Arpita Patra

Discrete Structures

Problem Set 9

9.1 Vertex Chromatic No. and Independence No. (**)

For every graph show that $\frac{n(G)}{\chi(\overline{G})} \leq \frac{n(G)}{\alpha_0(G)} \leq \chi_0(G) \leq n+1-\alpha_0(G)$, where \overline{G} denotes the complement graph of G.

9.2 Vertex Chromatic No. of Sum graphs (**)

Prove that $\chi_0(G_1 + G_2) = \chi_0(G_1) + \chi_0(G_2)$.

9.3 k-critical Graphs (**)

A graph G is called k-critical if (i) $\chi_0(G) = k$ and (ii) $\chi_0(H) < k$ for every proper sub-graph of G. If G is k-critical then show that:

- **a)** *G* is connected.
- **b)** $\delta(G) \ge k 1$.
- c) G has no pair of sub-graphs G_1 and G_2 such that $G = G_1 \cup G_2$ and $G_1 \cap G_2$ is a complete graph.
- **d)** G v is connected for every $v \in V(G)$ when k > 1.

9.4 Graph with $\chi_0(G) = k$ (**)

Show that every graph with $\chi_0(G) = k$ contains at least k(k-1)/2 edges.

Good Luck!