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Introduction :
Menger’s theorem is a characterization of the connectivity in finite undirected graphs

in terms of the minimum number of disjoint paths that can be found between any pair of
vertices. It was proved by Karl Menger in 1927.

The measure of connectedness between a given pair of non-adjacent vertices can be
done in two ways - One way of doing this is to determine the largest number of such paths
that are pairwise ‘independent’ of one another in sharing no other vertices. Another way
of measuring their connectedness is to determine the smallest number of vertices whose
deletion from the graph destroys every path between this pair. Menger’s theorem states
that for each pair of non-adjacent vertices these two measures are equal.

An equivalent formulation of this theorem states that if A and B are nonempty
sets of vertices in a graph, then the maximum number of internally disjoint A -
B paths equals the minimum number of vertices whose deletion destroys every
such path.

Terminology :
Path is an A-B path if it’s first vertex is in A; it’s last vertex is B; and none of its

internal vertices is in A or B.
Separating Set - Given two sets of vertices A and B in G; a third set of vertices W

separates A from B if every path from a vertex in A to a vertex in B contains a vertex from
W. Here W is the separating set between A and B.

Let us define k(G, A, B) to be the smallest number of vertices in a set that separates A
from B . Following are some special cases of separating sets :

(1) W = A separates A from B since a path that starts in A includes at least that vertex
from A. Similarly , it can be inferred that W = B is also a separating set for A , B. Since
either A or B separates A from B;

k(G, A,B) ≤ min(n(A), n(B))
here n(A),n(B) denotes the number of vertices in sets A and B respectively.

(2) An important special case in what follows is when A is a subset of B. Then the paths
of length zero that begin and end at a vertex in A don’t go through any vertices that are
not in A. So a set cannot separate A from B unless it is contained in A.
Therefore A ⊆ B =) k(G, A,B) = n(A)

(3) If A is given and there are two sets B1 and B2; with B1 ⊆ B2; then any set that
separates A from B2 will necessarily separate A from B1.
Therefore B1 ⊆ B2 =) k(G, A,B1) ≤ k(G, A,B2)
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The theorem can be stated formally as -

Theorem : Let G be a graph with edge set E and vertex set V. Suppose A and B are
subsets of V and suppose there is at least one A-B path. Then the minimum number of
vertices separating A from B equals the maximum number of disjoint A-B paths.
This can be proved using the following lemma.

Lemma: Let k = k(G, A,B). Suppose k(G, A,B) = k. Given fewer than k disjoint A-B
paths P1, P2, ..... Pn ( 0 ≤ n ≤ k - 1) there will exists (n + 1) A-B paths Q1,Q2,.... Qn+1 such
that if b ∈ B is the endpoint of one of the Pj then b will also be an endpoint of one of the Qj .

Proof : We prove this by induction on then number β of vertices not in B;
β = n(G) - n(B)
Our base case is β = 0 . This means that B = G
By special case 2 we have k = n(A)
An A-B path is just any path of length zero that starts and ends at a vertex a in A. Given
fewer than n(A) disjoint A-B paths, we are really looking at fewer than n(A) elements of
A. To this we can add another path of length zero at one of the remaining vertices in A
and this gives a longer list of A-B paths.
Now we asssume the lemma is true for all β < β0 , where β0 ≥ 1. We now attempt to prove
the lemma for β = β0.
Suppose we are given G; A and B with k(G, A,B) = k and where there are β vertices in G
that are not in B. Suppose further that we are given P1, .... Pn disjoint A-B paths with n
< k.
Let the set of endpoints of the Pj in A be aj and the endpoint in B be bj . We will use a
line to indicate a path with an unknown number of internal vertices. Since we might have
paths of length zero, it is possible that the two endpoints drawn are really the same vertex.
In the drawings we will assume n = 3.

Here are P1,...... Pn in green.
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Since n < k; the set { b1........ bn } does not separate A from B. Therefore there is an
A-B path R that does end at or go through any of the bj In the simplest case, this path
does not contain any of the vertices from the other paths. In that case, we are done, with
Q1 = P1,.....Qn = Pn and Qn+1 = R. as shown here

If this is not the case, let x denote the vertex that is the last one on the path R that is
also on one of the paths Pj . We can reindex the Pj ,aj and bj so that x is on the path Pn.
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We have no need for the part of R before x.We do need xR, the part of R from x on,
which we show in blue. We also need xPn, the part of Pn after x, which we also show in
blue. Finally, we need Pnx, the part of Pn before x, which we show in green.

Let B’ equal all the vertices in B together with all the vertices on the blue paths xR
and xPn. Since B ⊆ B’ we know by equation 3 that n < k ≤ k(G, A,B’) Therefore we can
apply the induction hypothesis to the strictly larger set B’ and the n paths P1,..... Pn−1,
Pnx. These have endpoints b1,.... bn−1, x

We conclude that there are disjoint A-B’ paths Q’1,.....Q’n+1 whose endpoints are b1,....
bn−1, x, y where all we know about y is that is it in B’ and is not equal to b1,.... bn−1 or
x. We can reindex the Q’j so that the B-endpoint of Q’j is bj for j < n; the B-endpoint of
Q’n is x and the B-endpoint of Q’n+1 is y. We have no idea which elements in A are the
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other endpoints. Since B’ contains vertices from B, from xPn and xR, there are three cases
to consider-
Case 1 y is on xPn . Recall that y cannot equal x. Here is the picture-

Extend Q’n with xR to create Qn and extend Q’n+1 with yPn .

The desired new disjoint paths are
Q1 = Q’1 ..... Qn−1 =Q’n−1....; Qn = Q’n o xR ,Qn+1 = Q’n+1 o yPn

Case 2 - y is on xR . Recall that y cannot equal x. Here is the picture.
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This time, concatenate Q’n with xPn and concatenate Q’n+1 with yR . Here is the
picture-

The desired new disjoint paths are
Q1 = Q’1 ,...Qn−1 = Q’n−1; Qn = Q’n o xPn; Qn+1 = Q’n+1 o yR

Case 3: y is not on xR or xPn. This means that y is in B and y does not equal bn, the
B-endpoint of xPn. When we applied the induction hypothesis we were guaranteed that y
would not equal b1...... bn−1 so in fact y =bj (for all j; 1 ≤ j ≤ n)

Here is the picture-
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This time we can use Q’n+1 as it is, and we extend Q’n by xPn; as shown here -

The desired new disjoint paths are
Q1 = Q’1 ,...Qn−1 = Q’n−1, Qn = Q’n o xPn,Qn+1 = Q’n+1

Thus , in all the above cases it can be seen that given fewer than k disjoint A-B paths
we are able to find (n + 1) A-B paths . Hence the maximum number of internally disjoint
A - B paths equals k i.e the minimum number of vertices whose deletion destroys every such
path.
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