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Heawood’s theorem on 5-colorability of Planar graphs

Introduction The five color theorem is a result from graph theory that given a plane
separated into regions, such as a political map of the countries of a state, the regions may
be colored using no more than five colors in such a way that no two adjacent regions receive
the same color. In this report, we show the proof of the five color theorem.

We will first prove some results which will help us in explaining the proof of the main
theorem.

Definition 1 A graph is planar if it can be drawn in a plane without edges of the graph
crossing each other.

Definition 2 A planar graph divides the plane into disjoint connected regions which is
called faces of the graph, so that every point in the plane which is not an element of the
graph lies in just one of these regions. Exactly one region is unbounded, also called the outer
face, and the others are bounded by edges in the graph. In Figure 1, there are four faces.
We denote each face with sequence of vertices as follows
Face I - bdcb, Face II - abda, Face III - abca, Face IV - acda

Figure 1: A planar graph with four faces.

We will use the following two lemmas in our final proof.

Lemma 1 In connected planar graph, each edge is traversed once by each of the two dif-
ferent faces, or is traversed exactly twice by one face.

Lemma 2 For a connected planar graph with at least three vertices, each face is bounded
by at least three edges.
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Theorem 1 (Euler’s Theorem) Given a connected planar graph with n vertices, e edges
and f number of faces then

v − e + f = 2

Proof Let us generalize it to allow multiple connected components c. In that case the
formula becomes v + f = e + c + 1.
We prove by induction over e.
If e = 0, we have v = c, f = 1, and the theorem holds.
In general case, if we remove an edge then either:

1. The number of faces reduces by 1 or

2. The number of components increases by 1.

In each case, if the formula is true for the new graph, then it is true for the old one.

Theorem 2 Suppose a connected planar graph has v ≥ 3 vertices, and e edges, Then

e ≤ 3v − 6

Proof Let f be the number of faces of the graph.
By Lemma 1, every edge is traversed exactly twice by the face boundaries. So the sum of
the lengths of the face boundaries is exactly 2e. Also by Lemma 2, when v ≥ 3, each face
is bounded by at least three edges, so this sum is at least 3f . This implies that

3f ≤ 2e

But f = e− v + 2 by Euler’s formula, so by substituting the value of f we get

3(e− v + 2) ≤ 2e

e− 3v + 6 ≤ 0

e ≤ 3v − 6

(1)

Lemma 3 Every Planar graph has a vertex of degree at most five.

Proof By contradiction.
If every vertex had degree at least 6, then the sum of the vertex degrees is at least 6v, but
since the sum of the vertex degrees equals 2e by the Handshake Lemma, we have e ≥ 3v
contradicting the fact that e ≤ 3v − 6 < 3v by Theorem 2.
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Theorem 3 (Heawood’s Theorem) Every Planar Graph is 5 vertex colorable.

Proof We will use strong induction on the number of vertices v with the induction
hypothesis :

Every Planar graph with v vertices is five colourable

Base Case: When v ≤ 5, then we trivially know that the hypothesis is true.
Inductive Case: Suppose G is a planar graph with v + 1 vertices. From Lemma 3, we
know that there exists one vertex with degree at most 5. Let that vertex be x. Remove the
vertex x from G to get graph G’. By Induction hypothesis we know that G’ is five colorable.

Case 1: In graph G, if the vertices connected to x does not contain all the five colors,
then we can color x with any one of the missing colors and thus we get five coloring for G.

Case 2: : The degree of vertex x is exactly 5 and the vertices adjacent to x contain five
different colors.
Let y1, y2, y3, y4, y5 be the vertices which are adjacent to x as shown in the Figure 2, and
let they be colored 1, 2, 3, 4, 5 respectively, where number denotes following colors
Blue - 1
Yellow - 2
Red - 3
Green - 4
Turquoise - 5
The dotted lines in the figure represents the edges that might exist in the graph.

Figure 2: Illustration of Case 2

We now consider the subgraph G1,3 of G’ consisting of vertices colored 1 and 3 and the
edges that connect vertices of color 1 to vertices of color 3.
If there is no walk between y1 and y3 in G1,3, then we switch colors 1 and 3 in the portion
of G1,3 connected to y1.
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Thus x is no longer adjacent to a vertex of color 1, so we can color it 1.

If there is a walk between y1 and y3 in G1,3, then we proceed to form G2,4 in the same
manner.
However, since G is planar and there is a circuit in G that consists of the walk from y1 to
y3, so clearly y2 cannot be connected to y4 within G2,4.
Thus, we can switch colors 2 and 4 in the portion of G2,4 which is connected to y2.
Thus, x is no longer adjacent to a vertex of color 2, so we can color it 2. Thus we get a five
coloring for G, which proves the theorem.
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