

Chalk & Talk Session

Instructor: Arpita Patra

Submitted by: (Arnab Sen Ramit Hansda)

Introduction

In this report we are dealing with of the sufficiency conditions for a graph \mathbb{G} to be a Hamilton graph introduced by Chvatal (1972). A cycle in a graph which contains all the vertices of the graph only once is called **Hamilton cycle**. A graph is called **Hamilton graph** iff it has a Hamilton cycle.

Chvatal's Sufficiency Condition for Hamiltonian Graph

Let \mathbb{G} be a graph with n vertices where $n \geq 3$ with degree sequence (d_1, \dots, d_n) such that $(d_1 \leq d_2 \leq \dots \leq d_n)$ satisfies the following condition: if there is an integer k such that $1 \leq k < \frac{n}{2}$ and $d_k \leq k$, then $d_{n-k} \geq n - k$. Then \mathbb{G} is Hamiltonian.

Proof

We'll prove this theorem by contradiction. Let's assume there exists a non-Hamilton graph \mathbb{G} which satisfies Chvatal condition. Now we add the non adjacent vertices by an edge until we reach such a position where adding an extra edge will make the graph Hamilton. We'll call this resulting graph as \mathbb{H} . So, \mathbb{G} is a spanning subgraph of the resulting graph \mathbb{H} and $\deg_{\mathbb{H}}(u) \geq \deg_{\mathbb{G}}(u) \forall u \in \mathbb{G}$. Hence, \mathbb{H} too satisfies Chvatal condition. Now assume, $(d_1 \leq d_2 \leq \dots \leq d_n)$ is degree sequence of \mathbb{H} . Now, we claim that there will atleast one pair of vertices $(u, v) \in \mathbb{H}$ such that u, v are non-adjacent to each other. Otherwise, \mathbb{H} is a complete graph and a complete graph is alway Hamilton graph which contradicts our assumption that \mathbb{H} is non-Hamilton. Among all these non-adjacent pairs we choose the pair (u, v) such that

$d(u) + d(v)$ is maximum for all non-adjacent pairs.(1)

Now, by construction of the graph \mathbb{H} we can see that add u and v by an edge will create a Hamilton cycle. So, there exists a Hamilton path between u and v already. Let the path be $\mathbb{P} = (u_1, u_2, \dots, u_{n-1}, u_n)$ where $u_1 = u$ and $u_n = v$. Now, if u is adjacent to a vertex u_j then v is non-adjacent to the vertex u_{j-1} , because otherwise, it will form an Hamilton cycle as $\mathbb{C} = (u_1, u_j, u_{j+1}, \dots, u_n, u_{j-1}, \dots, u_1)$. So, for each adjacent vertex to u there is one non-adjacent vertex to v . So, there are atleast $d(u)$ vertices which are non-adjacent to v . So,

$$\begin{aligned} d(v) &\leq n - 1 - d(u) \\ \Rightarrow d(u) + d(v) &\leq n - 1 \dots \dots \dots (2) \end{aligned}$$

Without the loss of generality we can assume that

$$d(u) \leq d(v) \text{ and } d(u) = k \dots \dots \dots (3)$$

$$\text{So, } k < \frac{n}{2} \dots \dots \dots (4)$$

Now as per our assumption $d(u)+d(v)$ is maximum for any non-adjacent pair of vertices, every non-adjacent vertex (u_{j-1}) to v has a degree atmost $d(u)$ ($=k$). as we've already shown there is one vertex u_{j-1} non-adjacent to v for each adjacent vertex u_j of u . So, there are k vertices with degree atmost k . Since, we've arranged the degrees in non-decreasing order, it follows that

$$d_k \leq k \dots \dots \dots (5)$$

Since, u is adjacent to k vertices, it's non-adjacent to $n-1-k$ vertices (other than u). Again by the maximality of $d(u)+d(v)$ each of the $n-1-k$ vertices has degree atmost $d(v) (\leq n-1-k)$ [from (2)]. Now from (2) and (3) we have $d(u) \leq d(v) \leq n-1-k$. Hence taking vertex v into account there are atleast $n-k$ vertices of degree atmost $n-1-k$. Since we have arranged the degree sequence in non-decreasing order, it follows that

$$d_{n-k} \leq n-1-k \dots \dots \dots (6)$$

Thus we have found a k such that $k < \frac{n}{2}$ (From 4), $d_k \leq k$ (from 5) and $d_{n-k} \leq n-1-k$ (from 6). So, it infers that graph \mathbb{H} is not Chvatal. \mathbb{H} was obtained from graph \mathbb{G} by adding some edges. So, \mathbb{G} is also not satisfying Chvatal's condition which contradicts our assumption. From this by contrapositive argument we can infer that \mathbb{G} is a Hamilton graph.