

Discrete Structures

Problem Set 2

2.1 Havel-Hakimi Criteria (*)

Give a realization for the degree sequence $(3, 3, 2, 2, 2, 2, 2, 2)$ that cannot be obtained using Havel-Hakimi Criterion.

2.2 Non-isomorphic Realizations of Degree Sequence (*)

Construct two *non-isomorphic* realizations of the degree sequence $(2, 2, 2, 1, 1)$ using Havel-Hakimi Criterion.

2.3 Graph Realization

Let $n \geq 1$ be an integer.

- a) (*) Does there exist a realization for the sequence $(n-1, n-1, n-2, \dots, 4, 3, 2, 1)$?
- b) (**) Does there exist a realization for the sequence $(n, n, n-1, n-1, \dots, 3, 3, 2, 2, 1, 1)$?

2.4 Graphic Sequence for Regular Graph (*)

Show that a regular sequence (d, d, \dots, d) of length n is graphic if and only if $d \leq n-1$, and $d \cdot n$ is even.

2.5 Graphic Sequence for graph (**)

Show that any sequence $S = (d_1 \geq d_2 \geq \dots, \geq d_n)$ of non-negative integers is a degree sequence for some graph (not necessarily simple) if and only if $\sum_{i=1}^n d_i$ is even.

2.6 Graphic Sequence for loopless Graph (**)

Show that any sequence $S = (d_1 \geq d_2 \geq \dots, \geq d_n)$ of non-negative integers is a degree sequence for some loopless graph (it can have multiple edges) if and only if $\sum_{i=1}^n d_i$ is even and $d_1 \leq d_2 + d_3 + \dots + d_n$. (Hint. Use induction for the sufficiency)

Good Luck!