Extending Oblivious Transfers Efficiently

Yuval Ishai!, Joe Kilian?, Kobbi Nissim?*, and Erez Petrank!**

! Department of Computer Science, Technion - Israel Institute of Technology,
Haifa 32000, Israel. {yuvalilerez}@cs.technion.ac.il
2 NEC Laboratories America, 4 Independence Way, Princeton, N.J 08550, USA.
{joelkobbi}@nec-labs.com

Abstract. We consider the problem of extending oblivious transfers:
Given a small number of oblivious transfers “for free,” can one imple-
ment a large number of oblivious transfers? Beaver has shown how to
extend oblivious transfers given a one-way function. However, this pro-
tocol is inefficient in practice, in part due to its non-black-box use of the
underlying one-way function.

We give efficient protocols for extending oblivious transfers in the random
oracle model. We also put forward a new cryptographic primitive which
can be used to instantiate the random oracle in our constructions. Our
methods suggest particularly fast heuristics for oblivious transfer that
may be useful in a wide range of applications.

1 Introduction

Is it possible to base oblivious transfer on one-way functions? Partial answers
to this question were given by Impagliazzo and Rudich [22] and Beaver [1].
Impagliazzo and Rudich [22] showed that a black-boz reduction from oblivious
transfer to a one-way function (or a one-way permutation) would imply P#NP.
They gave an oracle that combines a random function and a PSPACE oracle
and proved that relative to this oracle one-way functions exist, but secret-key
agreement is impossible. In other words, even an idealized one-way function (a
random oracle) is insufficient for constructing secret-key agreement and hence
oblivious transfer. A number of papers have continued this line of research and
drew the limits of black-box reductions in cryptography, mapping the separations
between the power of cryptographic primitives in relativized worlds [34, 15, 16,
25,14).

It is not known whether a non-black-bozx reduction from oblivious transfer
to one-way functions exists. Impagliazzo and Rudich’s result strongly suggests
that with the current knowledge in complexity theory we cannot base oblivious
transfer on one-way functions. However, a remarkable theorem of Beaver [1]
shows that a ‘second-best’ alternative is achievable — one-way functions are
sufficient to extend a few oblivious transfers into many, i.e. it is possible to
implement a large number of oblivious transfers given just a small number of
oblivious transfers:

* Work partially done while the second author was at DIMACS, Rutgers University,
96 Frelinghuysen Road Piscataway, N.J 08854, USA.
** This research was supported by the E. AND J. BISHOP RESEARCH FUND.

Theorem 1 ([1]). Let k be a computational security parameter. If one-way
functions exist, then for any constant ¢ > 1 there exists a protocol for reducing
k¢ oblivious transfers to k oblivious transfers.

Interestingly, Beaver’s reduction is inherently non-black-box with respect to
the one-way function it uses.

The results of Impagliazzo and Rudich and Beaver are motivated by both
theory and practice. From a theoretical point of view, one is interested in the
weakest assumptions needed for oblivious transfer, and the type of reductions
employed. From a practical point of view, oblivious transfer protocols are based
on public-key primitives, which seem to require more structure than private-key
primitives, and in practice are more expensive to implement. Alternative physi-
cal or multi-party implementations of oblivious transfer are also comparatively
expensive. Thus, it is highly desirable to obtain methods for implementing obliv-
ious transfers with (amortized) cost comparable to that of private-key primitives.

Beaver’s protocol shows how to implement most of one’s oblivious trans-
fers using simple primitives. Thus, if public-key primitives simply did not exist,
one could implement a few oblivious transfers using, for example, multi-party
computation, and then use one-way functions for the rest.

Unfortunately, Beaver’s protocol appears to be inefficient in practice. In par-
ticular it requires that operations be performed for every gate of a circuit comput-
ing, among other things, a pseudo-random generator. Consequently, the protocol
requires work at least quadratic in the circuit complexity of the pseudo-random
generator.

1.1 Oblivious Transfer

Oblivious transfer (OT) [32,10,6,23] is a ubiquitous cryptographic primitive
that may be used to implement a wide variety of other cryptographic proto-
cols, including secret key exchange, contract signing [10], and secure function
evaluation [36,19, 20, 23].

Oblivious transfer is a two-party protocol between a sender and a receiver.
Several flavors of OT have been considered and shown equivalent [9,6]. In the
most useful type of OT, often denoted (7)-OT [10] (for the single-bit version)
or ANDOS [6] (for the multi-bit version), the sender holds a pair of strings®
and the receiver holds a selection bit. At the end of the protocol the receiver
should learn just the selected string, and the sender should not gain any new
information. Moreover, it is required by default that the above properties hold
even if the sender or the receiver maliciously deviate from the protocol. This
notion of OT can be conveniently formalized within the more general framework

3 In a typical application of OT these strings are used as key material, in which
case their length should be equal to a cryptographic security parameter. Most direct
implementations of OT (cf. [28]) in fact realize OT with these parameters. Moreover,
OT of arbitrarily long strings can be reduced to such OT by making a simple use
of a pseudo-random generator (see Appendix B). Hence, the following discussion is
quite insensitive to the length of the strings being transferred.

of secure computation (see Section 2). In fact, OT is a complete primitive for
general secure computation [20, 23].

Efficiency is particularly crucial for oblivious transfer, due to its massive
usage in secure protocols. For instance, general protocols for secure computation
(e.g., [36,19, 23]) require at least one OT invocation per input bit of the function
being evaluated. This is also the case for more specialized or practically-oriented
protocols (e.g., [30,29,17,26,12,27]), where oblivious transfers typically form
the efficiency bottleneck.

1.2 Our Results

In light of the state of affairs described above, it is quite possible that one
cannot extend oblivious transfers in a black-box manner. It was also possible, in
analogy to [22, 1], that even a random oracle cannot be used to extend oblivious
transfers.We show that this is not the case. Specifically, we show the following
black-box analogue of Theorem 1:

Theorem 2 (Main Theorem). Let k be a computational security parameter.
For any constant ¢ > 1, there exists a protocol in the random oracle model for
reducing k¢ oblivious transfers to k oblivious transfers. Alternatively, the random
oracle can be replaced by a black-bozx use of a correlation robust hash function,
as defined in Definition 1, Section 5.

We note that our result for the random oracle model is actually stronger. For
any € > 0, we can reduce 28" oblivious transfers to k oblivious transfers of k-bit
strings. This reduction is essentially tight, in the sense that the negative result
of [22] can be extended to rule out a similar reduction of 2 oblivious transfers
to k oblivious transfers (assuming that the adversary is allowed polynomial time
in the number of oblivious transfers).

CONTRIBUTION PERSPECTIVE. It is instructive to draw an analogy between the
problem of extending oblivious transfers and that of extending public-key en-
cryption. To encrypt a long message (or multiple messages) using a public-key
encryption scheme, it suffices to encrypt a short secret key k for some private-
key scheme, and then encrypt the long message using the private-key scheme
with key . Thus, public-key encryption can be readily extended via a black-box
use of a (far less costly) private-key primitive. The existence of such an efficient
black-box reduction has a significant impact on our everyday use of encryption.
The aim of the current work is to establish a similar result within the richer
domain of secure computations.

EFFICIENCY. Our basic protocol is extremely efficient, and requires each party
to make a small constant number of calls to the random oracle for each OT being
performed. All other costs (on top of the initial seed of k OTs) are negligible.
This basic protocol, however, is insecure against a malicious receiver who may
deviate from the protocol’s instructions. To obtain a fully secure protocol, we
employ a cut-and-choose technique. This modification increases the cost of the
basic protocol by a factor of o, where o is a statistical security parameter.

Specifically, any “cheating” attempt of a malicious receiver will be detected by
the sender, except with probability 2-(?), Thus, in scenarios where a penalty
is associated with being caught cheating, this (rather modest) cut-and-choose
overhead can be almost entirely eliminated. We also discuss some optimized
variants of our protocols, in particular ones that are tailored to an “on-line”
setting where the number of desired oblivious transfers is not known in advance.

RELATED WORK. There is a vast literature on implementing OT in various set-
tings and under various assumptions. Since OT implies key exchange, all these
OT protocols require the use of expensive public-key operations. The problem of
amortizing the cost of multiple oblivious transfers has been considered by Naor
and Pinkas [28]. Their result is in a sense complementary to ours: while the
savings achieved are modest, the amortization “kicks in” quite early. Thus, their
techniques can be used for reducing the cost of the seed of k oblivious transfers
required by our protocols.

1.3 On the Use of a Random Oracle

We describe and analyze our protocols in the random oracle model. Such an
analysis is used in cryptography for suggesting the feasibility of protocols, and
for partially analyzing protocols (in particular, practical ones). Instead of making
purely heuristic arguments, one considers an idealized hash function, and proves
rigorous results in this “nearby” version of the problem. The latter approach is
advocated e.g. by Bellare and Rogaway [3]. They suggest to analyze protocols
with hash functions modeled by an idealized version, implemented by some magic
black box. For example, instead of trying to analyze a protocol that uses a
specific hash function h(z) : {0,1}?F — {0,1}*, one analyzes the system that
uses a random function H : {0,1}2* — {0, 1}*, chosen uniformly from the space
of all such functions.

All parties being considered, both legitimate parties and adversaries, are
given access to H as a black box (or oracle). The protocol can instruct the
parties to make queries to H. The adversary attacking the protocol is allowed to
make arbitrary queries to H, at unit cost, but is bounded in how many queries it
is allowed to make (if only by a bound on its running time). Using the complete
lack of structure of H and the fact that the adversary can explore only a tiny
portion of its inputs allows us to rigorously analyze idealized versions of systems
that in vanilla form resist all analysis. The heuristic leap of faith is that the real
world matches the idealized world insofar as security is concerned, i.e., that the
hash function A is sufficiently “structureless” that the system remains secure if
it uses h in place of H.

This approach has been applied to many practical systems. To mention just
a few, it was used for optimal asymmetric encryption (OAEP) [5, 33], for replac-
ing interaction in the Fiat-Shamir signature scheme [13], and to justify hashing
methodologies [4,35], a method for basing cryptosystems on one-way permu-
tations [11], for analyzing the DESX construction [24], as well as RSA-based
signature schemes with hashing [3]. In practical implementations, highly effi-
cient hash functions such as SHA1 or RC5 are typically used to instantiate the
random oracle.

There is no rigorous methodology allowing one to safely replace the hash func-
tion with a cryptographic instantiation. Indeed, Canetti, Goldreich and Halevi
[8] give an explicit example of a cryptographic protocol that is secure using an
ideal random function H, but is insecure for any polynomial-time computable
instantiation of H. Their counterexample stems from the difference between an
efficiently computable function and a random oracle: The efficient function has
a small circuit whereas the random oracle does not. Further research along these
lines appears in [31,21,2].

We would like to stress, however, that these concerns can be at least par-
tially dismissed in the context of the current work. First, in our security proofs
we treat the random oracle as being non-programmable [31], i.e., we do not al-
low the simulators used in these proofs to fake the answers received from the
oracle. This version of the random oracle model is more conservative, in that it
rules out some of the above counterexamples. More importantly, we provide an
alternative to the random oracle model by suggesting a concrete and seemingly
natural cryptographic primitive that can be used to instantiate our protocols.
Specifically, we require an explicit h : {0,1}* — {0,1} so that for a random and
independent choice of (polynomially many) strings s,t1,...,tm € {0, 1}k, the
joint distribution (A(s ® t1),...,h(s ® tm),t1,-..,tm) is pseudo-random. Since
this is a simple property enjoyed by a random function, any evidence that hash
functions such as SHA1 or RC5 violate this property could be considered a valid
attack against these functions.

1.4 Road Map

Section 2 contains some preliminaries and basic tools. We give the basic version
of our protocol in Section 3. This protocol is insecure against a malicious receiver.
A modified version of the basic protocol that achieves full security is described
in Section 4. In Section 5 we describe a primitive that captures a property of the
random oracle that is sufficient for our constructions. We conclude with some
open problems.

2 Preliminaries

2.1 Secure Two-Party Computation

It is convenient to define our problem within the more general framework of
secure two-party computation. In the following we assume the reader’s famil-
iarity with standard simulation-based definitions of secure computation from
the literature. For self-containment, the necessary definitions are sketched in
Appendix A.

THE USE OF A RANDOM ORACLE. When augmenting the standard definition
of two-party computation with a random oracle H, we assume that the oracle
is picked at random in both the real function evaluation process involving the
adversary and the ideal process involving the simulator. Furthermore, we require
that the simulation be indistinguishable from the real execution even if the

distinguisher is allowed to adaptively make polynomially many queries to the
same H that was used in the process (real or ideal) generating its input. This
is especially significant when simulating a semi-honest (i.e., passively corrupted)
party, since this party by definition cannot make any additional calls to H.
However, even when simulating a malicious (i.e., actively corrupted) party, who
can make the additional calls himself, this requirement is important for ensuring
that the transcripts provided by the simulator are indeed consistent with the
instance of H to which it had access. This is referred to as the non-programmable
random oracle model.

REDUCTIONS. It is often convenient to design secure protocols in a modular way:
first design a high level protocol assuming an idealized implementation of a lower
level primitive, and then substitute a secure implementation of this primitive.
If the high level protocol securely realizes a functionality f and the lower level
primitive a functionality g, the high level protocol may be viewed as a secure
reduction from f to g. Such reductions can be formalized using a hybrid model,
where the parties in the high level protocol are allowed to invoke g, i.e., a trusted
party to which they can securely send inputs and receive the corresponding
outputs. In our case, we will be interested in reductions where f implements
“many” oblivious transfers and g “few” oblivious transfers. Moreover, we will
usually restrict our attention to reductions making use of a single invocation
to g. Appropriate composition theorems, e.g. from [7], guarantee that the call
to g can be replaced by any secure? protocol realizing g, without violating the
security of the high level protocol. Moreover, these theorems relativize to the
random oracle model. Thus, it suffices to formulate and prove our reductions
using the above hybrid model.

BLACK-BOX REDUCTIONS. The above framework for reductions automatically
guarantees that the high-level protocol for f make a black-box use of g, in
the sense that both the protocol and its security proof do not depend on the
implementation of g. Thus, all our reductions in the random oracle model are
fully black box. For comparison, Beaver’s reduction [1] is clearly non-black-
box with respect to the one-way function (or PRG) on which it relies. We refer
the reader to [15,16] for a more thorough and general exposition to black-box
reductions in cryptography.

2.2 Oblivious Transfer

An OT protocol can be defined as a secure two-party protocol between a sender S
and a receiver R realizing the OT functionality (see Appendix A) . This definition
implies the properties mentioned in the introduction: the sender cannot learn
the receiver’s selection, and the receiver cannot learn more than one of the two
strings held by the sender. It is interesting to note that this definition imposes
additional desirable features. For instance, a malicious sender must “know” a

* Here one should use an appropriate notion of security, e.g., the one from [7].

pair of string to which the receiver’s selection effectively applies.® This may be
important for using OT in the context of other protocols.

The most general OT primitive we consider, denoted 0T}", realizes m (inde-
pendent) oblivious transfers of £-bit strings. That is, OT}" represents the following
functionality:

Inputs: S holds m pairs (zj0,2j1), 1 < j < m, where each x;; is an ¢-bit
string. R holds m selection bits r = (r1,...,ry).
Outputs: R outputs z;,; for 1 < j <m. S has no output.

The task of extending oblivious transfers can be defined as that of reducing
oT}* to OT’,j, where k is a security parameter and m > k. (For simplicity, one may
think of ¢ as being equal to k.) That is, we would like to implement m oblivious
transfers of ¢-bit strings by using k oblivious transfers of k-bit strings. However,
it will be more convenient to reduce oT}* to otk . The latter primitive, in turn,
can be very easily reduced to OTﬁ by generating 2m pseudo-random bits.® This
reduction proceeds by performing OT of k pairs of independent seeds, and then
sending the & pairs of strings masked with the outputs of the generator on the
corresponding seeds. See Appendix B for a formal description.

We note that using known reductions, 0% can be further reduced to k in-
vocations of OT} (the type of OT typically realized by direct implementations)
or O(k?) invocations of oT! [6]. Thus, any secure implementation for the most
basic OT variant can be used as a black box to securely realize our high level
ot} protocol. We prefer to use OT’,g as our cryptographic primitive for extending
oblivious transfers, due to the possibility for a more efficient direct implementa-
tion of this primitive than via k separate applications of OT,lC [28].

2.3 Notation

We use capital letters to denote matrices and small bold letters to denote vectors.
We denote the jth row of a matrix M by m; and its ith column by m’. The
notation b - v, where b is a bit and v is a binary vector, should be interpreted in
the natural way: it evaluates to 0 if b =0 and to v if b = 1.

3 Extending OT with a Semi-Honest Receiver

In this section we describe our basic protocol, reducing OT}" to OTfn. As noted
above, this implies a reduction to OTﬁ with a very small additional cost. The
security of this protocol holds as long as the receiver is semi-honest. We will later
modify the protocol to handle malicious receivers. The protocol is described in
Fig. 1.

5 This follows from the fact that a malicious sender’s output should be simulated
jointly with the honest receiver’s output.

5 A pseudo-random generator can be easily implemented in the random oracle model
without additional assumptions.

INPUT OF S: m pairs (zj,0,2;,1) of £-bit strings, 1 < j < m.
INPUT OF R: m selection bits r = (r1,...,7m).
COMMON INPUT: a security parameter k.
ORACLE: a random oracle H : [m] x {0, 1} — {0,1}".
CRYPTOGRAPHIC PRIMITIVE: An ideal OTY, primitive.
1. S initializes a random vector s € {0,1}* and R a random m x k bit matrix
T.
2. The parties invoke the oT®, primitive, where S acts as a receiver with input
s and R as a sender with inputs (t',r @ t*), 1 <i < k.
3. Let @ denote the m x k matrix of values received by S. (Note that q° =
(si-r)@t'and q; = (rj -s) @t;.) For 1 < j < m, S sends (y;,0,y;,1) where
Yi0 =Tj0 B H(j,q;) and y;,1 = 25,1 & H(j,q; & 's).
4. For 1 <j <m, R outputs z; = y;,,; ® H(j, t;).

Fig. 1. Extending oblivious transfers with a semi-honest receiver.

It is easy to verify that the protocol’s outputs are correct (i.e., z; = ;)
when both parties follow the protocol.

EFFICIENCY. The protocol makes a single call to 0T%,. In addition, each party
evaluates at most 2m times (an implementation of) a random oracle mapping
k + logm bits to £ bits. All other costs are negligible. The cost of 0TF, is no
more than k times the cost of 0T} (the type of OT realized by most direct
implementations) plus a generation of 2m pseudo-random bits. In terms of round
complexity, the protocol requires a single message from S to R in addition to
the round complexity of the OTfn implementation.

3.1 Security

We prove that the protocol is secure against a malicious sender and against a
semi-honest receiver. More precisely, we show a perfect simulator for any mali-
cious sender S* and a statistical simulator for R. In the latter case, the output
of the ideal process involving the simulator is indistinguishable from that of
the real process even if the distinguisher is allowed to adaptively make 2%/ ke
additional calls to H.

We let TP denote the trusted party for the 0T}’ functionality in the ideal
function evaluation process.

Simulating S*. It is easy to argue that the output of an arbitrary S* can be
perfectly simulated. Indeed, all S* views throughout the protocol is a k-tuple of
uniformly random and independent vectors, received from the OT%, primitive in
Step 2. This guarantees that the receiver’s selections remain perfectly private.
However, as discussed above, the OT definition we are using is stronger in the
sense that it requires to simulate the output of the malicious sender jointly with

the output of the honest receiver. Such a simulator for a malicious sender S*
may proceed as follows:

— Run S* with a uniformly chosen random input p. Let s* be the input S*
sends to the 0Tk, primitive in Step 2. Generate a random m x k matrix Q,
and feed S* with the columns of @ as the reply from the oTF, primitive.

— Let (yjo.¥;1) be the messages sent by S* in Step 3. Call TP with inputs
T50=Yj0® H(j,q;) and 2, =y5, ® H(j,q; &s), 1 <j<m.

— Output whatever S* outputs.

CORRECTNESS: It is easy to verify that the joint distribution of p,s*, @, the
values (y} o,y 1) and all values of H queried by S* in the ideal process is identical
to the corresponding distribution in the real process. It remains to show that,
conditioned on all the above values, the receiver’s outputs :c;” in the ideal
process are distributed identically to these outputs in the real process. This
follows from the way the output of R is defined in the Step 4 of the protocol and
from the fact that (in the real process) t; = q; ® (r; - s*). Note that the above
simulation remains perfect even if the distinguisher makes an arbitrary number
of calls to H. Thus we have:

Claim. The protocol is perfectly secure with respect to an arbitrary sender.

Simulating R. The semi-honest receiver R can be simulated as follows:

— Call TP with input r. Let z; denote the jth output received from TP.
— Run the protocol between R and S, substituting the values z; for the known
inputs z; f S and the default value 0¢ for th k i i
puts z;,; O and the default value or the unknown inputs x;i—p;.
Output the entire view of R.

Tt is clear from the descriptions of the protocol and the simulator that, con-
ditioned on the event s # 0, the simulated view is distributed identically to the
receiver’s view in the real process. Indeed, if s # 0, the values of H used for
masking the unknown inputs x;; ,, are uniformly random and independent of
the receiver’s view and of each other. Thus, the simulator’s output is 2~ ¥-close to
the real view. However, to make a meaningful security statement in the random
oracle model, we must also allow the distinguisher to (adaptively) make addi-
tional calls to H, where the answers to these calls are provided by the same H
that was used in the process (real or ideal) generating the distinguisher’s input.

Now, if the distinguisher can “guess” the oracle query used in the real process
to mask some secret ;1 —,; which R is not supposed to learn, then it clearly wins
(i.e., it can easily distinguish between any two values for this unknown secret).
On the other hand, as long as it does not guess such a critical query, the masks
remain random and independent given its view, and so indistinguishability is
maintained. The crucial observation is that from the distinguisher’s point of
view, each of these m offending queries is (individually) distributed uniformly at
random over a domain of size 2¥. This follows from the fact that the distinguisher
has no information about s as long as it makes no offending query. Hence, the
distinguisher can only win the above game with negligible probability. This is
formalized by the following lemma.

Lemma 1. Any distinguisher D which makes at most t calls to H can have at
most a (t + 1) - 27%-advantage in distinguishing between the output of the real
process and that of the ideal process.

Proof. Define the extended real (resp., ideal) process to be the real (resp., ideal)
process followed by the invocation of D on the output of the process. The output
of the extended process includes the output of the original process along with
the transcript of the oracle calls made by D. For each of the extended processes,
define an offending query to be a call to H on input (j,t;®s) for some 1 < j < m,
and define B to be the (bad) event that an offending query is ever made by either
Ror D. 1t is easy to verify that, as long as no offending query is made, the outputs
of the two extended processes are perfectly indistinguishable. Thus, the event B
has the same probability in both extended processes, and the outputs of the two
extended processes are identically distributed conditioned on B not occurring. It
remains to show that Pr[B] < (¢4 1)-27*. This, in turn, follows by noting that:
(1) R makes an offending query only if s = 0, and (2) as long as no offending
query is made, D’s view is completely independent of the value of s. a0

Thus, we have:

Claim. Aslong as m = 20(k) " the protocol is statistically secure with respect to
a semi-honest receiver and a polynomial-time distinguisher having access to the
random oracle.

4 A Fully Secure Protocol

In this section we describe a variant of the protocol from Section 3 whose security
also holds against a malicious receiver.

We begin by observing that the previous protocol is indeed insecure against
a malicious R*. Consider the following strategy for R*. In Step 2, it chooses the
ith pair of vectors sent to the oT% primitive so that they differ only in their
ith position.” For simplicity, assume without loss of generality that the ith bit
of the first vector in the ith pair is 0. The above strategy guarantees that for
1 < j <k the vector q; contains the bit s; in its jth position and values known
to R* in the remaining positions. It follows that given an a-priori knowledge of
xjo the receiver can recover s; by making two calls to H. This, in turn, implies
that given the values of 1, ...,%k,0, the receiver can recover s and learn all
2m inputs of S.%

To foil this kind of attack, it suffices to ensure that the pairs of vectors sent
by the receiver to the o0TF, primitive are well-formed, i.e., correspond to some

"It is in fact possible for R* to use this strategy in a completely undetectable way.
Specifically, it can ensure that the m vectors received by S are uniformly random
and independent.

8 The security definition implies that the ideal process can properly simulate the real
process given any distribution on the inputs. The above attack rules out proper
simulation for an input distribution which fixes 1,0, ..., Zr,0 and picks the remaining
inputs uniformly at random.

valid choice of r and T. Indeed, the simulator of R from the previous section
can be readily modified so that it simulates any “well-behaved” R’ satisfying
this requirement. To deal with an arbitrarily malicious R* we employ a cut-
and-choose technique. Let o denote a statistical security parameter. The players
engage in o (parallel) executions of the previous protocol, where all inputs to
these executions are picked randomly and independently of the actual inputs.
Next, the sender challenges the receiver to reveal its private values for a random
subset of 0/2 executions, and aborts if an inconsistency is found. This ensures
S that except with 2~ 2(9) probability, the remaining /2 executions contain at
least one “good” execution where the receiver was well-behaved in the above
sense. Finally, the remaining executions are combined as follows. Based on its
actual selection bits, the receiver sends a correction bit for each of its mo/2
random selections in the remaining executions, telling S whether or not to swap
the corresponding pair of inputs. For each of its actual secrets x;;, the sender
sends the exclusive-or of this secret with the /2 (random) inputs of the remain-
ing executions which correspond to ;4 after performing the swaps indicated by
the receiver. Having aligned all of the selected masks with the selected secrets,
the receiver can now easily recover each selected secret x; .. This protocol is
formally described in Fig. 2.

Note that the above protocol does not give a malicious S* any advantage
in guessing the inputs of R. Moreover, except with 279 (@) failure probability,
security against a malicious R* reduces to security against a well-behaved R'. A
more detailed security analysis will be provided in the full version.

EFrriciENCY. The modification described above increases the communication
and time complexity of the original protocol by a factor of o. The probability
of R* getting away with cheating is 2~(?).9 In terms of round complexity, the
protocol as described above adds a constant number of rounds to the original
protocol.

OPTIMIZATIONS. We did not attempt to optimize the exact round complexity. A
careful implementation, using commitments, can entirely eliminate the overhead
to the round complexity of the basic protocol. The length of the OT seed can be
shortened from ok to O(k) via the use of a modified cut-and-choose approach,
at the expense of a comparable increase in the length of the input to H (and
while achieving roughly the same level of security). Further details are omitted
from this abstract.

AN ON-LINE VARIANT. In our default setting, we assume that the number m of
desired OT is known in advance. However, in some scenarios it may be desirable
to allow, following the initial seed of OT, an efficient generation of additional
OT on the fly. While it is easy to obtain such an on-line variant for the basic
protocol from Figure 1, this is not as obvious for the fully secure protocol. We
note, however, that the modified cut-and-choose technique mentioned above can
also be used to obtain an on-line variant of the fully secure protocol.

9 In particular, the distance between the output of the simulator for R* and the output
of the real process increases by at most 27(7),

INPUT OF S: m pairs (z;,0,;,1) of £-bit strings, 1 < j < m.
INPUT OF R: m selection bits r = (r1,...,7m).

COMMON INPUT: security parameters k, 0.

ORACLE: a random oracle H : [o] x [m] x {0,1}* — {0, 1}*.
CRYPTOGRAPHIC PRIMITIVE: An ideal 0T%” primitive.

1. For 1 < p < 0, S initializes a random vector s'® € {0, 1}’C and m random
pairs of £-bit strings (m;.,po)m;f’l)), 1< j <m. For 1< p< o, R initializes a
random vector r® € {0,1}™ and a random m X k bit matrix T®,

2. The parties invoke the oTZF primitive, where S acts as a receiver with
inputs s, 1 < p < o, and R as a sender with inputs (£ r® g tP)7)
1<p<o,1<i<k Let Q¥ denote the pth m x k matrix of values
received by S.

3. S picks a random subset P C [o] of size 0/2, and challenges R to reveal
all values r'®) and T™ with p € P. If the reply of R is not fully consistent
with the values received in Step 2, S aborts.

4. For 1<p<oand1<j<m,S sends (y](-,pg,y](f’l)) where

vy =2 @ H(p,j,a” ©b-s).

(S

For all 1 < j <m and p € P, R sends a correction bit c](.p) =r;® r](.p).
6. For 1 <j<mandbe{0,1}, S sends

(p)
Wiy = T; EB@Z‘ .
;b J:b j.b@et?)
pgP ’

7. For 1 < j <m, R outputs

2j = Wj,r; D @(yj(,pr)(_p) © H(p, J, t§p)))~
pgp 7

Fig. 2. A fully secure protocol for extending oblivious transfers

5 On Instantiating the Random Oracle

In this section we define an explicit primitive which can be used to replace the
random oracle in our constructions.

We say that h : {0,1}* — {0,1} is correlation robust if for a random and
independent choice of (polynomially many) strings s,t1,...,t, € {0, l}k, the
joint distribution (h(t; @ s),...,h(ts ® s)) is pseudo-random given ty,...,ty,.
More precisely:

Definition 1 (Correlation robustness). An efficiently computable function
h : {0,1}* — {0,1} is said to be correlation robust if for any polynomials
p(+),q() there exists a negligible function €(-) such that the following holds. For
any positive integer k, circuit C of size p(k), and m < q(k)

‘Pr[c(tla ey lm, h(tl @ 5)7 ERE h(tm @ 8)) = 1] - Pr[C(U(k+1)m) = 1]| < 6(k)7

where the probability is over the uniform and independent choices of s,t1,...,tm
from {0,1}*.

A correlation robust h can be used to obtain a (weak) pseudo-random func-
tion family defined by fs(t) = h(d ® t), and hence also a one-way function.
However, we do not know whether correlation robustness can be based on one-
way functions.

We now briefly discuss the application of correlation robustness to our prob-
lem. Consider the basic protocol from Fig. 1 restricted to ¢ = 1, i.e., implement-
ing bit oblivious transfers. Moreover, suppose that the first argument to the ran-
dom oracle is omitted in this protocol (i.e., H(u) is used instead of H(j,u)).1°
From the receiver’s point of view, the value masking a forbidden input z;; .,
is H(s @ t;), where s is a uniformly random and secret k-bit string and t; is a
known k-bit string. The use of a correlation robust H suffices to ensure that the
above m masks are jointly pseudo-random given the receiver’s view.

It is also possible to modify the fully secure variant of this protocol so that
its security can be based on correlation robustness. Such a modification requires
the sender to randomize each evaluation point of H so as to prevent a malicious
receiver from biasing the offsets ;. Thus, we have:

Theorem 3. Let k denote a computational security parameter. For any constant
¢ > 1 it is possible to reduce k¢ oblivious transfers to k oblivious transfers by
making only a black-box use of a correlation robust function.

6 Open problems

We have shown how to extend oblivious transfers in an efficient black-box manner
given a random function, or given a correlation robust function. The question

0 1t is not hard to verify that as long as the receiver is honest, the protocol remains
secure. The inclusion of j in the input to the random oracle slightly simplifies the
analysis and is useful towards realizing the fully secure variant of this protocol.

whether it is possible to extend oblivious transfers in a black-box manner using
a one-way function is still open. A negative answer (in the line of [22]) would
further dilute our view of negative black-box reduction results as impossibility
results.

A related question which may be of independent interest is that of better
understanding our notion of correlation robustness. Its definition (while simple)
appears to be somewhat arbitrary, and it is not clear whether similar variants,
which still suffice for extending OT, are equivalent to our default notion. The
questions of finding a “minimal” useful notion of correlation robustness and
studying the relation between our notion and standard cryptographic primitives
remain to be further studied.

7 Acknowledgments

We thank Moni Naor and Omer Reingold for useful comments.

References

1. Donald Beaver, Correlated Pseudorandomness and the Complezity of Private Com-
putations, STOC 1996: 479-488

2. M. Bellare, A. Boldyreva and A. Palacio, A Separation between the Random-Oracle
Model and the Standard Model for a Hybrid Encryption Problem, Electronic Collo-
quium on Computational Complexity (ECCC), 2003.

3. M. Bellare and P. Rogaway, Random Oracles are Practical: a Paradigm for Designing
Efficient Protocols, Proc. of the 1st ACM Conference on Computer and Communi-
cations Security, pages 62-73, 1993. ACM press.

4. M. Bellare, J. Kilian and P. Rogaway, The security of cipher block chaining, Ad-
vances in Cryptology — CRYPTO ’94, Lecture Notes in Computer Science, vol. 839,
Springer-Verlag, 1994, pp. 341-358.

5. M. Bellare and P. Rogaway, Optimal asymmetric encryption, Crypto '94, pages 91—
111, 1994

6. G. Brassard, C. Crépeau, and J.-M. Robert, All-or-nothing disclosure of secrets,
Crypto '86, pp. 234-238, 1987.

7. R. Canetti, Security and composition of multiparty cryptographic protocols, J. of
Cryptology, 13(1), 2000.

8. R. Canetti, G. Goldreich and S. Halevi, The Random Oracle Methodology, Revisited
(preliminary version), STOC: ACM Symposium on Theory of Computing, 1998.

9. C. Crépeau, Equivalence between two flavors of oblivious transfers, Crypto 87,
p-350-354.

10. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.
C. ACM, 28:637-647, 1985.

11. S. Even and Y. Mansour, A construction of a cipher from a single pseudorandom
permutation, Journal of Cryptology, vol. 10, no. 3, 151-162 (Summer 1997). Earlier
version in Advances in Cryptology— ASIACRYPT ’91. Lecture Notes in Computer
Science, vol. 739, 210-224, Springer-Verlag (1992).

12. J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M. Strauss and Rebecca N. Wright,
Secure Multiparty Computation of Approzimations, ICALP 2001: 927-938

13. A. Fiat, A. Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems, Advances in Cryptology — CRYPTO ’86, Lecture Notes in
Computer Science, vol. 263, Springer-Verlag, 1986, pp. 186-194.

14. R. Gennaro and L. Trevisan, Lower Bounds on the Efficiency of Generic Cryp-
tographic Constructions, IEEE Symposium on Foundations of Computer Science,
305-313, (2000)

15. Y. Gertner, S. Kannan, T. Malkin, O. Reingold and M. Viswanathan, The Rela-
tionship between Public Key Encryption and Oblivious Transfer, Proc. of the 41st
Annual Symposium on Foundations of Computer Science (FOCS ’00), 2000.

16. Y. Gertner, T. Malkin and O. Reingold, On the Impossibility of Basing Trapdoor
Functions on Trapdoor Predicates Proc. of the 42st Annual Symposium on Founda-
tions of Computer Science (FOCS ’01) 2001.

17. N. Gilboa, Two Party RSA Key Generation, Proc. of CRYPTO 1999, pp. 116-129.

18. O. Goldreich, Secure multi-party computation, Available at
http://philby.ucsb.edu/cryptolib/BOOKS, February 1999.

19. O. Goldreich, S. Micali and A. Wigderson, Proofs that Yield Nothing but Their Va-
lidity and a Methodology of Cryptographic Protocol Design, Proc. of the 27th FOCS,
1986, 174-187.

20. O. Goldreich and R. Vainish, How to Solve Any Protocol problem - an Efficiency
Improvement, In proceedings, Advances in Cryptology: CRYPTO ’87, 73-86, Springer

1988).

21(. S. ()}oldwasser and Y. Tauman. On the (In)security of the Fiat-Shamir Paradigm,
Electronic Colloquium on Computational Complexity (ECCC), 2003.

22. Impagliazzo, R. and S. Rudich, Limits on the provable consequences of one-way
permutations, Proceedings of 21st Annual ACM Symposium on the Theory of Com-
puting, 1989, pp. 44 — 61.

23. J. Kilian, Founding Cryptography on Oblivious Transfer, Proc of the 20th STOC,
ACM, 1988, 2029

24. J. Kilian and P. Rogaway, How to protect DES against ezhaustive key search, Pro-
ceedings of Crypto '96, August 1996.

25. J.H. Kim, D.R. Simon, and P. Tetali. Limits on the efficiency of one-way
permutations- based hash functions, Proceedings of the 40th IEEE Symposium on
Foundations of Computer Science, pages 535-542, 1999.

26. Y. Lindell and B. Pinkas, Privacy Preserving Data Mining, Journal of Cryptology
15(3): 177-206 (2002)

27. M. Naor and K. Nissim, Communication preserving protocols for secure function
evaluation, STOC 2001: 590-599.

28. M. Naor and B. Pinkas, Efficient oblivious transfer protocols, SODA 2001.

29. M. Naor and B. Pinkas, Oblivious Transfer and Polynomial Evaluation, STOC:
ACM Symposium on Theory of Computing (STOC), (1999).

30. M. Naor, B. Pinkas, and R. Sumner, Privacy preserving auctions and mechanism
design, ACM Conference on Electronic Commerce (1999), pp. 129-139.

31. J. Nielsen, Separating random oracle proofs from complezity theoretic proofs: The
non-committing encryption case, Crypto 2002, pp. 111-126.

32. M. O. Rabin. How to exchange secrets by oblivious transfer. Technical Report
TR-81, Harvard Aiken Computation Laboratory, 1981.

33. V. Shoup, OAEP Reconsidered, Proc. of Crypto ’01, pp. 239-259.

34. D. Simon, Finding Collisions on a One-Way Street: Can Secure Hash Functions
Be Based on General Assumptions?, Proc. of EUROCRYPT 98, pp. 334-345.

35. E. Petrank and C. Rackoff, Message Authentication of Unknown Variable Length
Data, Journal of Cryptology, Vol. 13, No. 3, pp. 315-338, 2000.

36. A. Yao, Protocols for Secure Computations (Estended Abstract) Proc. of FOCS
1982, 160-164.

A Secure Two-Party Computation

In this section we sketch the necessary definitions of secure two-party computa-
tion.! We refer the reader to, e.g., [7,18] for more details.

A secure two-party computation task is specified by a two-party functionality,
i.e., a function mapping a pair of inputs to a pair of outputs. A protocol is said to
securely realize the given functionality if an adversary attacking a party in a real-
life execution of the protocol can achieve no more than it could have achieved
by attacking the same party in an ideal implementation which makes use of a
trusted party. In particular, the adversary should not learn more about the input
and output of the uncorrupted party than it must inevitably be able to learn.
This is formalized by defining a real process and an ideal process, and requiring
that the interaction of the adversary with the real process can be simulated in
the ideal process.

The real process. In the real process, the two parties execute the given protocol
on their respective inputs and a common security parameter k. A probabilistic
polynomial-time adversary, who may corrupt one of the parties and observe all
of its internal data, intervenes with the protocol’s execution. In the default case
of an active adversary, the adversary has full control over the messages sent by
the corrupted party. In this case we say that the corrupted party is malicious.
Also of interest is the case of a passive adversary, who may only try to deduce
information by performing computations on observed data, but otherwise follows
the protocol’s instructions.!? Such a corrupted party is referred to as being semi-
honest, or honest but curious. At the end of the interaction, the adversary may
output an arbitrary function of its view. The output of the real process (on the
the given pair of initial inputs) is defined as the random variable containing
the concatenation of the adversary’s output and the output of the uncorrupted

party.

The ideal process. In the ideal process, an incorruptible trusted party is employed
for computing the given functionality. That is, the “protocol” in the ideal process
instructs each party to send its input to the trusted party, who computes the
functionality and sends to each party its output. The interaction of the adversary
with the ideal process and the output of the ideal process are defined analogously
to the above definitions for the real process. The adversary attacking the ideal
process is referred to as a simulator.

Security. A protocol is said to securely realize the given functionality if, for any
(efficient) adversary attacking the real process, there exists an (efficient) sim-
ulator attacking the same party in the ideal process, such that on any pair of

1 The definitions we provide here apply to a simple stand-alone model assuming a
non-adaptive adversary. However, the security of our reductions should hold for
essentially any notion of security, including ones that support composition.

12 A passive adversary may model situations where an attacker (e.g., a computer virus)
does not want to be exposed by disrupting the normal behavior of the attacked
machine.

inputs, the outputs of the two processes are indistinguishable. The security is
said to be perfect, statistical, or computational according to the type of indistin-
guishability achieved. In the latter two cases, indistinguishability is defined with
respect to the security parameter k. The protocol is said to be secure against a
semi-honest (resp., malicious) receiver, if the above security requirement holds
with respect to a passive (resp., active) adversary corrupting the receiver. A
similar definition applies to the sender. We note that in all cases the protocol is
required to compute the given functionality if no party is corrupted.

B Reducing o1}, to o1}

Oblivious transfer of long strings can be efficiently reduced to oblivious transfer
of shorter strings using any pseudo-random generator. The reduction is formally
described in Fig. 3.

INPUT OF S: n pairs of m-bit strings (zi,0,zi;1), 1 <i < n.
INPUT OF R: m selection bits r = (r1,..., 7).

COMMON INPUT: a security parameter k.

OracLe: A PRG G : {0,1}* — {0,1}™.

CRYPTOGRAPHIC PRIMITIVE: An ideal OT) primitive.

1. S initializes n pairs of random k-bit seeds (si,o0, $i,1)-

2. The parties invoke the 0T} primitive, where S acts as a sender with inputs
(si,0,8i,1), 1 <i < n, and R as a receiver with input r.

3. For 1 <i < n, S sends (yi,0,yi,1), where y;p, = zip ® G(sip)-

4. For 1 <i<n, Routputs z; = y; r, ® G(si,r;)-

Fig. 3. Reducing 0T, to OT}

The security of this reduction is straightforward to prove. Its complexity
overhead is dominated by the cost of generating 2m pseudo-random bits. By
combining Step 3 with Step 2, the protocol’s round complexity can be made the
same as that of 0T}}. Finally, we note that the use of the PRG G can be emulated
by standard means using calls to the random oracle H.

