
CSA E0 312: Secure Computation August 21, 2015

[Lectures 2-4]

Instructor: Arpita Patra Submitted by: Ajith S

1 Expanding the Scope of Multi-party Computation (MPC)i

In this lecture we will see how vast, broad and rich the area of MPC is. We will see its
expanse in details expanding over multitude of facets and dimensions that are orthogonal
to each other. It is a primitive that is strong enough to capture all most everything, if not
everything in cryptography.

1.1 Dimension 1: Models of Computation

So far we have seen how to securely compute addition over finite fields and multiplication of
bits. They are just specific examples of MPC. MPC in fact allows to securely compute any
polynomially computable (PPT) function. How do we compute any PPT function securely
using MPC? This is where we appeal to complexity theory and a given function is first
transformed to a finite size circuit. Two circuit models that are suggested are (Figure 1)

– Boolean Circuit

– Arithmetic Circuit over a finite field

A Boolean circuit consists of gates such as AND, OR, XOR, NOT etc and takes bits as
inputs. On the other hand, an arithmetic circuit consists of addition and multiplication
(over the finite field under consideration) gates. Once we have the circuit representation
of a given function, MPC works by evaluating the circuit in a ‘secure’ way. Meaning that,
the circuit is evaluated in a way that ensures none of the values assigned to circuit input
wires and intermediate gate output wires will be leaked to the participating parties. Only
the value for the circuit output wire that represents the function output will be revealed to
all. Recall that the aim of MPC is to allow the parties to compute the function output and
nothing beyond.

A question that may arise now is: which of these two circuit models should we prefer?
It depends on the function that we want to compute. For a function f , one will prefer
the model in which the representation of f is concise i.e. the circuit size (the no. of gates
in the circuit defines the circuit size) is smaller. As we will see later, the efficiency of
MPC is directly proportional to the circuit size. To be specific on the choice of the circuit
model, let us consider the following example. Consider the function f(x1, x2) = x1 +x2. In
Boolean circuit, addition of two n bits number will require at least n gates. On the other
side, the arithmetic circuit over an appropriate field will have only one addition gate. As
a general practice, non-linear operations such as comparison, greater than, less than etc
are represented in Boolean circuits, while operations on polynomials are represented using

iThis section was covered in Lecture 2 on August 12, 2015

[Lectures 2-4]-1

Figure 1: Models of Computation (Boolean Circuit vs. Arithmetic Circuit)

Arithmetic circuits. Some works on MPC try to optimize the circuit size of a given function
by decomposing the function into several sub-functions and finding representation for the
sub-functions in arithmetic circuit or Boolean circuit model whichever gives the optimal
representation. We will refer to such circuits that are partly Boolean and partly arithmetic
as hybrid circuit.

While both arithmetic circuits over finite fields and Boolean circuits are well-studied
model of computation, the hybrid circuit model is very less explored and thus leaves a huge
scope of work.

1.2 Dimension 2: Varieties of Network

The MPC protocols are interactive in nature. The parties participating in MPC must
communicate with each other to compute a function securely. For the communication to
happen, the parties must be connected to each other over a communication network. The
approach to solve the problem of MPC will differ based on the properties of the underlying
network. Below we discuss the various network models that are explored in the literature of
MPC. A network consists of point-to-point channels through which the parties communicate.
We assume that the channels between the pair of parties to be secure and authenticated.
A secure channel ensures none other than those sitting in one of the end-points of the
channel can see what is being transferred over the channel. An authenticated channel, on
the other hand, ensures none can change the message transferred over the channel during
its transit. For some scenarios, we will see that secure and authenticated channels are
physical requirement from the network. While for many other scenarios, we will see how
to emulate a secure and authenticated channel from insecure and unauthenticated channel
relying on cryptographic primitives. Now we discuss the networks models that are studied

[Lectures 2-4]-2

in the literature of MPC.

1.2.1 Complete vs. Incomplete

Figure 2: Complete vs. Incomplete Network

In a complete network, every pair of distinct parties is connected by a unique point-
to-point channel. In contrary, point-to-point channel will be absent for some pair of parties
in an incomplete network. The former model is considered to be standard in MPC liter-
ature. For MPC applications that require small number of participating parties, assuming
a complete network is not a big constraint. Also MPC being a complex primitive in cryp-
tography, the researchers like to start with a strong assumption on the underlying network
(i.e. completeness of the network) and like to handle the problem of simulating a complete
network from an incomplete network as a separate problem. However, for MPC applications
that involves billions of participants (such as e-voting in a country), it is not realistic to
assume the existence of a complete network. Therefore there is absolute need to study the
incomplete network model. Unfortunately the latter model is very less explored and thus
it leaves a huge scope of future work.

1.2.2 Synchronous vs. Asynchronous vs. Hybrid

In a synchronous network, all the parties have a global clock. Every channel in the network
has a fixed delivery time. Consider a scenario with two parties. One of them is the sender
who wants to send a message to the other party called a receiver. Due to the fixed delay of
the channels, the receiver knows how long to wait for a message from the sender. If he is
not receiving within the time period, he knows for sure that the sender is a cheater.

[Lectures 2-4]-3

In an asynchronous network, there is no global clock. Each party has its own local
clock and the local clocks are not synchronised. Hence the channel can have arbitrary, yet
finite delay, meaning that if a message is sent over a channel, then it will reach eventually.
We now review the same scenario that we considered for the synchronous network. In an
asynchronous network, we will see that the receiver will face the following dilemma which
he cannot resolve. When a receiver is not getting a message from the sender, he cannot
conclude that the sender is bad. The delay can happen either due to a cheating sender or due
to the traffic in the channel. Therefore, the receiver has no choice other than ignoring the
message from the sender in order to terminate the protocol. Consider an n-party protocol
in an asynchronous network. Let us assume that in the protocol, there is a step where a
party is supposed to receive communication from every other party. Note that here unlike
in synchronous network, the party cannot wait to receive values from all the parties. If
it does so then the wait may turn out to be endless. The bad parties (say there are t in
number) may never send their message. So the receiver party can wait to receive values
from only n− t parties and has to ignore values from t parties. But the n− t parties that
it considers may exclude t honest parties. Therefore, at any step of an n-party protocol, a
party may have to proceed with the computation without the values from t honest parties.
This makes constructing MPC protocol very challenging in asynchronous network. Most of
the protocols in synchronous network simply breaks down in asynchronous network. To be
specific, consider the secure addition protocol (given in Figure 3) for n = 3 parties discussed
in the last lecture, with the number of corrupted parties, t is limited to 1. If we follow the

Figure 3: Secure addition for n = 3 parties

[Lectures 2-4]-4

procedure described above, then each of the party will wait for messages (si in this context)
from n − t = 2 parties and upon receiving, he has to proceed. But here, a party needs
shares from all the three parties to compute the sum. Thus the protocol that will work in
synchronous setting will simply fail in asynchronous network. In fact, it is proved that no
protocol with n parties, where t among them will be cheating, works in the asynchronous
setting when n ≤ 3t.

There is a third category of network named Hybrid network. In this, the network is
synchronous up to some point of time initially and afterwards it turns into an asynchronous
network.

The synchronous network is well-behaved and thus well-understood and preferred in
most of the instances, specifically in small local network. But real-life networks like In-
ternet are better modelled by hybrid and asynchronous networks. Both the hybrid and
asynchronous models are very less explored. Hybrid network though a weakening of asyn-
chronous modelling, there are some impossibility results in asynchronous that are shown to
be possible in Hybrid network. For instance, the above impossibility result of MPC with
n ≤ 3t parties in asynchronous network can be overcome in hybrid network! So it makes
sense to explore the hybrid network extensively.

1.3 Dimension 3: Modelling Distrust

Consider the secure addition protocol given in Figure 4. We know that this protocol is
secure against a single curious party. To be precise, even if a corrupted party tries to get
additional information out of the protocol, he cannot. But what if two parties are curious
and they join hand? Then the protocol will fail. Specifically, consider the scenario where
the parties P1 and P2 together are trying to cheat. Then P1 can get his missing share x21
from P2 and thus he can calculate x2 (similarly for all the xi’s). The same can happen if
any two among the four parties join hand. To model this idea that bad people work together,
we assume that there is a single monolithic / centralized entity who we call as adversary
(A) and who controls a number of parties out of n parties. Note that it is always better to
assume that the bad parties can collude with each other and provide security even in the
face of a colluding adversary.

The scenario where the corrupted parties are working independently is termed as de-
centralised model and if the corrupted parties are working together, the model is termed
as centralised model. In this course, we will consider only centralised modelling of the
adversary. With the centralised adversary in mind, let us retouch the MPC definition.

1.3.1 Redefining MPC

In the centralised model, MPC can be redefined as follows: There are n parties P1, P2, ..., Pn,
out of which, say at most t are corrupted by an centralised adversary, A. Each party Pi has
its own private input xi and there exist a common n-input function, f , which every party
wants to compute. The goals of the MPC are as follows:

• Correctness : Every honest party must output y = f(x1, x2, ..., xn).

• Privacy : Nothing beyond the output y is leaked to A.

[Lectures 2-4]-5

Figure 4: Secure addition for n = 4, t = 2 parties (Basic)

1.3.2 A quick Fix of Secure Addition Protocol of Figure 4

We have seen that the secure addition protocol presented in Figure 4 fails if there is a
coalition of two parties. Can we quickly fix the protocol to make it work for adversary
corrupting two parties? Yes, it is easy! We need to change the underlying secret sharing
scheme. The changed protocol is given in Figure 5.

1.4 Dimension 4: Characteristics of Adversary

There are several types of adversaries depending on its capabilities or intentions they are
presumed to have. We consider four orthogonal dimensions and in each dimension, the
adversary can be categories into several types.

1.4.1 Threshold vs. Non-threshold

In the threshold model, the adversary A can corrupt at most t out of the n parties. Here
n denotes the total number of participating parties and t represents the threshold. Note
that t < n. In non-threshold model, the adversary’s behaviour is captured by a set of
subset of parties. The adversary A can corrupt one of the subsets.

[Lectures 2-4]-6

Figure 5: Secure addition for n = 4, t = 2 parties

Let P = {P1, P2, P3} denote the set of players. Then a corrupting set C = {{P1}, {P2, P3}}
means the adversary, A can corrupt either the player P1 or the players P2 and P3. The
threshold model can be viewed as a special case of the non-threshold model. Most of the
works in MPC assume threshold adversary because of its simplicity. The non-threshold
adversary models real-life scenario much better way than threshold adversary, but it is
hard and non-intuitive to design protocol tolerating such an adversary. We note that non-
threshold secret sharing, where secret is shared to parties in such a way that only legitimate
subset of parties are able to reconstruct the secret is a very rich topic of research.

1.4.2 Polynomially Bounded vs. Unbounded

Intuitively, a polynomially/ computationally bounded adversary is an algorithm that
runs in polynomial amount of time. Here the adversary’s computing power is limited to
O (nc) where n is the input size and c is some constant. For a cryptographic scheme to
be secure, the success probability of any polynomial time adversary must be negligible. In
order to prove security in this model, we rely on hard number-theoretic problems. The
proofs are usually reduction based and works as follows: Assume our protocol is not secure
and we have an adversary, say A, that breaks the protocol with non-negligible probability.
We will use A to come up with another adversary, A′, which can break some known hard
problems. This will lead to a contradiction of the fact that the hard problems are not hard!

[Lectures 2-4]-7

This in turn proves that the protocol under consideration is secure. The security that is
achieved in this setting is often terms as computation or cryptographic security.

An unbounded powerful adversary has got no limitation to its computing power.
Here the protocols security does not rely on any hard problem assumptions and the security
is very strong since it holds even at the face of all-powerful adversary. Even if A has got
quantum computers, it cannot break the security. The security that is achieved in this
setting is often terms as information-theoretic (i.t.) security. Now a question that comes to
your mind is how such a security can be achieved? Consider the simple experiment of tossing
an unbiased coin where the adversary, A, is trying to predict the next output. Without
any additional knowledge or computation, the probability of A’s prediction being correct
is 1/2. Even if A is possessing the output of some large number of previous experiments,
it cannot predict the next output with a probability > 1/2. This is just an example to get
familiarized with this information theoretic setting. Nonetheless, i.t. security is impossible
to achieve in the dishonest majority (n < 2t) setting (except for some trivial functions).
Secure bit multiplication is one example that cannot be computed with i.t. security in
dishonest majority setting.

Figure 6: Secure Multiplication for n = 2, t = 1 parties

Recall the Secure Multiplication protocol 6 for finding y = x1 · x2 with n = 2 and
t = 1. The problem lies in calculating x12 · x21 securely. We used Oblivious Transfer (OT)
primitive to solve the problem. But OT cannot be realized information theoretically too!

But we can solve the problem with i.t. security with 3 parties where one of the is
corrupted (that is, when we have honest majority). As shown in Figure 7, each of the party,
Pi can calculate si and as you can see, the sum of si’s yields the output y. But is this

[Lectures 2-4]-8

Figure 7: Secure Multiplication for n = 3, t = 1 parties

protocol secure? Without loss of generality, let P1 be corrupted. Then he will obtain x2 as
follows: P1 possesses the shares x22 and x23, and all he needs is x21. Now, s3 can be written
as s3 = (x11 + x12) · x21 + x11 · x22, where P1 knows s3, x11, x12 and x22. Thus exchanging
the si values will not work. But we have a simple solution. We can make use of the Secure
Addition Protocol [3] to obtain y, where the values s1, s2, s3 act as secret inputs of parties
P1, P2 and P3 respectively.

1.4.3 Semi-honest vs Malicious vs Covert

A passive/semi-honest adversary simply acts as an observer. It eavesdrops the corrupted
parties and tries to gain more information than allowed from the protocol transcript. But
it follows the prescribed protocol. In contrary, an active/malicious adversary takes full
control over the corrupted parties. As such it can deviate at will from the prescribed
protocol. There is a third category, called covert adversary where the adversary may behave
maliciously only when its probability of getting caught is low. Usually the protocols secure
against the semi-honest adversaries will not be secure in the malicious model. Defeating
malicious adversaries demands a whole lot of new primitives like commitment schemes,
zero-knowledge proofs, Byzantine agreement/broadcast etc. The semi-honest model will be
considered in the first half of the course and the the second half will deal with malicious
adversary. Let us now review some of the secure protocols that we have seen. We will
see that they work only when the adversary is semi-honest! Consider the Secure Addition
protocol shown in Figure 8. Without loss of generality, let P1 be the corrupted party. One

[Lectures 2-4]-9

Figure 8: Secure Addition for n = 3, t = 1 parties - Malicious setting I

simple thing that P1 can do to make the protocol fail is not to send his share s1. This
will make both the honest parties (P2 and P3) agree on some ⊥ as they will not be able to
complete the protocol. But P1 can do even worse. Consider the protocol shown in Figure
9. We will show a simple strategy of A by which he can make P2 and P3 output different
sums or outputs. P1 distributes his share s1 as follows: P1 will send s1 to P2 and some
other s1

′ to P3. This will make P2 output y and P3 output some other y′.
What can we do to solve this problem? One simple solution that comes to mind is

redistribution of the shares. Every player will distribute the computed output, y, with each
other. Now a party will check whether all the y values he received is matching with his
output or not. If all of them matches, he will accept his output, else accept on ⊥. This
seems to solve the problem we discussed earlier.

Consider the following strategy of A. P1 will act in accordance with the protocol until
the final redistribution. While distributing the output values, P1 will share the correct
output with P2 and some other value with P3. Thus P2 will accept his output since all the
values he received is matching with his output, but P3 will output ⊥ since its output does
not match with other’s output. Even if we include similar redistribution phase a number of
times, the adversary will follow the strategy mentioned above. Thus this change will fail to
save the protocol. What we need to make the parties to agree on the output is yet another
interesting primitive called broadcast or Byzantine agreement (BA) that we discuss below.

[Lectures 2-4]-10

Figure 9: Secure Multiplication for n = 3, t = 1 parties - Malicious setting II

Broadcast. ii The broadcast primitive is defined as follows:There are n parties P1, P2, ..., Pn,
out of which t are corrupted by an adversary, A. Parties are connected by pair-wise secure
and authenticated channels. There is a designated party named Sender, who wants to send
his message m to every party.The goals of the protocol are as follows:

• All the honest parties must receive the some message, say m′, at the end of the
protocol.

• If the Sender is honest, then m′ = m.

We can now solve the issue of disagreement of the outputs in the protocol in Figure 9
in the malicious setting. The protocol is modified using Broadcast primitive and is shown
in Figure 10. Here every party broadcast the calculated si values, so that a cheating
party cannot send different values to honest parties. In this protocol, even though there
is agreement among the honest parties, no robustness or fairness is guaranteed. Here P1

may not broadcast his share, s1, while he receives s2 and s3 from the other parties. Thus
adversary learns output y, while the honest parties do not. This is an unfair situation.
Also the protocol cannot proceed without the share s1. Thus the protocol lacks robustness,
which can be defined as the ability of an algorithm to cope with errors during execution.

A related problem of broadcast known as Byzantine Agreement is defined below.

iiTopics from this section onward was covered in the combined Lecture 3 & 4 on August 21, 2015.

[Lectures 2-4]-11

Byzantine Agreement (BA). The Byzantine agreement problem can be defined as
follows: There are n parties P1, P2, ..., Pn, out of which t are corrupted by an adversary, A.
Parties are connected by pair-wise secure and authenticated channels. Each party Pi has a
private bit bi ∈ {0, 1}. The goal of the protocol is to make the honest parties agree on a
common bit b.

Figure 10: Secure Addition for n = 3, t = 1 parties using Broadcast (Malicious setting)

Next we define two more primitives that find application in malicious setting.

Commitment Schemes. Consider the problem of 2-party distributed coin tossing in
Figure 11. Two players A and B want to toss a coin together. There will be a value
associated with each outcome. Without loss of generality, say 0 for head and 1 for tail.
Let the outcome of A and B be mA and mB respectively. Now the goal of the problem
is to agree on mA + mB. One naive method is to toss the coin independently and share
the results. Here what if B is bad? He will then choose his mB based on the value of mA

received. This defeats the purpose.
Commitment schemes (refer to Figure 12) can solve the above problem. Two par-

ties are involved in a commitment scheme - Committer and Verifier. In Figure 12, Alice
(Committer) first commits her message m, obtains the commitment C and sends to Bob
(Verifier). At a later point, Alice sends her message m, along with commitment opening
information, so that Bob can verify. This can be compared with a lock and key mechanism.
First the message is locked in a box and is sent. Here the box acts as the commitment. Later
the key, which acts as the opening information, along with the message is sent to the verifier.

[Lectures 2-4]-12

Figure 11: 2-party distributed coin tossing I (Malicious setting)

Two desirable properties of commitment schemes are:

• Hiding : Committer (Alice) cannot change the message associated with the commit-
ment, C.

• Binding : Verifier (Bob) cannot guess the message associated with the commitment,
C.

Figure 12: Commitment Scheme

Figure 13 shows the 2-party distributed coin tossing protocol using commitment scheme.
Here B cannot bias the output due to the hiding property of the commitment.

Zero-knowledge Proofs. The purpose of a traditional proof is to convince somebody,
but typically the details of a proof give the verifier more info than the assertion that the

[Lectures 2-4]-13

Figure 13: 2-party distributed coin tossing using commitment (Malicious setting)

given statement is correct. A zero-knowledge proof is a method by which one party (the
prover) can prove to another party (the verifier) that a given statement is true, without
conveying any information apart from the fact that the statement is indeed true. The
zero-knowledge proofs are of extraordinary importance in cryptography.

1.4.4 Static vs Adaptive

A static adversary needs to decide the set of players to corrupt prior to the execution of
the protocol, while an adaptive adversary can corrupt players during the execution of the
protocol arbitrarily. Adaptive adversary is more flexible, realistic and stronger than the
static corruption, since it gives the adversary more power to selectively attack the parties
after seeing the communication. In addition to above two, there are other classifications
like Semi-adaptive, One-sided Adaptive and Partial-erasure Adaptive which are out of scope
of this course and fall in between the static and adaptive modelling.

1.5 Expanding the scope of MPC: Summary

So far, we have seen four major dimensions of MPC - Models of Computation, Network,
Distrust Model, Adversary. Each of these dimension contains further classification as shown
in Table 1. As you can see, each of these dimension is independent of the other. Before
working on any MPC problem, you have to first clearly define the setting. If the adversary’s
behaviour is unknown, then we can only reason about security very informally. Also it is
not clear what is and what is not protected against.

For example, a complete synchronous network controlled by a centralized adversary who
is polynomially-bounded, semi-honest and static with the threshold model is one such a
setting. From Table 1, if we consider one model from each of the dimensions, we can have

[Lectures 2-4]-14

2 · 5 · 2 · 9 = 180 different settings. We can have many more such setting and the saga of
MPC continues...

Dimension 1
(Models of
Computation)

Dimension 2
(Networks)

Dimension 3
(Distrust)

Dimension 4
(Adversary)

Boolean vs.
Arithmetic

Complete vs.
Incomplete

Centralized vs.
Decentralized

Threshold vs.
Non-threshold

Synchronous vs.
Asynchronous vs.
Hybrid

Polynomially
Bounded vs.
Unbounded
Powerful

Semi-honest vs.
Malicious vs.
Covert

Static vs. Adaptive

Table 1: Expanding the scope of MPC: Summary (Underlined models will not be covered
in this course)

Next we will see what are the important attributes of an MPC protocols and what are
the type of questions asked in the context of MPC.

2 Attributes of MPC protocols

An MPC protocol is always associated with a set of attributes which can be used to compare
and contrast among various MPC protocols solving the same problem. They are:

Parameter 1 (Resilience). Resilience os a protocol is nothing but the the number of
corrupted parties (t) among the n parties which the protocol can tolerate. Common settings
for MPC include n > 4t, n > 3t, n > 2t and n > t.

Parameter 2 (Quality). Qualitatively a protocol can be of following types:

1. Perfect (error-free)/ Statistical: A perfect protocol tolerates no error, while a
statistical one can tolerate small amount of error. Statistical security is usually easer
to achieve than perfect security.

2. Robust / Non-robust: A protocol is robust if the adversary cannot influence
output of the honest parties in the protocol.

[Lectures 2-4]-15

3. Fair / Unfair: In a fair setting, either all the parties (honest and corrupted) get
the output or no one gets anything, while in an unfair setting, the corrupted parties
learn the output, while the honest parties do not.

Parameter 3 (Complexity). An MPC protocol will have the following complexity mea-
sures:

1. Communication Complexity: Total number of bits communicated by the honest
parties.

2. Round Complexity: Total number of rounds of interaction in the protocol.

3. Computation Complexity: Computation time required for running protocol.

The complexities of a protocol becomes crucial mainly when the protocol comes into prac-
tice. The ultimate goal is to construct protocols with optimal complexities.

3 Questions in MPC

Based on different settings, one can ask different questions regarding the feasibility, effi-
ciency, optimality and so on.

Question 1 (Possibility/Impossibility): Given the network type and adversary type,
under what conditions MPC is possible? Some of the standard results are:

a Information theoretic MPC is possible iff n > 2t

b In synchronous networks, perfect (i.t) MPC is possible iff n > 2t

c In asynchronous networks, statistical (i.t) MPC is possible iff n > 3t

d In asynchronous networks, perfect (i.t) MPC is possible iff n > 4t

e In synchronous networks, computational robust fair MPC is possible iff n > 2t

Question 2 (Efficiency): Given the network type and adversary type, how efficient
(communication/round/computation) MPC can be designed?

Question 3 (Optimality): Given the network type and adversary type, what is the
optimal complexity we can achieve? Design such optimal protocols.

4 Security of MPC

Recall the definition of MPC in Section 1.3.1 we discussed earlier. Does that definition
captures all the needs? It doesn’t. Consider the problem of Secure Auction (with secret
bids). We try to analyze the requirements for the protocol.

[Lectures 2-4]-16

• An adversary may wish to learn the bids of all parties - to prevent this, we require
PRIVACY.

• An adversary may wish to win with a lower bid than the highest - to prevent this, we
require CORRECTNESS.

• But, the adversary may also wish to ensure that it always gives the highest bid - to
prevent this, we require INDEPENDENCE OF INPUTS.

• An adversary may try to abort the execution if its bid is not the highest - we require
FAIRNESS.

Some of the desirable properties of every MPC protocol are :

1. Privacy: The output is revealed and nothing more.

2. Correctness: The function is computed correctly.

3. Independence of inputs: Parties cannot choose inputs based on inputs of others.

4. Fairness: If a corrupted party (or adversary) receives output, honest parties also
receive output.

5. Guaranteed output delivery: No matter how the corrupted parties behave,
honest parties must get output.

Do you think the above list is complete? There are generally two methods by which
we can analyze the security concerns. One simple option is to analyze security concerns
for each specific problem, similar to what we did for Secure Auction above. But there are
problems associated with this approach. First of all, how can we ensure that all the concerns
are covered? Our considered list may not include all the concerns! Secondly the definitions
will become application dependent and thus we need to find a definition each time we come
across a new problem. This does not look really a nice approach! In what follows, we
will formulate a definition paradigm that we hold across all applications of MPC meaning
that across all the functions PPT functions f and clearly specifies that it captures- real
world/Ideal world based Security paradigm.

4.1 Real World/ Ideal World Based Security

How do you judge a person (person’s particular quality)/ a product? We set a standard/ideal
and find out how close are we to the ideal. We will do exactly the same for MPC. First we
set an ideal/standard/benchmark for MPC and then define security based on the closeness
to the ideal solution.

Can you think of a solution that can act as an ideal solution or benchmark solution for
MPC. In fact we have seen one potential solution in the first lecture itself. Remember solving
MPC with the help of a trusted third party (TTP)! The parties send inputs to the TTP,
who computes the function and sends the outputs to the parties over secure channels. The

[Lectures 2-4]-17

TTP is connected to the parties with secure (none can see what TTP sends to the honest
parties) and authenticated channels and there are no communication channels among the
parties. This is ‘the’ ideal solution for MPC. We will call this as Ideal world protocol. Note
that if the adversary A corrupts a party in the ideal world protocol, it learns only the input
and output of the corrupted party and nothing beyond. Since it learns nothing beyond,
independent of inputs is guaranteed apart from privacy. We can see that how precise the
specification and description of the ideal world. It is well-understood. We know what all
properties it provides in an obvious way and can change the specification according to our
need.

In the real world, parties run a real protocol with no trusted help and tries to emulate
the ideal world. Consider a setting where there are n parties connected over a complete
synchronous network and there is a centralized adversary who is polynomially-bounded,
semi-honest and static and the corruption threshold is t. The parties communicate among
themselves and finally obtains their corresponding output.

In Figure 14, we specify the real world and the ideal world solution for MPC assuming 4
parties out of which at most 1 party can be corrupted. Each party, Pi has his private input,
xi and together they want to calculate a function f and to obtain the respective input yi.

Figure 14: Real world vs Ideal World

Now how do you compare real world with the ideal world solution? How can we say
that our real world emulates closely the ideal world solution? Lets us fix the inputs of the
parties as (x1, . . . , xn) used in both the worlds to compute f(x1, . . . , xn). We can say that

[Lectures 2-4]-18

if the real world view of the adversary contains no more information than its ideal world
view, then the real world is as good as the ideal world. Sounds good!

Let ViewIdeal
i (x1, . . . , xn)) and ViewReal

i (x1, . . . , xn)) denote the views of a party, Pi, in
the ideal and real world protocols on the inputs x1, x2, · · · , xn. Let C denote the set of
corrupted parties. Then view of the adversary, A, is defined as the combined view of all
the parties in C. That is,

ViewIdeal
A (x1, . . . , xn) = {ViewIdeal

i (x1, . . . , xn)}Pi∈C and

ViewReal
A (x1, . . . , xn) = {ViewReal

i (x1, . . . , xn)}Pi∈C

Note that the view of a party in the ideal world constitutes of only the input and the output
of that party. Whereas the view in the real world includes the the entire protocol transcript,
the random bits used apart from the input and outputs. The values in the ideal world view
are termed allowed values (for MPC these are the values we can leak to the adversary,
that is why the name allowed values), while those in real world are termed leaked values.
We say that our protocol is secure if the leaked values contains no more info than allowed
values. But what does it mean by a value, say Y contains no more information than a
value, say X? If there exists a polynomial time algorithm that takes X and can generate
Y efficiently, then we will say that Y contains no more information than X. We call such

Figure 15: Simulator SIM

a poly-time algorithm as simulator SIM (refer to Figure 15). For our purpose it is enough,
if SIM can generate a view that resembles ‘close enough’ ViewReal

A (x1, . . . , xn) starting with

[Lectures 2-4]-19

the allowed values ViewIdeal
A (x1, . . . , xn). By ‘close enough’ means the the output of SIM and

ViewReal
A (x1, . . . , xn) must be indistinguishable from the point of view of the adversary A.

Such a simulator can simulate the real view of the A in ideal world by acting on behalf
of the honest parties but without any access to the inputs of the honest parties. All it takes
as inputs are the inputs and outputs of A which are the allowed values. The simulator
essentially acts as a translator from the ideal world protocol to between the real world
protocol. Now look carefully that in the real world, the view of the adversary is clearly
function of the inputs of the honest parties. Whereas in the ideal world, the simulator
simulates the view of the adversary but without any knowledge of the inputs of the honest
parties. If the adversary sees no difference or it cannot tell apart in which which he is
in, then we can say that our protocol employed in the real enough is secure and does not
leak more than what the adversary sees in the ideal world (i.e. the allowed values). So we
formulate our definition of secure as follows:

Definition 1 A protocol Π is secure according to Real World / Ideal World based security if
for every probabilistic polynomial-time adversary A, there exists a probabilistic polynomial-
time simulator SIM such that for every possible inputs of the parties (x1, . . . , xn), the view
of the adversary in the real world is computationally indistinguishable from the view of the
adversary in the ideal world simulated by the simulator.

ViewIdeal
A (x1, . . . , xn) ≈ ViewReal

A (x1, . . . , xn)

We abuse notation ViewIdeal
A (x1, . . . , xn) to denote the simulated view of the adversary in

the ideal world with the help of the simulator. ♦

Note that the views in the above definition are random variables (distributions). The
real view is a distribution over the random choices made by the parties during the run of
the protocol. The simulated view is a distribution over the random choices made by the
simulator. We would like to comment that when the adversary is semi-honest, then the
entire simulation can be run by the simulator by self in its head. On knowing the inputs
and outputs of the corrupted parties, it can initiate the corrupted parties with the inputs
and it can further fix the randomness to be used by the corrupted parties. Then it can
simulate the view the corrupted parties by acting on behalf of the honest parties as in the
real protocol.

In order to capture randomized functions, we consider a joint distribution of the output
of honest parties and the view of the adversary. Let H denote the set of honest parties and
OutputIdeali and OutputReali denote the output of party, Pi, when he is honest and the inputs
of the parties are x1, x2, · · · , xn in the Ideal and Real world respectively. For this case the
above definition has to be modified with the following equation:

[ViewIdeal
A , {OutputIdeali }Pi∈H] ≈ [ViewReal

A , {OutputReali }Pi∈H]

Since any randomized function can be written as a deterministic function by fixing the
randomness to be used, it is enough to have the first definition for deterministic functions.
E.g. g(x1, x2; r1 + r2) = g((x1, r1), (x2, r2)).

[Lectures 2-4]-20

References

[1] Ronald Cramer, Ivan Bjerre Damgrd, and Jesper Buus Nielsen. Secure Multiparty Com-
putation and Secret Sharing - An Information Theoretic Approach. Cambridge Univer-
sity Press, 2015.

[2] Arpita Patra. http://drona.csa.iisc.ernet.in/ arpita/SecureComputation15.html . Course
Materials.

[3] Yehuda Lindell, IBM T.J.Watson. A tutorial on Secure Multiparty Computation.

[Lectures 2-4]-21

	title
	Dimension 1: Models of Computation
	Dimension 2: Varieties of Network
	Complete vs. Incomplete
	Synchronous vs. Asynchronous vs. Hybrid

	Dimension 3: Modelling Distrust
	Redefining MPC
	A quick Fix of Secure Addition Protocol of Figure 4

	Dimension 4: Characteristics of Adversary
	Threshold vs. Non-threshold
	Polynomially Bounded vs. Unbounded
	Semi-honest vs Malicious vs Covert
	Static vs Adaptive

	Expanding the scope of MPC: Summary

	Attributes of MPC protocols
	Questions in MPC
	Security of MPC
	Real World/ Ideal World Based Security

