| E0 235 : Cryptography | Question Set | |--------------------------|--------------| | Tutorial 1 | | | Instructor: Arpita Patra | Feb 08, 2016 | ### Question 1 Prove or refute: For every encryption scheme that is perfectly secret it holds that for every distribution over the message space M, every $m, m' \in M$, and every $c \in C$: $$\Pr[M = m \mid C = c] = \Pr[M = m' \mid C = c].$$ ### Question 2 When using the one-time pad (Vernam's cipher) with the key $k=0^l$, it follows that $\operatorname{Enc}_k(m)=k\oplus m=m$ and the message is effectively sent in the clear! It has therefore been suggested to improve the one-time pad by only encrypting with a key $k\neq 0^l$ (i.e., to have Gen choose k uniformly at random from the set of non-zero keys of length l). Is this an improvement? In particular, is it still perfectly secret? Prove your answer. If your answer is positive, explain why the one-time pad is not described in this way. If your answer is negative, reconcile this with the fact that encrypting with 0^l doesn't change the plaintext. ### Question 3 Let G be a pseudorandom generator where $|G(s)| > 2 \cdot |s|$. - (a) Define $G'(s) \stackrel{def}{=} G(s0^{|s|})$. Is G' necessarily a pseudorandom generator? - (b) Define $G'(s) \stackrel{def}{=} G(s_1 \cdots s_{n/2})$, where $s = s_1 \cdots s_n$. Is G' necessarily a pseudorandom generator? ### Question 4 **Definition 1** A private-key encryption scheme $\Pi = (Gen, Enc, Dec)$ has indistinguishable encryptions in the presence of an eavesdropper, or is EAV-secure, if for all probabilistic polynomial-time adversaries \mathcal{A} there is a negligible function negl such that, for all n, $$\Pr \ \left[\mathsf{PrivK}^{\mathsf{eav}}_{\mathcal{A},\Pi}(n) = 1 \right] \leq 1/2 + negl(n)$$ where the probability is taken over the randomness used by \mathcal{A} and the randomness used in the experiment (for choosing the key and the bit b, as well as any randomness used by Enc). \diamondsuit Prove that the above definition (Definition 5) cannot be satisfied if Π can encrypt arbitrary length messages and the adversary is not restricted to output equal length messages in experiment $\mathsf{PrivK}_{A,\Pi}^{\mathsf{eav}}$. Hint: Let q(n) be a polynomial upper-bound on the length of the ciphertext when Π is used to encrypt a single bit. Then consider an adversary who outputs $m_0 \in \{0,1\}$ and a uniform $m_1 \in \{0,1\}^{q(n)+2}$. ### Question 5 Let F be a pseudorandom permutation, and define a fixed-length encryption scheme (Enc, Dec) as follows: On input $m \in \{0,1\}n/2$ and key $k \in \{0,1\}^n$, algorithm Enc chooses a uniform string $r \in \{0,1\}n/2$ of length n/2 and computes $c := F_k(r||m)$. Show how to decrypt, and prove that this scheme is CPA-secure for messages of length n/2. ### Question 6 Let F be a pseudorandom function and G be a pseudorandom generator with expansion factor l(n) = n + 1. For each of the following encryption schemes, state whether the scheme has indistinguishable encryptions in the presence of an eavesdropper and whether it is CPA-secure. (In each case, the shared key is a uniform $k \in \{0,1\}^n$.) Explain your answer. - (a) To encrypt $m \in \{0,1\}^{n+1}$, choose uniform $r \in \{0,1\}^n$ and output the ciphertext $\langle r, G(r) \oplus m \rangle$. - (b) To encrypt $m \in \{0,1\}^n$, output the ciphertext $m \oplus F_k(0^n)$. - (c) To encrypt $m \in \{0,1\}^{2n}$, parse m as $m_1||m_2$ with $|m_1| = |m_2|$, then choose uniform $r \in \{0,1\}^n$ and send $\langle r, m_1 \oplus F_k(r), m_2 \oplus F_k(r+1) \rangle$. ## Question 7 Consider the following MAC for messages of length l(n) = 2n - 2 using a pseudorandom function F: On input a message $m_0||m_1$ (with $|m_0| = |m_1| = n - 1$) and key $k \in \{0,1\}^n$, algorithm Mac outputs $t = F_k(0||m_0)||F_k(1||m_1)$. Algorithm Vrfy is defined in the natural way. Is (Gen, Mac, Vrfy) secure? Prove your answer. ## Question 8 Let F be a pseudorandom function. Show that each of the following MACs is insecure, even if used to authenticate fixed-length messages. (In each case Gen outputs a uniform $k \in \{0,1\}^n$. Let $\langle i \rangle$ denote an n/2-bit encoding of the integer i.) - (a) To authenticate a message $m=m_1,\dots,m_l$, where $m_i\in\{0,1\}^n$, compute $t:=F_k(m_1)\oplus\dots\oplus F_k(m_l)$. - (b) To authenticate a message $m = m_1, \dots, m_l$, where $m_i \in \{0, 1\}^{n/2}$, compute $t := F_k(\langle 1 \rangle || m_1) \oplus \cdots \oplus F_k(\langle l \rangle || m_l)$. ### Question 9 Let F be a pseudorandom function. Show that the following MAC for messages of length 2n is insecure: Gen outputs a uniform $k \in \{0,1\}^n$. To authenticate a message $m_1||m_2|$ with $|m_1| = |m_2| = n$, compute the tag $F_k(m_1)||F_k(F_k(m_2))$. #### Practice Problems ### Question 1 For any function $g:\{0,1\}^n \to \{0,1\}^n$, define $g^{\$}(\cdot)$ to be a probabilistic oracle that, on input 1^n , chooses uniform $r \in \{0,1\}^n$ and returns $\langle r,g(r)\rangle$. A keyed function F is a weak pseudorandom function if for all PPT algorithms D, there exists a negligible function negl such that: $$\mid \operatorname{Pr} \left[D^{F_k^{\$}(\cdot)}(1^n) = 1 \right] - \operatorname{Pr} \left[D^{f_k^{\$}(\cdot)}(1^n) = 1 \right] \mid \leq negl(n)$$ where $k \in \{0,1\}^n$ and $f \in Func_n$ are chosen uniformly. - (a) Prove that if F is pseudorandom then it is weakly pseudorandom. - (b) Let F' be a pseudorandom function, and define $$F_k(x) \stackrel{def}{=} \left\{ \begin{array}{l} F'_k(x) & \text{if } x \text{ is even} \\ F'_k(x+1) & \text{if } x \text{ is odd} \end{array} \right.$$ Prove that F is weakly pseudorandom, but not pseudorandom. ## Question 2 Prove that the following modifications of basic CBC-MAC do not yield a secure MAC (even for fixed-length messages): A random initial block is used each time a message is authenticated. That is, choose uniform $t_0 \in \{0,1\}^n$, run basic CBC-MAC over the "message" t_0, m_1, \dots, m_l , and output the tag $\langle t_0, t_l \rangle$. Verification is done in the natural way. ### Question 3 For each of the following encryption schemes, state whether the scheme is perfectly secret. Justify your answer in each case. - (a) The message space is $M = \{0, \dots, 4\}$. Algorithm Gen chooses a uniform key from the key space $\{0, \dots, 5\}$. $\mathsf{Enc}_k(m)$ returns $[k+m \bmod 5]$, and $\mathsf{Dec}_k(c)$ returns $[c-k \bmod 5]$. - (b) The message space is $M=\{m\in\{0,1\}^l|\text{ the last bit of }m\text{ is }0\}$. Gen chooses a uniform key from $\{0,1\}^{l-1}$. $\operatorname{Enc}_k(m)$ returns ciphertext $m\oplus(k||0)$, and $\operatorname{Dec}_k(c)$ returns $c\oplus(k||0)$. ### Question 4 Let Π be an arbitrary encryption scheme with |K| < |M|. Show an \mathcal{A} for which $\Pr\left[\mathsf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{eav}} = 1\right] > 1/2$. Hint: It may be easier to let \mathcal{A} be randomized. ### Question 5 In the following cases, say whether G' is necessarily a pseudorandom generator. If yes, give a proof; if not, show a counterexample. - (a) Let G be a pseudorandom generator with expansion factor l(n) > 2n. Define $G'(s) \stackrel{def}{=} G(s)||G(s+1)$. Is G' necessarily a pseudorandom generator? - (b) Let $G: \{0,1\}^k \to \{0,1\}^n$ be a PRG. $G': \{0,1\}^{k+l} \to \{0,1\}^{n+l}$ defined by $$G'(x||x') = G(x)||x'$$ where $x \in \{0, 1\}^k$ and $x' \in \{0, 1\}^l$. ### Question 6 Prove or refute: An encryption scheme with message space M is perfectly secret if and only if for every probability distribution over M and every $c_0, c_1 \in C$ we have $$\Pr[\ C=c_0\]=\Pr[\ C=c_1\].$$ ## Question 7 Assuming the existence of a pseudorandom function, prove that there exists an encryption scheme that has indistinguishable multiple encryptions in the presence of an eavesdropper (i.e.COA-secure), but is not CPA-secure # Question 8 Let F be a length-preserving pseudorandom function. For the following constructions of a keyed function $F': \{0,1\}^n \times \{0,1\}^{n-1} \to \{0,1\}^{2n}$, state whether F' is a pseudorandom function. If yes, prove it; if not, show an attack. - (a) $F'_k(x) \stackrel{def}{=} F_k(0||x)||F_k(1||x)$ - (b) $F'_k(x) \stackrel{def}{=} F_k(0||x)||F_k(x||1)$ #### References 1. Jonathan Katz, Yehuda Lindell : Introduction to Modern Cryptography, Second Edition