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Error Correcting Codes

EI’&SUI’G EI’I’OI’S

We will consider two situations in which we wish to transnmifdrmation on an unreliable channel. The
first is exemplified by the internet, where the informatioay(s file) is broken up into packets, and the
unreliability is manifest in the fact that some of the paslate lost during transmission, as shown below:
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Suppose that the message consists pdickets and suppose thapackets are lost during transmission. We
will show how to encode the initial message consisting péckets into a redundant encoding consisting of
n+ k packets such that the recipient can reconstruct the mefsegeinyn received packets. Note that in

this setting the packets are labelled and thus the reciki@ws exactly which packets were dropped during
transmission.

We can assume without loss of generality that the contergadi packet is a number modujowhereq is

a prime. This is because the contents of the packet might Bebét 3tring and can therefore be regarded as
a number between 0 and?2- 1. Thus we can choosgto be any prime larger tharf2 The properties of
polynomials ovelGF(q) (i.e. with coefficients and values reduced modgjare perfectly suited to solve
this problem and are the backbone to this error-correctihgrme. To see this, let us denote the message to
be sent by, ..., m, and make the following crucial observations:

1) There is a unique polynomi&l(x) of degreen— 1 such thaP(i) = m for 1 <i < n(i.e. P(x) contains all
of the information about the message, and evaludifiggives the contents of tHeth packet).

2) The message to be sent is naw = P(1),...,m, = P(n). We can generate additional packets by eval-
uating P(x) at pointsn+ j (remember, our transmitted message must be redundanti neust contain
more packets than the original message to account for thedmgets). Thus the transmitted message is
c1=P(1),co=P(2),...,cnk = P(n+K). Since we are working moduty we must make sure that-k <q,

but this condition does not impose a serious constrainesjng very large.

3) We can uniquely reconstruéX(x) from its values at any distinct points, since it has degree- 1. This
means thaP(x) can be reconstructed from anyof the transmitted packets. Evaluating this reconstructed
polynomialP(x) atx=1,...,nyields the original messagsy, ..., m,.

Example

Suppose we are working oveiF (7) (i.e. all coefficients and numbers can take on values bet@ee 6),

and the number of packets in the message-is4. Suppose the message that Alice wants to send to Bob is
m =3,mp=1,mg =5, andnmy = 0. The unique degree— 1 = 3 polynomial described by these 4 points

is P(x) = X3 + 4x% 4 5 (verify thatP(i) = m for 1 <i < 4).

Now, suppose that Alice wishes to guard agaknst 2 lost packets. In order to do this, she must evaluate
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P(x) at 2 extra pointsP(5) = 6 andP(6) = 1. Now, Alice can transmit the encoded message which censist
of n+k = 6 packets, where; = P(j) for 1< j <6. Soc; =P(1) =3,c,=P(2) =1,c3=P(3) =5,

¢y =P(4) =0,c5 =P(5) =6, andcg = P(6) = 1. Suppose packets 2 and 6 are dropped, in which case we
have the following situation:

III@II

Encoded message

anEn y EIKBEER
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From the values that Bob received (3, 5, 0, and 6), he useshggrinterpolation and computes the follow-
ing delta functions:

(x—3)(x—4)(x—5)

Balx) = ~24

As(X) = (x— l)(x;r4)(x— 5)
Aa(X) = (x— 1)(x_—33) (x=5)
As(X) = (x— l)(x;3 3)(x—4) '

He then reconstructs the polynomi(x) = (3)A1(X) + (5)A3(X) + (0)A4(X) + (6)As(X) = X3 + 4x2 + 5.
Bob then evaluatesy, = P(2) = 1, which is the packet that was lost from the original messalye can
extend this example to a more general case and say that, ter mhatch 2 packets were dropped, Bob still
could've reconstructe®(x) and thus the original message, and that is because of thekanaproperties
of polynomials ovelGF (q).

Let us consider what would happen if Alice sent one fewer packf Alice only sentcj for 1 < j <
n-+k—1, then withk erasures, Bob would only receieg for n— 1 distinct valuesj. Thus, Bob would not
be able to reconstruét(x) (since there are exacttypolynomials of degree at most- 1 that agree with the
n— 1 packets which Bob received). This error-correcting sahentherefore optimal—it can recover the
characters of the transmitted message fromrargceived characters.

General EI‘I‘OI‘S

Let us now consider a much more challenging scenario. NoaeAliishes to communicate with Bob over a
noisy channel (say via a modem). Her messagm;is. ., m,, where we will think of them’s as characters
(either bytes or characters in the English alphabet). Thbelem now is that some of the characters are
corrupted during transmission due to channel noise. So Bobives exactly as many characters as Alice
transmits. Howevelk of them are corrupted, and Bob has no idea whicRecovering from such general
errors is much more challenging than erasure errors, thoogé again polynomials hold the key.

Let us again think of each character as a number mogléde some primey (for the English alphabeg is
some prime larger than 26, sgy= 29). As before, we can describe the message by a polyndtialof
degreen— 1 overGF(q), such thatP(1) = my, ..., P(n) = m,. As before, to cope with the transmission
errors Alice will transmit additional characters obtair®devaluatingP(x) at additional points. To guard
againsk general errors, Alice must transmk additional characters (as opposed to juastiditional packets,
which was the case with erasure errors). Thus the encodesagees$scy, . .. ,Cny2c Wherec; = P(j) for
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1< j <n+ 2k, andn+ k of these characters that Bob receives are uncorrupted. fAsehave must put the
mild constraint org that it be large enough so that> n+ 2k.

For example, if Alice wishes to semt= 4 characters to Bob via a modem in whick- 1 of the characters

is corrupted, she must redundantly send an encoded meswagjsting of 6 characters. Suppose she wants
to transmit the same message as above, andtfgtorrupted and changed ¢b= 2. This scenario can be
visualized in the foIIowing figure'

IEIEII
...@ Encoded message r

Alice (CCCoCc) L Bob
(mm2m3m4) 123456 (cccccﬁcj

From Bob’s viewpoint, the problem of reconstructing AlEehessage is the same as reconstructing the
polynomial P(x) from then+ 2k received characteR(1),R(2),...,R(n+ 2K). In other words, Bob is given
n-+ 2k values modula, R(1),R(2),...,R(n+ 2k), with the promise that there is a polynomiIx) of degree
n—1 overGF(q) : R(i) = P(i) for n+k distinct values of between 1 and-+ 2k. Bob must reconstrud?(x)
from this data (in the above example} k =5 andR(2) = P(2) = 1, R(3) = P(3) =5, R(4) = P(4) =0,
R(5) = P(5) = 6, andR(6) = P(6) = 1).

But does Bob have sufficient information to reconstiict)? Our first observation shows that the answer is
yes. There is a unique polynomial that agrees ®itk) atn+k points. Suppose th& (x) is any polynomial

of degreen— 1 that agrees witR(x) atn-+k points. Then among theser k points there are at mokerrors,
and therefore on at leastpointsx;: P/(x;) = P(x;). But a polynomial of degree— 1 is uniquely defined by
its values ah points, and thereforB(x) = P'(x) (for all x).

But how can Bob quickly find such a polynomial? The issue atlrene the locations of thieerrors. Let
el,...,e& be thek locations at which errors occurred. Note tRég) # R(g) for 1 <i <k:

Pz Rz

I

el eIE! el3

We could try to guess where theerrors lie, but this would take too long (it would take expiiigd time, in
fact). Consider the error-locator polynomi(x) = (x—e1)(x— &) - - - (X— &), which has degrele (sincex
appeark times).

Let us make a simple but crucial observatidt{i)E(i) = R(i)E(i) for 1 <i < n—+ 2k (this is true at points
i at which no error occurred sind®(i) = R(i) and trivially true at points at which an error occurred
sinceE(i) = 0). This observation forms the basis of a very clever algoriinvented by Berlekamp and
Welch. Looking more closely at these equalities, we willgtioat they aren+ 2k linear equations im+ 2k
unknowns, from which the locations of the errors and coedfits ofP(x) can be easily deduced.

Let P(x)E(x) = Q(x), which is a polynomial of degree+ k— 1, and is therefore described by k co-
efficients. The error-locator polynomi&l(x) = (x—ey)--- (X— &) has degred& and is described b+ 1
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coefficients, but the leading coefficient (coefficienbfis always 1. So we have:

Q(X) = An k- 1X" 4+ +agx+ a
E(X) =X+ b X 14+ 4+ byx+ by

Once we fix a value for x, the received valuR(i) is fixed. Also,Q(i) is now a linear function of thea+ k
coefficientsa, k1 . .. a0, andE(X) is a linear function of th& coefficientd_1 ... byg. Therefore the equation
Q(i) = R(i)E(i) is a linear equation in the+ 2k unknownsa, k-1, ...,8 andbyx_1,...,by. We thus have
n+ 2k linear equations, one for each value giindn -+ 2k unknowns. We can solve these equations and get
E(x) andQ(x). We can then compute the rat%% to obtainP(x).

Example. Suppose we are working ov&f (7) and Alice wants to send Bob tlme= 3 characters “3,” “0,”
and “6” over a modem. Turning to the analogy of the Englisthahlgt, this is equivalent to using only the
first 7 letters of the alphabet, whese=0,...,g = 6. So the message which Alice wishes for Bob to receive
is “dag”. Then Alice interpolates to find the polynomial

P(X) = x*+x+1,

which is the unique polynomial of degree 2 such thgt) = 3, P(2) = 0, andP(3) = 6.

Suppose thak = 1 character is corrupted, so she needs to transmihth@k = 5 characterd(1) = 3,
P(2) =0,P(3) =6,P(4) =0, andP(5) = 3 to Bob. Suppos®(1) is corrupted, so he receives 2 instead of
3 (i.e. Alice sends the encoded message “dagad” but Bolkaithstzeives “cagad”). Summarizing, we have
the following situation:

1 2 3 4 5

L2 s [3][e][s][o][5]
[

IE Encoded message f

Alice (C oot ,Bob
(mlmszJ 12345 (occe )

Let E(x) = (x—ey) be the error-locator polynomial—remember, Bob doesn'vkmhate; is yet since he
doesn’t know where the error occurred—and let the degredy®ipmial Q(x) = R(X)E(x) for x=1 to 5.
Now Bob just substitutes=1,x= 2, ... ,x=5to get five linear equations in five unknowns (recall that we
are working modulo 7 and th&{(i) = ¢ is the value Bob received for theth character):

ag+ax+ai+ag+5hp=2
ag+4ax+2a1+ap=0
6az+ 2a; +3a; +ap+bp =4
ag+2ay+4a1+ap=0
Baz+4ay+5a +ap+4bp=1

Bob then solves this linear system and finds gt 1, a, =0, a1 =0, a0 =6, andbg= -1 =-1=6
mod 7 (as a check, we expestto be the index at which the error occurred. Indeed, thisasctise since
the first character was corrupted from a “d” to a “c”). Thisegvhim the polynomial®(x) = (x3 + 6)
andE(x) = (x—1). He can then find?(x) by computing the quotier®(x) = % = ’fff’ =x%+x+1.
Bob notices that the first character was corrupted (séace 1), so now that he ha3(x), he just computes
P(1) = 3= “d” and obtains the original, uncorrupted message “dag”.

Finer Points
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Two points need further discussion. How do we know thatthe?k equations are consistent? What if they
have no solution? This is simple. The equations must be stemsisince(x) = P(x)E(x) together with the
error locator polynomiakE (x) gives a solution.

A more interesting question is this: how do we know thatrthe2k equations are independent, i.e., how do
we know that there aren’t other spurious solutions in addito the real solution that we are looking for?
Put more mathematically, how do we know that the solu@®fx) andE’(x) that we reconstruct satisfy the
property tha€’(x) dividesQ'(x) and thatggg = % = P(x)? To see this notice th&(X)E'(x) = Q' (X)E(x)

for 1 <x < n+2k. This holds trivially whenevekE (x) or E’(x) is 0, and otherwise it follows from the fact that
gg)’g = % = R(x). But the degree oQ(x)E’(x) andQ'(X)E(x) is n + 2k - 1. Since these two polynomials

are equal ah+ 2k points, it follows that they are the same polynomial, andstrearranging we get that
QX _ QX _ P(x).

Fx) — EX
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