifier generates a random key k by running Gen (1n).

Training Phase:

The adversary A is given oracle access to Mack. The adversary sends messages m and gets
tag for several messages of its choice adaptively. Let Q denote the set of all queries that A
asked to the Verifier; Q = (m1,m2...,mI).

Challenge:

After the training A forges a tag (m,t) and sends for verification. The output of the exper-
iment is defined to be 1(A succeeds) if and only if
(1) V rfyk(m,t) = 1 ,and
(2) m /∈ Q.

SECURITY DEFINITION:

A message authentication code Π= (Gen, Mac, Vrfy) is existentially unforgeable under an
adaptive chosen-message attack, or CMA- secure, if for all probabilistic polynomial-time
(PPT) adversaries A, there exists a negligible function negl such that:

Pr[Mac− forgeA,Π (n) = 1]6 negl(n)

8-10

MAC-Strong Experiment: [mac− sforgeA,Π(n)]

For stronger definition of MAC we can perform an experiment similar to MAC. Here
the only change is that Q is now the set of all possible queries and corresponding tags. Q
= (m1, t1),..,(ml, tl). So now the output of the experiment is defined to be 1(A succeeds) if
and only if
(1) V rfyk(m,t) = 1, and
(2) (m,t) /∈ Q.

SECURITY DEFINITION:

A message authentication code Π= (Gen, Mac, Vrfy) is existentially unforgeable under an
adaptive chosen-message attack, or strong CMA- secure, if for all probabilistic polynomial-
time (PPT) adversaries A, there exists a negligible function negl such that:

Pr[Mac− sforgeA,Π (n) = 1]6 negl(n)

8-11

13 References

1. Jonathan Katz and Yehuda Lindell, Introduction to Modern Cryptography, second edi-
tion, CRC Press, 2014.
2. Arpita Patra. http://drona.csa.iisc.ernet.in/ arpita/Cryptography16.html. Course Ma-
terials.

8-12

