

Chalk & Talk Session

Instructor: Arpita Patra

Submitted by: (Abhijat Sharma and Mayank Tiwari)

Turán's Theorem

1 Introduction

Extremal graph theory is the branch of graph theory that studies extremal (maximal or minimal) graphs which satisfy a certain property. Extremality can be taken with respect to different graph invariants, such as order, size or girth. For example, a simple extremal graph theory question is "*which acyclic graphs on n vertices have the maximum number of edges?*" The extremal graphs for this question are trees on n vertices, which have $n - 1$ edges.[3]

Paul Turan, a Hungarian mathematician, worked extensively in the fields of Number Theory and Graph Theory. He had a long collaboration with fellow Hungarian mathematician Paul Erdos, lasting 46 years and resulting in 28 joint papers. Erdos wrote of Turan, "*In 1940-1941 he created the area of extremal problems in graph theory which is now one of the fastest-growing subjects in combinatorics.*". The field is known more briefly today as extremal graph theory, which is said to have been founded as a result of the following theorem by Turan.[4]

2 Turán's Theorem (1941) - Statement

Theorem 1 *Among n -vertex simple graphs with no K_{r+1} , $T_{n,r}$ has the maximum number of edges. Here, K_{r+1} refers to the $(r+1)$ -clique and $T_{n,r}$ refers to the Turán Graph on n vertices having r partitions.*

This theorem generalises a previous result by Mantel (1907), which states that "*the maximum number of edges in an n -vertex triangle-free simple graph is $\lfloor n^2/4 \rfloor$.*" Observe that Mantel's theorem is a special case of the Turán's theorem with $r = 2$.

3 Motivation: k -Chromatic Graphs

It might be interesting to know which are the smallest and largest k -chromatic graphs with n vertices.

What is the minimum size among k -chromatic graphs with n vertices?

Proposition 1 Every k -chromatic graph with n vertices has at-least $\binom{k}{2}$ edges.

Proof A k -chromatic graph has a k -vertex coloring, which can be viewed as a k -partition of the vertex set, where each partition is an independent set. Suppose we have a proper k -coloring of a k -chromatic graph. For any pair of colors in the graph, say i and j , there exists at-least one edge with end points of colors i and j . If such an edge does not exist, then the vertices of colors i and j could be combined into a single color. As this new coloring would use fewer colors, this would contradict our assumption, that the graph is k -chromatic (cannot be colored in fewer than k colors). Since there are $\binom{k}{2}$ distinct pairs of colors, there must be at-least $\binom{k}{2}$ edges. Note that the equality clearly holds for a complete graph on k -vertices plus $n - k$ isolated vertices. \blacksquare

What is the maximum size among k -chromatic graphs with n vertices?

Suppose we have a proper k -coloring. As long as we can find pairs of non-adjacent vertices having different colors, we can continue to add edges without increasing the chromatic number. Thus, to find the maximum possible edges in k -chromatic graphs, we will only consider graphs without such vertex pairs.

Definition 1 A **complete multipartite graph** is a simple graph G whose vertices can be partitioned into sets such that two vertices are adjacent if and only if they are not in the same partite sets. Equivalently, every component of \overline{G} is a complete graph. For $k \geq 2$, the complete k -partite graph with partite sets of sizes n_1, n_2, \dots, n_k is written as K_{n_1, n_2, \dots, n_k} . \diamond

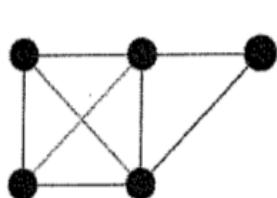


Figure 1 - A Graph.

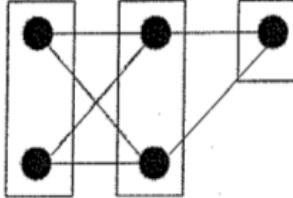


Figure 2 - A 3-Partite Graph.

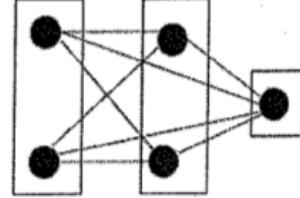


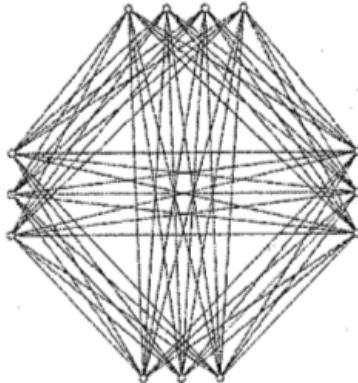
Figure 3 - A Complete 3-Partite Graph.

Figure 1: [2]

4 Turan Graph

The Turan Graph, denoted $T_{n,r}$ is the complete r -partite graph with n vertices, whose partite sets differ in size by at-most 1. By the pigeon-hole principle, every partite set has size either $\lceil n/r \rceil$ or $\lfloor n/r \rfloor$.

Lemma 2 Among simple r -partite graphs (that is, r -colorable) with n vertices, the Turan graph $T_{n,r}$ is the unique graph with the most edges.



Turán graph $T_{13,4}$

Figure 2: [3]

Proof As discussed above, we can add edges without increasing the chromatic number until it becomes a complete multipartite graph. Now, given a complete r -partite graph with partite sets differing by more than 1 in size, we can move a vertex v from the largest partite set (size i) to the smallest partite set (size j). The edges not involving v remain the same as before, but v gains $i - 1$ neighbours in its old partite set, and loses j neighbours in its new partite set. Since $i - 1 > j$, the number of edges increases due to this switch. Hence, we maximize the number of edges only by equalizing the sizes of all partite sets, as in $T_{n,r}$. ■

What happens if we wish to add more edges than in $T_{n,r}$? Does it force the chromatic number to be $r + 1$? We have seen (Mantel 1907) that there are graphs with chromatic number 2, that have no triangles. But if we have edges more than $\lfloor n^2/4 \rfloor$ on an n -vertex graph, then we are forced not only to use 3 colors, but also to have K_3 (triangle) as a subgraph. Turan generalised this as follows: For an r -colorable graph with n vertices, if we go beyond the maximum no. of edges, then we are forced not only to use $r + 1$ colors, but also to have K_{r+1} (i.e $r + 1$ -clique) as a subgraph.

5 Turan's Theorem (proof)

Theorem 3 *Among the n -vertex simple graphs with no $r+1$ -clique, $T_{n,r}$, has the maximum number of edges.*

Proof Every r -colorable(or r -partite) graph, including Turan graph $T_{n,r}$, has no $r + 1$ -clique, since each partite set contributes at-most one vertex to each clique. If we can prove that the maximum edges is achieved by an r -partite graph, then Lemma 2 implies that the required graph is $T_{n,r}$. Thus, it suffices to prove that for every graph G that has no $r + 1$ -clique, there is an r -partite graph H with the same vertex set as G i.e $V(H) = V(G)$, and at-least as many edges i.e $e(H) \geq e(G)$.

We prove this by induction on r .

For the base case $r = 1$, any simple graph with no 2-clique is a null-graph (graph with no edges), and is trivially 1-partite. Thus, in this case, $H = G$.

For the induction step, G is an n -vertex simple graph with no $r + 1$ -clique, where $r > 1$. Let $x \in V(G)$ be a vertex of degree $k = \Delta(G)$. Let the sub-graph G' be the induced sub-graph of G by the set $N(x)$, where $N(x)$ is the set of neighbours of x .

Claim 4 *If G has no $r + 1$ -clique, then G' has no r -clique.*

As x is adjacent to every vertex in G' , if G' had an r -clique then G would have an $r + 1$ -clique, which would be a contradiction.

Thus, we can apply the induction hypothesis to G' . Thus, there exists an $r - 1$ -partite graph H' with $V(H') = V(G') = N(x)$ and $e(H') \geq e(G')$. Note that $V(H') = N(x) = k$. Let H be the graph formed from H' by joining all of $N(x)$ to all of $S = V(G) - N(x)$. Since S is an independent set of $n - k$ vertices and H' is $r - 1$ -partite, thus H would be r -partite.

Claim 5 $e(H) \geq e(G)$

By construction, $e(H) = e(H') + k(n - k)$. We also have $e(G) \leq e(G') + \sum_{v \in S} d_G(v)$ as the difference of edges between G and G' would only consist of those edges that have at-least one end-point in the set $S = V(G) - V(G')$. Note that the edges with both end-points in the set S are counted twice. Since $\Delta(G) = k$, we have $d_G(v) \leq k$ for each $v \in S$. As $|S| = n - k$, we have $\sum_{v \in S} d_G(v) \leq k(n - k)$. Therefore, we have

$$e(G) \leq e(G') + \sum_{v \in S} d_G(v) \leq e(G') + k(n - k) \leq e(H') + k(n - k) = e(H).$$

■

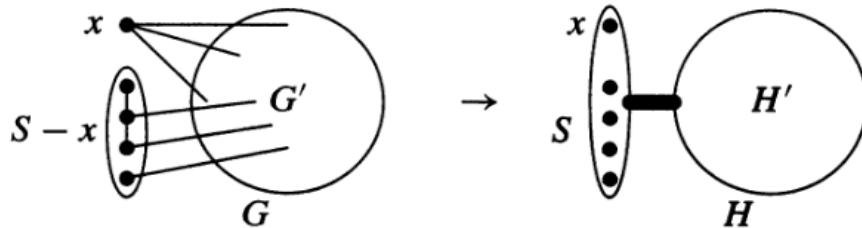


Figure 3: [1]

Example: *Distant pairs of points*[1]

In a circular city of diameter 1, we might want to locate n police cars to maximize the number of pairs that are far apart, say separated by distance more than $d = 1/\sqrt{2}$. If six cars occupy equally spaced points on the circle, then the only pairs not more than d apart are the consecutive pairs around the outside: there are nine good pairs. Instead, putting

two cars each near the vertices of an equilateral triangle with side-length $\sqrt{3}/2$ yields three bad pairs and twelve good pairs. (This may not be the socially best criterion!) In general, with $\lceil n/3 \rceil$ or $\lfloor n/3 \rfloor$ cars near each vertex of this triangle, the good pairs correspond to edges of the tripartite Turan graph.

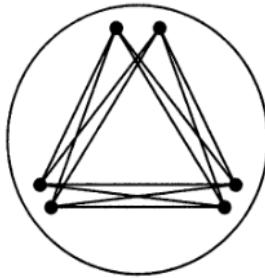


Figure 4: [1]

References

- [1] Douglas B. West, 2002. *Introduction to Graph Theory - Second Edition*, Pearson Education, Singapore.
- [2] Chad M. Griep - Extremal Graph Theory. <http://www.math.uri.edu/~eaton/chad.pdf>
- [3] Extremal Graph Theory - Wikipedia. http://en.wikipedia.org/wiki/Extremal_graph_theory
- [4] Paul Turan - Wikipedia. http://en.wikipedia.org/wiki/Pl_Turan