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Error Correcting Codes

Erasure Errors
We will consider two situations in which we wish to transmit information on an unreliable channel. The
first is exemplified by the internet, where the information (say a file) is broken up into packets, and the
unreliability is manifest in the fact that some of the packets are lost during transmission, as shown below:

Suppose that the message consists ofn packets and suppose thatk packets are lost during transmission. We
will show how to encode the initial message consisting ofn packets into a redundant encoding consisting of
n+ k packets such that the recipient can reconstruct the messagefrom anyn received packets. Note that in
this setting the packets are labelled and thus the recipientknows exactly which packets were dropped during
transmission.

We can assume without loss of generality that the contents ofeach packet is a number moduloq, whereq is
a prime. This is because the contents of the packet might be a 32-bit string and can therefore be regarded as
a number between 0 and 232−1. Thus we can chooseq to be any prime larger than 232. The properties of
polynomials overGF(q) (i.e. with coefficients and values reduced moduloq) are perfectly suited to solve
this problem and are the backbone to this error-correcting scheme. To see this, let us denote the message to
be sent bym1, . . . ,mn and make the following crucial observations:

1) There is a unique polynomialP(x) of degreen−1 such thatP(i) = mi for 1≤ i ≤ n (i.e. P(x) contains all
of the information about the message, and evaluatingP(i) gives the contents of thei-th packet).

2) The message to be sent is nowm1 = P(1), . . . ,mn = P(n). We can generate additional packets by eval-
uating P(x) at pointsn + j (remember, our transmitted message must be redundant, i.e.it must contain
more packets than the original message to account for the lost packets). Thus the transmitted message is
c1 = P(1),c2 = P(2), . . . ,cn+k = P(n+k). Since we are working moduloq, we must make sure thatn+k ≤ q,
but this condition does not impose a serious constraint since q is very large.

3) We can uniquely reconstructP(x) from its values at anyn distinct points, since it has degreen−1. This
means thatP(x) can be reconstructed from anyn of the transmitted packets. Evaluating this reconstructed
polynomialP(x) at x = 1, . . . ,n yields the original messagem1, . . . ,mn.

Example

Suppose we are working overGF(7) (i.e. all coefficients and numbers can take on values between0 and 6),
and the number of packets in the message isn = 4. Suppose the message that Alice wants to send to Bob is
m1 = 3, m2 = 1, m3 = 5, andm4 = 0. The unique degreen−1 = 3 polynomial described by these 4 points
is P(x) = x3 +4x2 +5 (verify thatP(i) = mi for 1≤ i ≤ 4).

Now, suppose that Alice wishes to guard againstk = 2 lost packets. In order to do this, she must evaluate
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P(x) at 2 extra points:P(5) = 6 andP(6) = 1. Now, Alice can transmit the encoded message which consists
of n + k = 6 packets, wherec j = P( j) for 1 ≤ j ≤ 6. Soc1 = P(1) = 3, c2 = P(2) = 1, c3 = P(3) = 5,
c4 = P(4) = 0, c5 = P(5) = 6, andc6 = P(6) = 1. Suppose packets 2 and 6 are dropped, in which case we
have the following situation:

From the values that Bob received (3, 5, 0, and 6), he uses Lagrange interpolation and computes the follow-
ing delta functions:

∆1(x) =
(x−3)(x−4)(x−5)

−24

∆3(x) =
(x−1)(x−4)(x−5)

4

∆4(x) =
(x−1)(x−3)(x−5)

−3

∆5(x) =
(x−1)(x−3)(x−4)

8
.

He then reconstructs the polynomialP(x) = (3)∆1(x) + (5)∆3(x) + (0)∆4(x) + (6)∆5(x) = x3 + 4x2 + 5.
Bob then evaluatesm2 = P(2) = 1, which is the packet that was lost from the original message. We can
extend this example to a more general case and say that, no matter which 2 packets were dropped, Bob still
could’ve reconstructedP(x) and thus the original message, and that is because of the remarkable properties
of polynomials overGF(q).

Let us consider what would happen if Alice sent one fewer packet. If Alice only sentc j for 1 ≤ j ≤
n+ k−1, then withk erasures, Bob would only receivec j for n−1 distinct valuesj. Thus, Bob would not
be able to reconstructP(x) (since there are exactlyq polynomials of degree at mostn−1 that agree with the
n−1 packets which Bob received). This error-correcting scheme is therefore optimal—it can recover then
characters of the transmitted message from anyn received characters.

General Errors
Let us now consider a much more challenging scenario. Now Alice wishes to communicate with Bob over a
noisy channel (say via a modem). Her message ism1, . . . ,mn, where we will think of themi’s as characters
(either bytes or characters in the English alphabet). The problem now is that some of the characters are
corrupted during transmission due to channel noise. So Bob receives exactly as many characters as Alice
transmits. However,k of them are corrupted, and Bob has no idea whichk. Recovering from such general
errors is much more challenging than erasure errors, thoughonce again polynomials hold the key.

Let us again think of each character as a number moduloq for some primeq (for the English alphabetq is
some prime larger than 26, sayq = 29). As before, we can describe the message by a polynomialP(x) of
degreen− 1 overGF(q), such thatP(1) = m1, . . . , P(n) = mn. As before, to cope with the transmission
errors Alice will transmit additional characters obtainedby evaluatingP(x) at additional points. To guard
againstk general errors, Alice must transmit 2k additional characters (as opposed to justk additional packets,
which was the case with erasure errors). Thus the encoded message isc1, . . . ,cn+2k wherec j = P( j) for
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1≤ j ≤ n+2k, andn+ k of these characters that Bob receives are uncorrupted. As before, we must put the
mild constraint onq that it be large enough so thatq ≥ n+2k.

For example, if Alice wishes to sendn = 4 characters to Bob via a modem in whichk = 1 of the characters
is corrupted, she must redundantly send an encoded message consisting of 6 characters. Suppose she wants
to transmit the same message as above, and thatc1 is corrupted and changed toc′1 = 2. This scenario can be
visualized in the following figure:

From Bob’s viewpoint, the problem of reconstructing Alice’s message is the same as reconstructing the
polynomialP(x) from then+2k received charactersR(1),R(2), . . . ,R(n+2k). In other words, Bob is given
n+2k values moduloq, R(1),R(2), . . . ,R(n+2k), with the promise that there is a polynomialP(x) of degree
n−1 overGF(q) : R(i) = P(i) for n+k distinct values ofi between 1 andn+2k. Bob must reconstructP(x)
from this data (in the above example,n + k = 5 andR(2) = P(2) = 1, R(3) = P(3) = 5, R(4) = P(4) = 0,
R(5) = P(5) = 6, andR(6) = P(6) = 1).

But does Bob have sufficient information to reconstructP(x)? Our first observation shows that the answer is
yes. There is a unique polynomial that agrees withR(x) atn+k points. Suppose thatP′(x) is any polynomial
of degreen−1 that agrees withR(x) atn+k points. Then among thesen+k points there are at mostk errors,
and therefore on at leastn pointsxi: P′(xi) = P(xi). But a polynomial of degreen−1 is uniquely defined by
its values atn points, and thereforeP(x) = P′(x) (for all x).

But how can Bob quickly find such a polynomial? The issue at hand are the locations of thek errors. Let
e1, . . . ,ek be thek locations at which errors occurred. Note thatP(ei) 6= R(ei) for 1≤ i ≤ k:

We could try to guess where thek errors lie, but this would take too long (it would take exponential time, in
fact). Consider the error-locator polynomialE(x) = (x− e1)(x− e2) · · · (x− ek), which has degreek (sincex
appearsk times).

Let us make a simple but crucial observation:P(i)E(i) = R(i)E(i) for 1≤ i ≤ n + 2k (this is true at points
i at which no error occurred sinceP(i) = R(i) and trivially true at pointsi at which an error occurred
sinceE(i) = 0). This observation forms the basis of a very clever algorithm invented by Berlekamp and
Welch. Looking more closely at these equalities, we will show that they aren+2k linear equations inn+2k
unknowns, from which the locations of the errors and coefficients ofP(x) can be easily deduced.

Let P(x)E(x) = Q(x), which is a polynomial of degreen + k− 1, and is therefore described byn + k co-
efficients. The error-locator polynomialE(x) = (x− e1) · · · (x− ek) has degreek and is described byk + 1
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coefficients, but the leading coefficient (coefficient ofxk) is always 1. So we have:

Q(x) = an+k−1xn+k−1 + · · ·+ a1x+ a0

E(x) = xk + bk−1xk−1 + · · ·+ b1x+ b0

Once we fix a valuei for x, the received valueR(i) is fixed. Also,Q(i) is now a linear function of then+ k
coefficientsan+k−1 . . .a0, andE(x) is a linear function of thek coefficientsbk−1 . . .b0. Therefore the equation
Q(i) = R(i)E(i) is a linear equation in then + 2k unknownsan+k−1, . . . ,a0 andbk−1, . . . ,b0. We thus have
n+2k linear equations, one for each value ofi, andn+2k unknowns. We can solve these equations and get
E(x) andQ(x). We can then compute the ratioQ(x)

E(x) to obtainP(x).

Example. Suppose we are working overGF(7) and Alice wants to send Bob then = 3 characters “3,” “0,”
and “6” over a modem. Turning to the analogy of the English alphabet, this is equivalent to using only the
first 7 letters of the alphabet, wherea = 0, . . . ,g = 6. So the message which Alice wishes for Bob to receive
is “dag”. Then Alice interpolates to find the polynomial

P(x) = x2 + x+1,

which is the unique polynomial of degree 2 such thatP(1) = 3, P(2) = 0, andP(3) = 6.

Suppose thatk = 1 character is corrupted, so she needs to transmit then + 2k = 5 charactersP(1) = 3,
P(2) = 0, P(3) = 6, P(4) = 0, andP(5) = 3 to Bob. SupposeP(1) is corrupted, so he receives 2 instead of
3 (i.e. Alice sends the encoded message “dagad” but Bob instead receives “cagad”). Summarizing, we have
the following situation:

Let E(x) = (x− e1) be the error-locator polynomial—remember, Bob doesn’t know whate1 is yet since he
doesn’t know where the error occurred—and let the degree 3 polynomial Q(x) = R(x)E(x) for x = 1 to 5.
Now Bob just substitutesx = 1, x = 2, . . . ,x = 5 to get five linear equations in five unknowns (recall that we
are working modulo 7 and thatR(i) = c′i is the value Bob received for thei-th character):

a3 + a2 + a1+ a0 +5b0 = 2

a3 +4a2 +2a1 + a0 = 0

6a3 +2a2 +3a1 + a0 + b0 = 4

a3 +2a2 +4a1 + a0 = 0

6a3 +4a2 +5a1 + a0 +4b0 = 1

Bob then solves this linear system and finds thata3 = 1, a2 = 0, a1 = 0, a0 = 6, andb0 = −e1 = −1≡ 6
mod 7 (as a check, we expecte1 to be the index at which the error occurred. Indeed, this is the case since
the first character was corrupted from a “d” to a “c”). This gives him the polynomialsQ(x) = (x3 + 6)

and E(x) = (x− 1). He can then findP(x) by computing the quotientP(x) = Q(x)
E(x) = x3+6

x−1 = x2 + x + 1.
Bob notices that the first character was corrupted (sincee1 = 1), so now that he hasP(x), he just computes
P(1) = 3 = “d” and obtains the original, uncorrupted message “dag”.

Finer Points
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Two points need further discussion. How do we know that then+2k equations are consistent? What if they
have no solution? This is simple. The equations must be consistent sinceQ(x) = P(x)E(x) together with the
error locator polynomialE(x) gives a solution.

A more interesting question is this: how do we know that then+2k equations are independent, i.e., how do
we know that there aren’t other spurious solutions in addition to the real solution that we are looking for?
Put more mathematically, how do we know that the solutionQ′(x) andE ′(x) that we reconstruct satisfy the

property thatE ′(x) dividesQ′(x) and thatQ
′(x)

E ′(x) = Q(x)
E(x) = P(x)? To see this notice thatQ(x)E ′(x) = Q′(x)E(x)

for 1≤ x≤ n+2k. This holds trivially wheneverE(x) or E ′(x) is 0, and otherwise it follows from the fact that
Q′(x)
E ′(x) = Q(x)

E(x) = R(x). But the degree ofQ(x)E ′(x) andQ′(x)E(x) is n + 2k - 1. Since these two polynomials
are equal atn + 2k points, it follows that they are the same polynomial, and thus rearranging we get that
Q′(x)
E ′(x) = Q(x)

E(x) = P(x).
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