
CSA E0 312: Secure Computation 9th November 2015

[Lecture 18]

Instructor: Arpita Patra Submitted by: Marilyn George

In the previous lectures we have been seeing the building blocks for an information-theoretically
secure BGW protocol in the malicious adversarial model. We have seen Verifiable Secret
Sharing (VSS) and the use of Reed-Solomon codes for distributed error correction during
reconstruction. In this lecture, we will study the multiplication sub-protocol.

1 Recap: Multiplication in Semi-Honest Adversarial Model

Given the two secrets a and b that are (n, t) Shamir-shared among the n parties, we inter-
actively compute the (n, t) Shamir-sharing of c = a · b as follows. We denote the shares of
a and b given to ith player Pi as ai and bi respectively:

1. Pi multiplies ai and bi to get a share c2ti , which is a share of c = a · b using a 2t degree
polynomial c(x) which is the product of the t-degree polynomials a(x) and b(x) which
are used to share a and b respectively.

2. This share that Pi holds is a point on c(x) with c as the constant term. Pi now (n, t)
shares c2ti with the other players.

3. Now each player has (n, t) shares of 2t+1 points on c(x) (since honest majority holds)
and they each compute a share of c(0) = c as a linear combination of these shares
using Lagrange’s Interpolation. By the linearity of Shamir sharing, performing the
linear operations on the shares of secrets is equivalent to sharing the output of the
linear operations on the secrets. Additionally linear operations on (n, t) shared secrets
output (n, t) shared secrets.

4. Hence at the end of this computation each player holds a share of c i.e. Pi holds ci as
required.

2 Issues in the Malicious Adversarial Model & Solutions

In the malicious world, there are several issues that arise in the above protocol. Again, we
are given two (n, t) Shamir-shared secrets a and b (which are shared using VSS since this is
the malicious world), and 3t+1 parties, with at most t maliciously corrupted parties among
them.

• Step 1 is a local computation and hence remains the same.

• Step 2 requires a player to share his c2ti value. Here, we use VSS to ensure that the
shares he provides are consistent and correspond to the same secret. However, this
secret could be some c2ti 6= c2ti . We have to find a method to force players to share the
correct product of ai and bi

[Lecture 18]-1



• Step 3 is again a local computation and does not change.

• Provided all the above steps have executed correctly, at the end of this computation
each player holds a share of c.

2.1 Forcing Adversaries to Share Correct Values

We note first that, we require only the participating adversaries who have not been elimi-
nated to share correct values. A player can always refuse to send out any messages, and as
a result, he is not considered in the computation any more.

Let us first recall some properties of VSS that we will use in our protocol:

- The VSS can be viewed as a two-level sharing i.e. each share received by player Pi

is already shared among the other players. To elaborate, Pi receives the polynomials
F (x, i) and F (i, y) as his shares. Consider F (x, i) - since the other players P1, P2..
Pn have F (1, y), F (2, y).. F (n, y), it follows that they can compute F (1, i), F (2, i)..
F (n, i), which are the shares of the polynomial F (x, i). Hence this share of Pi is
already shared among the n players. Similarly, every share in the VSS is double-
shared.

- We can start VSS with a polynomial p as input instead of a secret. Then if this
polynomial is a function of x, it is equivalent to setting F (x, 0) = p(x). If it is a
function of y, we set F (0, y) = p(y).

Also as we saw in the previous lecture, given n points of a polynomial, Reed-Solomon codes
can correct upto t errors, when n = 3t+ 1.

As mentioned before, we are given players who already have the shares of a and b, shared
using VSS. Then our protocol proceeds as per the following 2 sections:

2.1.1 Distributed Error Correction

First, the players broadcast their shares of a and b. These are points on the polynomials a(x)
and b(x) used to share a and b. From the property of Reed-Solomon codes we can detect
upto t errors, and identify the faulty players. We them leave them out of the computation
in the following phases. Two points to be noted here are:

- The maximum number of faults that will occur is t, since only that many malicious
players exist.

- The players broadcast shares of a(x) and b(x) and not the product polynomial, since
the Reed-Solomon code with 3t+ 1 elements (players) can only correct for t errors in
a t degree polynomial. The product polynomial is of degree 2t. To correct t errors,
we would need distance > 2t. For a distance of 2t + 1, d = n − (2t + 1) + 1 ⇒
We require n = 4t+ 1 players.

[Lecture 18]-2



2.1.2 Enforcing Correct Shares

This is a more involved procedure which assumes that the above step is concluded success-
fully i.e. all the players who were not eliminated shared their shares of a and b correctly.
We now focus on the ith player P who has shared his shares of a and b correctly. We shall
abuse notation for this section and use a and b to denote ai and bi, the shares of a and b held
by P . We then use a1, a2, ..., an to denote the shares of ai that P sent out to P1, P2, ..., Pn

in Step 2 of the protocol. Similar notation is used for the shares of bi.

Let the polynomials used by P to share a and b be A(x) and B(x) respectively. The
product polynomial C(x) = A(x) ·B(x) has constant term = c, i.e. the required product of
a and b (Note that a and b are shares of the underlying secrets). However, C(x) is of degree
2t and non-random. We have to reduce the degree and randomize the polynomial. We
do this by choosing t random polynomials D1(x), D2(x), ..., Dt(x) such that the following
polynomial is random, has degree at most t and constant term c = a · b.

D(x) = C(x)− x ·D1(x)− x2 ·D2(x)− ...− xt ·Dt(x)

Then the polynomials are picked as follows:

C(x) = c+ c1 · x+ ...+ c2t−1 · x2t−1 + c2t · x2t

Then, Dt(x) = rt,1 + rt,2 · x+ ...+ rt,t · xt−1 + c2tx
t

xt ·Dt(x) = rt,1 · xt + rt,2 · xt+1 + ...+ rt,t · x2t−1 + c2tx
2t

Then, Dt−1(x) = rt−1,1 + rt−1,2 · x+ ...+ rt−1,t · xt−1 + (c2t−1 − rt,t)xt

xt−1 ·Dt−1(x) = rt−1,1 · xt−1 + rt−1,2 · xt + ...+ rt−1,t · x2t−2 + (c2t−1 − rt,t)x2t−1

We continue the choice of the coefficients similarly, as shown in the table below, where ri,d
is the (randomly-chosen) coefficient of xd−1 in Di(x). Recall that we want all the terms of
x with degree greater than t to cancel out in D(x).

C(x) c c1 .. ct−1 ct ct+1 .. c2t−2 c2t−1 c2t
xt ·Dt(x) .. rt,1 rt,2 .. rt,t−2 rt,t−1 c2t

xt−1 ·Dt−1(x) .. rt−1,1 rt−1,2 rt−1,3 .. rt−1,t−1 c2t−1 − rt,t−1

... .. ... .. .. .. ..

x ·D1(x) r1,1 r1,t−2 r1,t−1 ct+1 − rt,2 − ...− r2,t

It is now easy to see that

D(x) = C(x)− x ·D1(x)− x2 ·D2(x)− ...− xt ·Dt(x)

will be a random polynomial of degree t, with constant term c. Then D(x) is the ideal
polynomial to share c.

After obtaining D(x) by local computation, P uses VSS to share c, setting F (x, 0) = D(x).
This is equivalent to sharing with a polynomial as input, as we have seen in the properties
of VSS. If P is an honest player, our protocol is complete and c is shared. However, if P is
malicious, we have to ensure the correctness of D(x) as follows:

[Lecture 18]-3



• P also shares D1(x) among the other players as d11, d12, ...d1n. Similarly he also shares
D2(x), D3(x), ..., Dt(x).

• Now, we consider another player say Pj having his (correctly-shared) shares of a→ aj
and bj . He locally computes cj = aj · bj , which is a point on the product polynomial
C(x) = A(x) ·B(x).

• Given the relation D(x) = C(x) − x · D1(x) − x2 · D2(x) − ... − xt · Dt(x), and his
shares dj , d1j , d2j , ..dtj , he can verify if the relation holds at his public point αj , taken
as j for simplicity. Hence, he checks if dj = aj · bj − j · d1j − j2 · d2j − ...− jt · dtj . If
it does not hold, Pj makes a public complaint.

• By the double-sharing property of VSS, this complaint can be verified by the other
players. Since they hold shares of the shares used to compute the equation, they can
check the complaint. If the complaint holds, then P is corrupt and is eliminated from
the computation. Else, the complaint is ignored.

We conclude by saying that if all the honest parties accept the sharing without any valid
complaints, then D(x) does indeed share c. To see this clearly we look at the relation
D(x) = C(x)− x ·D1(x)− x2 ·D2(x)− ...− xt ·Dt(x).

- The LHS i.e. D(x) is of degree t, since we used VSS. However, it need not share c.

- The RHS would share c, since the constant term of C(x) is never modified, but it
need not be of degree t. However, the maximum degree of the RHS is 2t, since Dt(x)
is shared using VSS.

- If all the honest parties accept ⇒ The LHS and RHS coincide at 2t+ 1 points, when
the maximum degree either of them could have is 2t.

- This implies that LHS = RHS. From their properties, we have that D(x) is of degree
t, and it shares c.

Then Step 2 can be concluded successfully, and after Steps 3 and 4 (local computation of
Lagrange’s Interpolation) the multiplication protocol is complete.

3 Summary: Multiplication Protocol in Malicious Adversar-
ial Model

In the malicious world, we have to ensure that all the players share the correct values
during the multiplication protocol. For this purpose, VSS alone does not suffice. We have
to construct a special polynomial which can be used to share the product in such a manner
that it is not possible to cheat without being caught by the other players. Whenever a
player is caught cheating, he is eliminated from the protocol.

[Lecture 18]-4



4 Conclusion

We now have all the required sub-protocols (verifiable secret-sharing, multiplication and
reconstruction) to construct a BGW protocol that is information-theoretically secure against
a malicious adversary.

[Lecture 18]-5


