

Discrete Structures

Problem Set 5

5.1 Necessary conditions for k -connected Graph

Show that:

- a) (*) Every k -connected graph G has at least $\frac{nk}{2}$ edges.
- b) (**) If G is 2-connected, then for some $(x, y) \in E(G)$, $G - x - y$ is connected.

5.2 Sufficiency conditions for k -connected Graph

Show that:

- a) (**) Let G be a graph with vertices v_1, \dots, v_n with $d(v_1) \leq d(v_2) \leq \dots \leq d(v_n)$. If $d(v_j) \geq j + k - 1$, for $j = 1, 2, \dots, n - 1 - d(v_{n-k+1})$ and for some $k \in \{1, \dots, n\}$, then G is k -connected.
- b) (**) Let $k \in \{1, \dots, n\}$. If $d_G(v) \geq \lceil \frac{n+k-2}{2} \rceil$, for every vertex $v \in V(G)$, then G is k -vertex-connected.

5.3 Whitney's Theorem

- a) (*) Construct a graph with $k_0(G) = 3$, $k_1(G) = 4$ and $\delta(G) = 5$.
- b) (**) Show that: Given the integers n, x, y and z , there is a graph G with n vertices such that $k_0(G) = x$, $k_1(G) = y$ and $\delta(G) = z$, iff one of the following conditions is satisfied: (i) $0 \leq x \leq y \leq z < \lfloor n/2 \rfloor$, (ii) $1 \leq 2z + 2 - n \leq x \leq y = z < n - 1$, (iii) $x = y = z = n - 1$.

5.4 Vertex / Edge Connectivity

- a) (*) Find $k_0(Q_d)$ and $k_1(Q_d)$, where Q_d is a d -cube.
- b) (*) Find the minimum positive integer r for which there exists a r -regular graph such that $k_1(G) \geq k_0(G) + 2$.
- c) (**) If $k_0(G) \geq 3$, then show that $k_0(G - e) \geq 2$, for every e .

5.5 Minimum Degree and Vertex / Edge Connectivity of simple graphs

Let G is a simple graph with n vertices. Then show that

- a) (*) If $\delta(G) \geq n - 2$, then $k_0(G) = \delta(G)$.
- b) (*) If $\delta(G) \geq n/2$, then $k_1(G) = \delta(G)$.
- c) (**) If $\delta(G) \geq \frac{n+1}{2}$, then $k_0(G) = 3$.

5.6 Network Design (**)

Draw a network N with 7 nodes and with minimum number of links satisfying the following conditions.

- a) N contains no self-loops and multiple links.
- b) If any two nodes fail, the remaining 5 good nodes can communicate among themselves.

5.7 Tree

- a) (*) Draw two non-isomorphic trees with the same degree sequence.
- b) (*) Let $n \geq 2$. Show that a sequence d_1, \dots, d_n of non-negative integers is the degree sequence of a tree iff (i) $d_i \geq 1$, for $1 \leq i \leq n$ and (ii) $\sum_{i=1}^n d_i = 2(n - 1)$.
- c) (*) Show that in a tree T , there are at least $\Delta(T)$ vertices of degree 1, where $\Delta(T)$ denotes the maximum degree of T .
- d) (**) Let $S \subseteq V(G)$ for a graph G with m edges and n vertices be such that $G - S$ is acyclic. Show that $|S| \geq \frac{m-n+1}{\Delta(G)-1}$.

Good Luck!