
CSA E0 312: Secure Computation September 18, 2015

[Lecture 11-12]

Instructor: Arpita Patra Submitted by: Dheeraj Ram

In this lecture, we are going to see the multi-party extension of GMW protocol, and
couple of optimizations on the same. We then explore Yao’s protocol in detail.

1 n-Party Evaluation of GMW protocol

We have seen GMW protocol for 2 parties, in the previous lecture. We will be discussing
how to extend that protocol to any arbitrary n players with (n, n) additive secret sharing.

Sharing inputs of all players

For sharing the inputs, we use (n, n) secret sharing on each player’s inputs. So, besides the
bearer of an input, no other party(s) will get to know the input of any other player, but
they collectively hold all the inputs in the circuit.

1.1 Logic Gate Evaluation of GMW n-Party Protocol

XOR gates and NOT gates are easy to evaluate in the n-Party GMW Protocol. If each
party XOR their shares of a and b, they will get the shares of a ⊕ b. Similarly if just one
party (say, always P1) complements it’s share of a, all parties hold shares of ¬a. We have
seen how it works in the case with 2 parties. But it’s not obvious how to implement AND
Gate with (n, n) shares.

1.1.1 AND Gate Evaluation in GMW

Let x and y be two input/intermediate values in GMW logic circuit. We are about to see
how to perform x · y. The output is the (n, n) shares of x · y, from the shares of x and y.

Let x = (x1 + x2 + · · · + xn) and y = (y1 + y2 + · · · + yn) where xi and yi are the secret
shares of x and y respectively, held by player Pi. That means,

x · y = ((x1 + x2 + · · ·+ xn) · (y1 + y2 + · · ·+ yn)

= (x1 · y1 + x1 · y2 + · · ·+ x1 · yn) + (x2 · y1 + x2 · y2 + · · ·+ x2 · yn) + . . .

+ (xn · y1 + xn · y2 + · · ·+ xn · yn)

= (x1 · y1 + x2 · y2 + · · ·+ xn · yn) + Σi 6=j(xi · yj)

= Σi(xi · yi) + Σi 6=j(xi · yj)

[Lecture 11-12] -1

We can see that every party can compute one summand (xi · yi) by itself. It is also obvious
that a summand of the form (xi · yj) should not be computed by a single party, as partial
knowledge on the product compromise the secrecy of the other share i. The solution is to
locally compute first n summands, and the remaining (n2−n) summands of the form (xi ·yj)
should be (2, 2) shared between the players Pi and Pj . That way, if adversary corrupts just
one party among Pi and Pj , he can’t gain any information about the secret share of the
other party from the secret sharing property, and if adversary corrupts both, he gains no
new information other than the shares of the parties he corrupts.

The (2, 2) secret sharing of (xi · yj) can be done with OT, as in the figure 1:

Figure 1: (2, 2) sharing of xi · yj

The shares of (xi ·yj) will be ri from Pi and ri +xi ·yj from Pj . The correctness is trivial as
the addition of the two shares will produce xi ·yj . Along with that, Pj gains no information
about xi from the OT executionii. It is obvious that for any two pair of players (Pi,Pj),
there will be two cross-summands such as (xi · yj) and (xj · yi). So we need to execute
2(n2 − n) OTs in total for a single AND operation in GMW with n parties. In effect, the
share of the product x · y, from a party Pi is the sum of following values:

• xi · yi

• ri from all OTs where Pi acted as a sender

• output of the OTs where Pi acted as a receiver

iFor example, if xi · yj is computed by player Pi, then he will see both xi and xi · yj . If xi happened to
be one, then the summand will be same as yj , which is a security breach.

iiIt follows directly from the security of Sender of OT

[Lecture 11-12] -2

This setting will provide security for honest party(s), even if there are n − 1 corrupted
parties present in the protocol (i.e. threshold t = n−1). In figure 2 we can see that the OT
outputs are masked with independent random bits each time, as the last player is honest.
That means the summand value(s) is always one-time padded. From the security of OT,
we can argue that no other information (especially the share(s) of honest party) except the
output of OT, will be revealed from OT execution.

Figure 2: Honest party sharing xi

1.2 Security Analysis of GMW n-Party Protocol

Security of the honest player lies in the security of OT. In the figure 1, no information
about yj will be leaked to Pi because of the security of Receiver. Similarly, no information
about xi is revealed to Pj because of the security of Sender. In short, the security of GMW
Protocol lies in the security of OT. Note that the security of GMW is information theoretic
if we can realize an ideal OT. In unconventional settings like noisy channel, OT realization
in i.t. setting is possible.

1.3 Efficiency of GMW and Improvements

If multiplicative depth of the circuit is d, this protocol demands a round complexity of O(d).
It’s because, AND operations in two different chains can be parallelized, but those in the
same chain can’t be.

[Lecture 11-12] -3

Let CAND be the number of AND operations in the circuit. We need O(n2) OT execution
for each AND gate, and OT implementations require PKE operations. Hence we need a
total of O(n2 · CAND) PKE operations. We can improve the performance by shifting the
OT to the Offline phase and by using OT Extensions. Now we discuss these improvements.

1.3.1 Improvement using Offline-Online Paradigm

We can perform OT execution overhead in the Offline phase and we need to perform only
bit XOR operations in Online phase. For this purpose we use Random OT, as given in the
figure 3.

Figure 3: OT execution using Random OT from Offline phase

Correctness can be proven as follows:

m′b = yb + rc

= yb + rz+b

=

{
y0 + rz if b = 0

y1 + r1−z otherwise

= mb

The decrypted value m′b is indeed mb. We are left with how to prove the security of both
the players. From the security for Receiver in OT, Pi will learn only z, which is a one-time

[Lecture 11-12] -4

pad of the actual choice bit b with random bit c. Also from the security for Sender in OT,
Pj will not know anything other than rc, y0, y1 from the entire protocol. Now from yb, Pj

can decrypt mb like we analyzed in correctness part. From y1−b , Pj can’t decrypt m1−b
as it is one-time masked with r1−c, which is unknown to Pj from the security of Sender in
Random OT execution. Note that one random OT in offline phase can be used only once
in online phase, otherwise compromise extra information about b and/or m1−b as they will
not be one-time padded anymore.

Analysis of the Offline-Online setting of GMW. With Offline-Online setting, GMW
protocol has O(n2 ·CAND) PKE operations (OT) in offline phase, and O(n2 ·CAND) XOR
operations in Online phase. Now we will see how to improve GMW protocol to O(n2 ·CAND)
SKE operations and k OT executions in Offline phase, and O(n2 · CAND) XOR operations
in Online phase.

1.3.2 Improvement using OT Extention (IKNP03)[1]

In this section, we discuss about several optimization primitives that are compatible to use
together.

• Domain Extension using PRG: When we need to perform a random OT on large
messages, instead perform OT using a small message and take the output of PRG
with the message as the seed. The output of OT will be pseudo-random.

• OT Extension: It is possible that for a circuit, we need millions of OTs to perform.
Even if we shift it to the Offline phase, it is still an overhead to perform a large number
of OTs. The solution to this problem is OT Extension from k OTs to poly(k) OTs at
the cost of SKE operations.

We will explore more about these two primitives, in this lecture. Note that it can provide
only computational security.

Domain Extension of OT using PRG. It is possible to reduce the size of communica-
tion if we switch from Random OT to Pseudo-Random OT. Parties can perform Random
OT on pure random seeds, and both masking and unmasking is done with the output of
PRG using the random seeds, as in figure 4. Using a PRG:{0, 1}k → {0, 1}m we can extend
the domain from k to m where k = |ri|, m = |mi| = |yi|, and m = poly(k).

OT Extension. Here we transform k number of OTs with input size m into m OTs,
each with input size l, where l is the size of output from the Hash function we choose in
this section. We will be using the notation Ai represents ith row of matrix A, and Aj

representing jth column of matrix A.
We would like to perform m OTs of message size l, using k base OTs. Let the sender

be denoted as P0 and receiver as P1, in the context of OT. Let the inputs of P0 be
(r(1,0), r(1,1)), (r(2,0), r(2,1)), · · · (r(i,0), r(i,1)), · · · (r(m,0), r(m,1)) for m OTs, and let the inputs

of P1 be ~B = (b1, b2, · · · bm). We want P1 to have the output r(1,b1), r(2,b2), · · · r(i,bi), · · · r(m,bm)

at the end of the execution of OT Extension Protocol, using k base OTs.

[Lecture 11-12] -5

Figure 4: Extending domain from k to m where m = poly(k)

Claim 1 Using k base OTs, it is possible to create two matrices T = [ti,j]m×k and Q =
[qi,j]m×k known to (only) P1 and P0 respectively, with the following property.

1. Ti are chosen at random.

2. ~S is a k-bit vector, and known to P0 only.

3. if bi = 0 then Qi = Ti, otherwise Qi = Ti ⊕ ~S

Assuming Claim 1 is true, we need to perform m OTs using Q, T , ~S and the inputs of both
parties. The protocol is as follows:

1: P0 computes y(i,0) and y(i,1), ∀1 ≤ i ≤ m as follows.

• y(i,0) := Qi ⊕ r(i,0)

• y(i,1) := Qi ⊕ ~S ⊕ r(i,1)

2: P0 sends (y(i,0), y(i,1)) to P1, ∀1 ≤ i ≤ m
3: P1 calculates r(i,bi) = Ti ⊕ y(i,bi)

But there is a trivial attack on the algorithm above. If the Pj is corrupted, he can simply
perform y(1,0)⊕y(1,1)⊕y(2,0)⊕y(2,1) and that results in r(1,0)⊕r(1,0)⊕r(1,0)⊕r(1,0) along with
r(1,b1) and r(2,b2). He may repeat this over many combinations and in the end, Pj obtain
information about the inputs of Pi, which he is not supposed to know. So it is essential to

[Lecture 11-12] -6

mask the messages with something else, but depends on Qi. Consider the following algo-
rithm:

1: P0 computes y(i,0) and y(i,1), ∀1 ≤ i ≤ m as follows.

• y(i,0) := H(i, Qi)⊕ r(i,0)

• y(i,1) := H(i, Qi ⊕ ~S)⊕ r(i,1)

2: P0 sends (y(i,0), y(i,1)) to P1, ∀1 ≤ i ≤ m
3: P1 calculates r(i,bi) = H(i, Ti)⊕ y(i,bi)

The correctness of this protocol immediately follows from the fact that Qi = Ti⊕ (bi · ~S). if
bi = 0, then Qi = Ti, so the r(i,0) being computed correctly. Also, if bi = 1, then Qi = Ti⊕ ~S

and y(i,1) = H(i, Qi ⊕ ~S) = H(i, Ti). So the decryption of r(i,1) will also be correct, when
bi = 1.

Security of the Receiver is trivial, as he is not sending anything to Sender (at least for
now). Security of the Sender lies in the security of Hash function we use. We can see that,
the same ~S is being used to XOR with each Qi, and that relation should not influence the
output of the Hash function. So it demands a Correlation-Robust hash function (we can
use Random Oracle (RO) as it is Correlation-Robust). It is interesting to note that, in
practical implementations we replace RO with some hash functions. The proof of security,
unlike it seems, is not useless in practical implementations. If a protocol in practice using
this OT extension fails, then it boils down to the security offered by the hash function we
used. The protocol can fail only because of the hash function in use could not emulate RO.

Proof of Claim 1: P0 and P1 perform k base OTs where P1 act as sender and P0 will act
as the receiver. The inputs to the base OTs, and construction of T , Q and ~S is generated
as follows:

1: P1 chooses a random m× k matrix T.
2: P1 set the inputs (m0,m1) as (T i, T i ⊕ ~B), for all ith OT execution, 1 ≤ i ≤ k
3: P0 set a random choice bit b and save as ~S[i], for all ith OT execution, 1 ≤ i ≤ k
4: P0 saves the output qi from the ith OT, into a matrix Q, column-wise.

The property (1) from Claim 1 is proven trivially. From the security of Receiver in OT,
property (2) is also followed. Now, if b1 is 0, then for all ith OTs, the first bit of qi is same
as that of T i, regardless of ~S value because, both T i and T i⊕ ~B is same at the first position.
As the first bit of all the columns of Q follows this property, we can argue q1 = t1 if b1 = 0.
On the other hand, if b1 = 1 then Q1[j] = t1[j] if ~S[j] = 0 and Q1[j] = ¬T1[j] if ~S[j] = 1.
That means, Q1 = T1 ⊕ ~S if b1 = 1. We can show for any row j, with similar arguments,
that it holds property (3). Along with that, the security for both sender and receiver gives
protection to ~S and ~B from one another.

The OT Extension can be visualized as given in the figure 5

[Lecture 11-12] -7

Figure 5: OT Extension (IKNP03)

2 Yao’s Protocol

We have seen GMW have a round complexity of O(d), k OTs in the Offline phase, and
O(n2 ·CAND) SKE operations in Online phase. Yao’s circuit, which we are about to discuss,
gives us a constant round protocol. It demands k Offline OTs and O(c) SKE operations
where c is the total number of gates in the logic circuit. But it is only for 2 partiesiii. The
idea of a garbled circuit is due to A. Yao, who described the technique in oral presentations
[2, p. 27] about SFE [4, 5]. The first written account of the method is by Goldreich, Micali,
and Wigderson [3]. The protocol they describe, crediting Yao [4], involves associating two
tokens to each wire of a boolean circuit, these having hidden semantics of 0 and 1.

2.1 Yao’s Circuit

Among the two parties, one will act as a garbled circuit-constructor and the other one will
act as a garbled circuit-evaluator. We denote the first party as P0 and the latter as P1.

2.1.1 Garbled Circuit Construction

We assume P0 has the logic circuit corresponding to the function which P0 and P1 col-
lectively want to compute. The logic circuit consists of a number of (a)wires and (b)logic
gates. First, P0 will assign two keys k0 and k1 for each wire in the circuit, where the keys are
chosen randomly from a key-space. These must be identically looking keys, for all wires. k0

iiiBMR90 protocol is an extension of Yao’s protocol to n parties. (D. Beaver, S. Micali, and P. Rogaway,
1990)

[Lecture 11-12] -8

denotes the bit 0 and k1 denotes 1 in the wire. Now he will take each logic gate (generally
2 inputs and hence 4 combinations of input bits) and the next level keys according to the
gate. Let’s explore the construction of logic gates in detail.

Let’s denote the input wires as a and b for the gate g. ka0 , k
a
1 be the keys of wire a, and

similar notation for wires b and c. We have 4 combinations of key pair < kax, k
b
y >. We

will encrypt 4 messages using these 4 key pairs. The message which is encrypted each time
will be one of the keys of wire c (kc0 or kc1). Which one to encrypt depends on the key
pair. i.e, with key pair < kax, k

b
y >, we will be encrypting the key kcz where z = g(x, y) and

x, y, z ∈ {0, 1}. We construct the gate in a way that, the evaluator will know exactly one
key out of 2 keys of each wire, and he is unable to distinguish the meaning of the key. We
can visualize these cipher-texts as boxes which needs 2 keys to open.

It is obvious to see how to encrypt for NOT gate; we will possess only two cipher-texts
which are encryption of kc0 using ka1 and encryption of kc1 using ka0 . It is also important that
to randomly permute these 4 cipher-boxes to lose the meaning of mapping from key-pair to
their values. This figure 6 gives an idea about how the garbled AND gate looks like.

Figure 6: Garbled AND gate in Yao’s circuit

Once the keys for all wires are chosen and the gates are garbled, P0 provides P1 the
following to evaluate the circuit:

1. All garbled gates (4 or 2 cipher-boxes per gate)

2. Exactly 1 key corresponding to the input bit, in all input wires of P0

3. The meaning of all output wire keys (mapping: kz0 → 0, kz1 → 1 for all output wire z)

[Lecture 11-12] -9

4. A mechanism to know the key corresponding to input bit of P1 in each of his input
wires.

It is not possible to provide both the keys for each of P1’s input wires; that leads to
multiple evaluations of same circuit with same input from P0, that may leads to gain some
information about P0’s inputiv. This problem of exchanging exactly 1 key out of 2 keys,
with the choice of receiver can be done using OT. If there are k number of input wires for
P1, we need to run k OTs with P1 providing input bit as choice bit, and P0 providing keys
for 0 and 1 as it’s messages, as in figure 7.

Figure 7: Yao’s protocol

2.1.2 Circuit Evaluation

Upon receiving P0’s circuit with all the input keys, the circuit-evaluation is just local com-
putation for P1. After the circuit evaluation, P1 will be left with the keys in the output
wires. P1 decrypts the output bits with the decryption table provided for output wires. It
is optional (rather, depending on the specification of the problem), P1 sends the output to
P0. The security lies in the security of OT as well as the indistinguishability of keys.

We leave the instantiation details of Yao’s protocol to the next lecture.

ivEg: Consider a functionality to find the maximum bidder where P0 bids X and P1 bids Y without
revealing X or Y to each other. If the evaluator can run circuit many times with same X but different Y ,
P1 can run a binary search to find out what is X.

[Lecture 11-12] -10

References

[1] [IKNP03]Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers
efficiently. In Advances in Cryptology - CRYPTO’03, volume 2729 of LNCS, pages 145-
161. Springer, 2003.

[2] O. Goldreich. Cryptography and cryptographic protocols. Manuscript, June 9 2001.

[3] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game, or a complete-
ness theorem for protocols with honest majority. In A. Aho, editor, 19th ACM STOC,
pages 218229. ACM Press, May 1987.

[4] A. Yao. How to generate and exchange secrets. In Foundations of Computer Science,
1986., 27th Annual Symposium on, pages 162167. IEEE, 1986.

[5] A. Yao. Protocols for secure computations. In 23rd FOCS, pages 160164. IEEE Com-
puter Society Press, Nov. 1982

[6] Arpita Patra. http://drona.csa.iisc.ernet.in/ arpita/SecureComputation15.html . Course
Materials.

[Lecture 11-12] -11

	title
	Logic Gate Evaluation of GMW n-Party Protocol
	AND Gate Evaluation in GMW

	Security Analysis of GMW n-Party Protocol
	Efficiency of GMW and Improvements
	Improvement using Offline-Online Paradigm
	Improvement using OT Extention (IKNP03)[1]

	Yao's Protocol
	Yao's Circuit
	Garbled Circuit Construction
	Circuit Evaluation

