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[Lecture 17]
Instructor: Arpita Patra Submitted by: Pratik Sarkar

1 Recap

In our previous lecture we saw how the shamir secret sharing can be extended to Verifiable
secret sharing (VSS) in order to tackle a malicious adversary.

In a VSS protocol there is a distinguished party known as dealer D € P; who holds an
input s € F' (where F is a field, such that |F| > n) , referred to as the secret, which he
wants to share with n parties such that ¢ + 1 of them together can uniquely reconstruct it
but t or less number of parties together have no information about the secret. We call an n
party protocol, with adversary A, dealer D and secret s, an (n,t) VSS protocol if it satisfies
the following conditions:

1. Secrecy: If D is honest then A’s view during the sharing phase reveals no information
on s. Formally, A’s view is identically distributed for all different values of s.

2. Correctness: If D is honest then the honest parties togther output a common secret
s at the end of the reconstruction phase. This condition holds true for any choice of
the random inputs of the uncorrupted parties and A’s randomness.

3. Strong Commitment: If D is corrupted, then at the end of the sharing phase
there is a unique value s’ € F, such that at the end of reconstruction phase all honest
parties output s’, irrespective of the behavior of the corrupted parties. s’ may include
Abort as output, incase D has dealt inconsistent shares to the honest parties.

The protocol consists of two phases, a sharing phase and a reconstruction phase. In case
of an honest dealer, in the first stage (called sharing), the dealer shares a secret so that any
t+ 1 parties can later reconstruct the secret, while any subset of ¢ or fewer parties will learn
nothing whatsoever about the secret. In the second stage (called reconstruction), a set of
t+ 1 or more parties reconstruct the secret. If the dealer is corrupted, the VSS ensures that
either the dealer is forced to commit some (n,t) secret s which is uniquely reconstructed in
the reconstruction phase, or he is disqualified. The dealer chooses a bivariate polynomial
F(z,y) of degree atmost ¢ in x and y where the secret s = F'(0,0). The dealer sends to
party P; two univariate polynomials: f;(z) = F(z,i) and ¢;(y) = F(i,9),1 <i,j7 <n . In
the last lecture we saw 3 claims whjch hold true for VSS:

Claim 1 The knowledge of t F(x, i) and t F(i, x) does not leak any information about F(x,

y)

Claim 2 The knowledge of t+1 F(x, i) and t+1 F(i, ) completely determine F(x, y)
Claim 3 g;(j) = f;(i) = F(i, j) and g;(i) = fi(j) = F(j. i)
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We also saw a 4-round VSS protocol. The parties share 2 random pads for each pair.
Then after receiving the shares from the dealer each P; checks for inconsistency among the
shares with every other P; publicly by broadcasting the shares padded with the random
strings in the second round. If inconsistency is found then P;, P; and D broadcast their
corresponding shares to that inconsistent share and the party whose share matches with
D’s share is placed in the happy set whereas the other party is placed in the unhappy set.
For every unhappy player Py, D broadcasts his corresponding polynomial f; (). If there are
more than ¢t unhappy players then the dealer is disqualified. If the dealer is not disqualified
then every party checks for consistency with the polynomials broadcast by D. If for every
public polynomial f;(x), there are 2t 4+ 1 parties for whom it holds that g;(i) = fi(j), then
the dealer is qualified else disqualify him. If the dealer is still not disqualified then every
party P;, in the happy set, shares his secret s; = f;(0) and for every unhappy party Pj, he
considers the polynomial fj’(:n) broadcast by D and provides his share as s; = fJ’- (0). Then
the t-degree polynomial g(y) is computed on the values sg, sy, ..., s, using Reed Solomon
codes. The final secret is reconstructed as ¢(0).

In this lecture we will see how to reconstruct using Reed Solomon codes. But before
that let’s recall Reed Solomon codes.

2 Reed Solomon Codes

A Reed Solomon (RS) [n, k, d]-code over a field F(|F| > n) of size ¢ is a code of length n,
where each codeword is a sequence of n field elements and from that & field elements are
used as message bits. So there are ¢* different codewords), and every two codewords has a
distance d = n — k+1, i.e. they are atleast d Hamming distance apart from each other. For
our needs, we construct a RS code of size n, dimension k =t + 1, and distance d = n —t as
follows:

Let F be a finite field such that |F| > n, and let a1, as, . . . , a, be n distinct field elements.
Let m = (mg, m1,...,m;) be a message to be encoded, where each m; € F. The encoding
of m is as follows:

1. Define a polynomial p,,(x) = mgo + mix + ... + myat of degree t.
2. Compute the codeword C(m) =< pm(a1),pm(az),...,pm(an) >

Theorem 4 A Reed Solomon code with distance d > 2x can correct upto = errors.

3 Error Correction

In our case, we have n > 3t, so the minimum distance of the RS codes are:
d=n—(t+1)+1=3t+1—t—-1+1=2t+1
So we can correct upto ¢ errors in our protocol. We have n = 3t + 1 parties where each
party P; broadcasts his share s; = f;(0) = F(0,4) in the last round of the VSS protocol.
Notice that ¢t + 1 correct F'(0,7) values can be used to interpolate a t-degree polynomial
H(x), where H(0) = F' = (0,0) = s. We are interested in finding that H(z) polynomial.
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Each share is an element in the field F'. All the n shares together can be considered as a
Reed Solomon code.

The dealer distributed shares according to the ¢ degree polynomial H(z). The H(z)
polynomial can be considered equivalent to the p,,(z) polynomial in the RS code definition.
The dealer distributes the following shares: C' =< H(a1), H(a2),...,H(a,) >, where P;
receives H (a;) share as his f;(0), which he later broadcasts for reconstruction. Out of the
n parties, ¢t of them are corrupted shares and their f;(0) values(points) do not belong to
the H(z) polynomial. 2t 4 1 points of the honest parties belong to the H(z) polynomial.
The distance of 2t + 1 can be used to find out the ¢ corrupted values and thus the Reed-
Solomon reconstruction procedure can be run and the honest parties can all obtain the
correct polynomial H(x), and can compute H(0) = s.

We demonstrate the Berklekamp-Welch algorithm for error correction in RS codes. We
have 3t + 1 distinct points and out of which ¢ are corrupted. The rest 2t + 1 points should
interpolate to a ¢ degree polynomial H(z). Let the 3t + 1 points evaluate to a 3t degree
polynomial r(z). And let us consider the consider the erroneous points as (e, ea,...,e).
These t erroneous points define a ¢ degree polynomial e(z).

e(r)=(x—e1)(x—er)...(x —e)
Claim 5 H(z)e(x) = r(x)e(x) at x = 1, 2, ..., n.

The polynomials in the LHS and the RHS in above claim are different. The polynomial
in the LHS is of degree atmost 2¢, whereas the polynomial in the RHS is of degree atmost
4¢t. If all the parties are honest, then r(z) = H(x). But since there are ¢ corrupted values,
the LHS and RHS have same values at only n points. The n points can be divided into two
sets:

1. Honest set: For all the points corresponding to the honest shares, the H(x) and r(x)
values are same, because the honest parties have provided the same shares for both
the H(x) and r(x) polynomial construction. e(z) is common for both the sides, and
hence LHS=RHS for honest values.

2. Corrupted set: For these the H(x) and r(x) values will be different as r(z) has been
interpolated on the corrupted points but not H(x). But for them the value of e(x)

will be 0 as they will be one of the e; points. Thus both LHS and RHS will be 0 for
corrupted points.

We assume the following:
q(x) = H(z)e(x) (1)

q(x) =r(z)e(x) at x =1,2,...,n. (2)

We have the polynomial r(z), ad we wish to find the value of H(z). The value of H(z)
can be found if the value of ¢(z) and e(z) can be computed. g(x) has 2t + 1 coefficients and
e(r) has t + 1 coefficients. They together have 3t + 2 coefficients. But the coefficient of z*
in e(z) is always 1. We have 3t + 1 values of r(x) and substituting them in Eq. [?] gives
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3t + 1 equations. Upon solving those equations we find the 3t + 1 coefficients and obtain
the value of ¢(x) and e(x). Then we can find the value of H(z) from Eq. [?]. Thus we
will obtain the original equation H(z) and also the adversarial points from e(z). Then we
can find the value of the secret as H(0). The solving of 3t + 1 equations can be viewed as
solving system of linear equations which reduces to (publicly known) matrix multiplication
and this can be done using known methods like Gaussian elimination.

Since all the operations done in the error correction are linear operations, and Shamir
Secret Sharing supports linearity property, after the 4" round, the linear operations done
above can be locally computed on the f;(0) broadcast shares of every party. Each party
can individually solve all the 3t + 1 equations and obtain the final secret and the indices of
the adversaries. Thus distributed error correction is supported if we are using reed solomon
codes.

4 Summary

So we saw how to correctly reconstruct the final secret from the verifiable secret sharing
scheme. The previous lecture discussed how the VSS protocol can be used to prevent
the dealer from distributing inconsistent shares and commits him him to a secret. It also
allowed the honest parties to correctly reconstruct the shared polynomial in the presence
of the malicious adversaries. In this lecture we learnt how the reed solomon codes can be
used to help in the reconstruction phase of the VSS protocol.

In the next lecture we will see how the adversary can be forced to give valid shares for
multiplication gate and thus obtain an information theoretic secure BGW protocol.
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