

Discrete Structures

Problem Set 7

7.1 Prüfer Code

- a) (*) Find the tree whose Prüfer code is (k, k, \dots, k) (k is repeated $n - 1$ times) for some k .
- b) (*) Find the tree whose Prüfer code is $(a, b, a, b, \dots, a, b)$ (a and b is repeated $n - 1$ times) for some a and b .

7.2 Eulerian Graphs

- a) (*) Does there exist a simple Eulerian graph on even number of vertices and odd number of edges?
- b) (*) If G is Eulerian, then show that $k_1(G)$ is even.
- c) (**) A connected graph G is Eulerian if and only if its edge set can be partitioned into cycles.
- d) (**) A connected graph is Eulerian if and only if each of its edges lies on an odd number of cycles.
- e) (**) The number of edge-disjoint paths between any two vertices of an Euler graph is even.

7.3 Super-Eulerian Graphs (**)

A non-Eulerian graph G is said to be super-Eulerian if it has a spanning Eulerian subgraph. Show that: If G is any connected graph and if each edge of G belongs to a triangle in G , then G has a spanning Eulerian subgraph.

7.4 Line Graph of an Eulerian Graph (**)

Let H be a simple graph with n vertices v_1, v_2, \dots, v_n and m edges e_1, \dots, e_m . The line graph $L(H)$ of H is a simple graph with the vertices e_1, \dots, e_m in which e_i and e_j are adjacent iff they are adjacent in H .

If G is a connected simple graph, then show that $L(G)$ is Eulerian iff either every vertex in G has even degree or every vertex has odd degree.

Good Luck!