CSA EO 312: Secure Computation 26th August 2015

[Lecture 5]
Instructor: Arpita Patra Submitted by: Marilyn George

1 Recap: Security Definition for MPC

In the last few lectures, we have seen several aspects of MPC like the models of computation,
networks, distrust and adversary. Next, we have seen the security definition of MPC in Real
World / Ideal World based paradigm. We have seen two definitions in the same paradigm:

¢ Indistinguishability of the adversary’s view in the real and ideal worlds.

e Indistinguishability of the joint distribution of the output of the honest parties and
the view of adversary in the real and ideal worlds.

Today we will see the second definition is stronger and is required to prove security of MPC
protocols for any function (randomized /deterministic). Whereas for the MPC protocols for
deterministic functions, the first definition is enough. Below we recall the real world /ideal
world based security definition. We assume the adversary A is semi-honest.

1.1 Ideal World MPC

We model the ideal world MPC, as seen earlier, with the help of a Trusted Third Party
(TTP). We assume there are n parties and the adversary A corrupts ¢t out of n parties:

1. The setup consists of a TTP and n parties, Py, ..., P,.
2. Each party P; sends its input x; to the TTP.

3. The TTP performs the computation (y1,...,yn) = f(x1,...,2z,), and sends the out-
put y; to the respective party P;.

Since all the communication in the ideal world happens over secure channels, the above
protocol satisfies our intuition of security that no party receives any other information
other than his/her own input and the output of the computation. Additionally, since the
TTP performs the computation, the output is correct.

1.2 Real World MPC

In the real world, the parties communicate among themselves according to a proposed inter-
active protocol. The protocol is such that it computes the expected output (y1,...,yn) =
f(z1,...,2,). We prove security of the proposed protocol executed in the real world by
proving that the view of the adversary in the real world is indistinguishable from its view
in the ideal world, where security is clearly satisfied.
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1.3 Comparison of Real World with Ideal World

On fixing the inputs of all the parties, say x1, xo, .., x,, we argue that the real world view of

the adversary contains no more information than his ideal world view as follows:

— The view of P; on the given input in the ideal world is denoted by View!-dea'(ml, cey X))
Hence the adversary’s view is denoted as {View!®(zy,... x,)}p.cc, where C is the
set of all the corrupt parties. This view, consisting of {x;, y;} p,ec is referred to as the
‘Allowed Values’, since the values that A knows in the ideal world are allowed to be

leaked.
Real

— Similarly, the view of the adversary in the real world is denoted by {View; ** (z1,...,2,)}pec,

and is referred to as the ‘Leaked Values’. The leaked values in the above example
consist of {z;,y;, i, ti} p,ec where r; denotes the randomness used by party P; and ¢;
denotes the protocol transcript seen by P;.

— We say that our protocol is secure if the leaked values contain no more information than
the allowed values. This is held to be true if the leaked values can be efficiently
computed from the allowed values.

We go about proving this using an algorithm called the Simulator which we will denote
by SIM. Given only the allowed values i.e. in the ideal world, SIM is expected to interact
with the adversary to simulate the adversary’s real world view. Hence, SIM will interact
with the adversary on behalf of all the honest parties according to the real world protocol.
If it can simulate a view close enough to the real world such that the adversary A cannot
distinguish between the real and ideal worlds, this implies that the leaked values can be
efficiently computed from the allowed values. Then the protocol is considered secure. SIM
is sometimes referred to as the ideal adversary as it receives the inputs and outputs of the
adversary (i.e. the allowed values) in the ideal world.

1.4 Definition 1: Indistinguishability of the Adversary’s View

With respect to this definition, we require that the adversary’s view in the real world

{ViewR® (z, ..., 2,)} p.cc, be indistinguishable from his view in the ideal world, {View!® (z1, ... z,)
}p.ec. We note that {View!® (z,... 2,)}p.cc is the view created with the help of SIM,
which interacts with the adversary on behalf of all the honest parties and simulates the real
world protocol. We can define security as:
{ViewRe (21, ... 2,)}pec =~ {View!d® (z1, ... 2,) } pcc
Both {View!¥®(zy, ..., 2,)}p.ecc and {ViewR®!(z1,... 2,)} pcc are random variables, so
the above statement refers to the indistinguishability of the distributions.{View!®® (zy, ..., 2,)}p.cc
is a random variable over the random coins of SIM and the adversary', and {ViewR®(zy,. .., 2,)}p.cc

"When the adversary is semi-honest we can assume that the simulator initiates the adversary with the
inputs of the corrupted parties, fixes the adversary’s randomness and simulates the adversary’s view in the
real world. The adversary therefore is the part of the simulator and the simulation is nothing but a mental
game. This is fine as a semi-honest A always follows protocol steps and participates in the protocol with
the inputs it is given. An malicious adversary A on the other hand cannot be thought of as a part of the
simulator. This is because the malicious adversary behaves arbitrarily and it must be treated as an entity
outside the simulator.

[Lecture 5]-2



is a random variable over the random coins of all the participating parties in the real world
protocol.

1.5 Definition 2: Indistinguishability of joint distributions of Output and
View

In this definition, we require that the joint distribution of the outputs of the honest parties
and the adversary’s view in the real world be indistinguishable from the corresponding
distribution in the ideal world. This definition is stronger than Definition 1, and it accounts
for randomized functions, as we see in the next section. We formalize the definition with
the help of additional notation for the output of the honest parties in the real world -
{OutputR®a} p 57, and the ideal world - {Output!®®®'} p < 1; where H is the set of all honest
parties. The security notion is then defined as:

{Viewl®™!} o, {Output®} iy | ~ [{ViewR™™'} pco, {Outputf™} e

2 Definition 1 vs. Definition 2

Our intuition is that Definition 2 is required for randomized functions, since both the
outputs of the honest parties and the view of the adversary are functions of the randomness
picked by the participants in the protocol. Note that the outputs of the honest parties are
also a random variable and induces a probability distribution over the randomness used
by the parties since the considered function is a randomized function. For a deterministic
function, the outputs of the honest parties are determined from the inputs of the parties
and is independent of the randomness used by the parties in the protocol. Hence, we infer
that the view distribution of the adversary and the output distribution of the honest parties
are correlated for randomized functions. We now see an example, a protocol to evaluate
a randomized function that is clearly insecure. But we will be able to prove the protocol
secure according to Definition 1 but it cannot be proven secure according to Definition 2.

2.1 Randomized Function and Definition 1

Consider a two party computation between P; and Ps of the the simple randomized function,
f(,+) = (r,-), where r is a random bit, i.e. the function computes a random bit, and requires
no input from either party. r is the output of the computation to P;, and P, does not get
anything.

e In the ideal world, the TTP generates a random bit r and sends it to P;.
e In the real world protocol, P; samples a random bit r, outputs it and sends it to Ps.

Now assume that Ps is the corrupted party. Let us design a simulator for this case to prove
security against an adversary A that has corrupted P,. Our simulator works as follows:
SIM, on being placed in the ideal world, samples a random bit 7/, and sends it to P, in
order to simulate the real world protocol.

{Viewideal}piec ~ {VieWZReal}pZ.ec

{r" : v" is random} ~ {r : r is random}
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It is easy to see that when P» is corrupted, then there is a simulator that can create an
ideal view of the adversary that is perfectly indistinguishable from the adversary’s real world
view. When P is corrupted, it is very easy to prove security. So with regard to Definition
1, the above protocol is secure as P» receives a randomly sampled bit in both cases, and his
views are indistinguishable.

However, we can see trivially that the protocol is insecure, since P receives the bit
computed by Py, but it receives no information in the ideal world. Now we will see that the
insecure protocol cannot be proved secure according to Definition 2.

2.2 Randomized Function and Definition 2

Consider the joint distribution of the output of the honest party and the view of the adver-
sary both in real and ideal world:

[{View;de""}pieo, {Output'idea'}pieH} [{View?ea'}pieo, {OutputR®} p c iy
[(7" ,7) : r,7" independent and random} % [(1", r) : r is random

Now, it is easy to see that the protocol is insecure according to Definition 2. However in
the next section, we see that Definition 1 is indeed sufficient to model security, provided we
modify our view of randomized functions.

2.3 Definition 1 is sufficient

For deterministic functions, the output is fixed once the inputs are fixed. In this case then
the distributions of output of honest parties and view of the adversary are not correlated,
and they can be considered separately. In fact the output can only be one element, and
there is no distribution of outputs.

[{Viewidem}piec, {Outputidem}pieH} A [{View?ea'}piec, {Outputfe} p gy
T1yeerTpy

[{Viewl*}p.cc

xl:"wxnvk

~ |{ViewS'} o

L1y Tn, T1yeens T,k

Hence both the above are equivalent, where k is the security parameter. When considering
randomized functions, we can model them as deterministic functions where each party
inputs some randomness, in addition to their actual inputs. For example, we could compute
g(z1,22;7) as f((z1,71), (x2,72)) where the randomness r = 1 + ro. Then we know that
Definition 1 will suffice to model all functions.

3 Making Indistinguishability Precise

To make the distinguishability in Definition 1 precise, we first introduce the following stan-
dard definitions. k£ will be denoted as the security parameter. It is a natural number. The
set of natural numbers are denoted as N

Definition 1[Negligible Function| A function p(-) is negligible, if for every polynomial p(-),

there exists an N such that for all £ > N, u(k) < Wl)' O
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Definition 2[Probability Ensemble] An infinite series X = {X (a, k)}, indexed by a string
a and a natural number k, such that each X(a, k) is a random variable. &

Given a security parameter k£ € N, we wish that security should hold for inputs of all
lengths as long as k is large enough. Then in our scenario, we define the following probability
ensembles, taking a = (z1,x2,..,2,) and k as the security parameter:

o X(x1,22,...,%Tn, k) = {{Viewfeal}piec‘}(931,332,“71”71@)
the randomness of all the participating parties.

o Y(x1,29,...,Tpn, k) = {{Viewideal}piec}(
the randomness of SIM.

in the probability space defined by

in the probability space defined by

Il,l’g,u,mn,k’)

We have now the following flavours of indistinguishability with respect to the above prob-
ability ensembles.

Definition 3[Computational Indistinguishability of X = {X(a,k)} and Y = {Y(a, k)}]
We say that two ensembles X and Y are computational Indistinguishable denoted as X =
{X(a,k)} ~. Y = {Y(a,k)} if for every polynomial-time distinguisher D there exists a
negligible function pu(-) such that for every a and all large enough values of k:

|Pr[D(X (a, k) = 1] — Pr[D(Y (a, k) = 1]| < u(k)

&

The distinguisher D in our case is the real adversary, and the above definition implies he
cannot distinguish between the two distributions (views) with more than negligible proba-
bility. This can also be written as - If the probability of D guessing the correct distribution
in the distinguishing game is denoted by Advp(X,Y), then:

1
[Adop (X, V)| < 5 + u(k)

i.e the adversary can distinguish with a probability that is at most negligibly better than
randomly guessing one of the two distributions. We now discuss statistical indistinguisha-
bility.

Definition 4[Statistical Indistinguishability of X = {X(a,k)} and Y = {Y(a,k)}] We
say that two ensembles X and Y are computational Indistinguishable denoted as X =
{X(a,k)} =5 Y = {Y(a,k)} if for every distinguisher D there exists a negligible function
u(+) such that for every a and all large enough values of k:

|Pr[D(X (a, k) = 1] — PrD(Y (a, k) = 1]| < u(k)

¢

Similarly this can be written as - If the probability of D guessing the correct distribution
in the distinguishing game is denoted by Advp(X,Y), then:

1
Mmeyﬂ<§+mm
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The difference is that D in this case could be an unbounded powerful adversary. We now
discuss perfect indistinguishability.

Definition 5[Perfect Indistinguishability of X = {X (a, k)} and Y = {Y (a, k)}] We say that
two ensembles X and Y are computational Indistinguishable denoted as X = {X (a,k)} =~
Y ={Y(a,k)} if for every distinguisher D and for every a and all large enough values of k:

|Pr[D(X (a,k) = 1] — Pr[D(Y (a,k) = 1]| =0

¢

This can be written as - If the probability of D guessing the correct distribution in the
distinguishing game is denoted by Advp(X,Y’), then:

|Advp(X,Y)| :%

In this case, even unbounded powerful D cannot do any better than randomly guessing
one of the two distributions. Both statistical and perfect indistinguishability belong to the
information theoretic world of unbounded powerful adversaries.

4 Scope of the Security Definition considered so far

Our security definition applies for the following aspects of MPC:

1. Networks: Complete and Synchronous. A synchronous network, as seen earlier, is one
that has a common clock, in terms of rounds.

2. Distrust: Centralized

3. Adversary: Threshold/Non-threshold, Polynomially bounded/Unbounded powerful,
Semi-honest, Static, Rushing.

A rushing adversary can wait to compute or send his values in a round till he receives values
from the other parties. We usually assume that the adversary is rushing.

5 Importance of Real world/Ideal World Definition Paradigm

We repeat again the advantages of using an Real world/Ideal World based definition over
other defintiions:

e The definition paradigm allows us to use one security definition for all the computa-
tions required. For eg:

1. Sum: (x1 + 22+ .. + x,) = f(z1, 22, .., 2n)
2. Oblivious Transfer: (—,xp) = f((x1,22),b)

majority(x1,z2,..,2n)

3. Byzantine Agreement: (y,vy,...,y) = f(x1,x2,..,2,) such that y =

default value
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e It is easy to tweak the ideal world scenario and weaken or strengthen security. Then
we need to come up with a real world protocol that needs only to achieve what the
ideal world achieves.

However, coming up with the right ideal world is tricky and requires skill, as we will see in
the later part of this course, where we will deal with malicious adversaries.

6 Information Theoretic MPC with Semi-honest Adversary
and Honest Majority

We are now ready to see a generic MPC protocol with honest majority and information
theoretic security that can compute any PPT function f. We will assume an adversary that
is semi-honest, threshold (with threshold t), static and unbounded powerful. The model of
computation is arithmetic circuit. The first protocol for arithmetic circuits with information
theoretic security was given by Michael Ben-Or, Shafi Goldwasser and Avi Wigderson in
‘Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation’
(Extended Abstract) at STOC 1988 [BGWS8S] for the following scenario (henceforth will be
referred as BGM protocol).

— Networks: Complete and Synchronous.
— Distrust Model: Centralized
— Adversary: Threshold (¢), Unbounded powerful, Semi-honest, Static.

The prime tool that is used to build BGW protocol is secret sharing. So we now focus on
the secret sharing.

6.1 (n,t) Secret Sharing Scheme

Secret sharing existed before the birth of MPC, and it has been used for many other purposes
[Shamir 1979, Blackley 1979]. In a secret sharing scheme there is a dealer who has a of
a secret s. The dealer wants to share a secret among n parties Pi, P, .., P, using shares,
say s1,82,...,S8,. We assume that the dealer can be one of the n parties nad there is an
adversary A who can corrupt at most ¢ parties out of the n parties. Any (n,t) secret sharing
scheme has two phases:

Sharing Phase: The dealer deals the secret among the n parties in such a way that less
than (¢ + 1) parties should not get any information about the secret.

Reconstruction Phase: The parties come together with their shares to reconstruct the
secret.

An (n,t) secret sharing scheme should satisfy the following two properties: (a) If at most ¢
parties combine their shares then together they should have no information about the secret;
(b) If more than ¢ parties combine their shares then together they should have complete
knowledge about the secret.
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6.1.1 Shamir Sharing: (n,t) Secret Sharing Scheme for Semi-honest Adver-
saries

We now see a specific instantiation of an (n,t) Secret Sharing Scheme known as Shamir
Sharing.

Sharing Phase: The dealer chooses a random polynomial f of degree at most t over F),
such that p > n and the constant term is the secret, s. Note that we consider the degree
of the polynomial as at most ¢, as the random choice could assign 0 as the coeflicient
of highest-degree term. The n parties Py, P, .., P, are given x1, x2, .., T,, the values
of the polynomial evaluated at the distinct, publicly-known points aq, a9, .., ay. Then
x; is the share of the i** party P;.

Reconstruction Phase: The reconstruction is done using Lagrange’s Interpolation. Since
the adversary is semi-honest, all participants will send their shares and the reconstruc-
tion can proceed with any ¢ + 1 shares.

6.1.2 Properties of Shamir-sharing

1. Any (¢t + 1) parties have ‘complete’ information about the secret

2. Any t parties have ‘no’ information about the secret, i.e. Pr[ Secret=s before secret
sharing | — Pr[ Secret=s after secret sharing | = 0.

Both the above properties can be proved using Lagrange’s Interpolation.

6.1.3 Lagrange’s Interpolation

Assume that h(z) is a polynomial of degree at most ¢, and C' is a subset of F, of size (t+1).
For simplicity, we take C' = {1,2,..,t + 1}.

Theorem 1 h(x) can be written as h(x) = > h(i) - 0;(x) where §;(z) = ][] f:]] where
icC jeC j#i
each 8; is a polynomial of degree t, which evaluates to 1 at x =i, and 0 at any other point

in C.

Proof Both the LHS and the RHS evaluate to h(i) for every i € C. Both the LHS and the
RHS have degree at most t. Now we consider the difference polynomial, LHS—RHS.

h(z) = > h(i) - 6;(x)
1eC
The LHS—RHS evaluates to zero for every ¢ € C, as they are equal.
= Fach ¢ € C is a zero of the polynomial LHS—RHS. However, both LHS and RHS have
degree at most ¢, therefore LHS—RHS also has degree at most ¢. Since the number of zeroes

is |C| =t + 1, this implies that the polynomial LHS—RHS has more zeros than its degree.
= LHS-RHS is the zero polynomial. = LHS = RHS. Hence Proved.
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6.1.4 Proof of Property 1 of Shamir Sharing

Given Theorem 1 in the context of Shamir Sharing, we have a group of (¢t + 1) parties,
analogous to C' in the above proof. Let the random polynomial picked in the sharing phase
be h(x).

e Each i € C is equivalent to the publicly-known points aq, as.., a1 of the (¢ + 1)
parties.

e Then each h(i) in the above proof i.e. h(x) evaluated at i; is equivalent to the share
of the party, x;.

e We also know d;(z) are public polynomials, since the points ¢ € C' are public. As a
result, d;(0) are public values. These values are denoted by r;.

e Then the secret s = the constant term of h(x) = the value of h(z) at 0 = h(0). This
can be written as a linear combination of the h(i)s (shares), with the help of the
combiners r1,73..1:41 according to the Theorem:

h(0) =Y h(i) - 6:(0)

iceC

Hence, Shamir Sharing satisfies the property that any ¢t+1 parties have complete information
about the secret. The set of public combiners (r1,72,..,7¢4+1) is called the recombination
vector.

6.1.5 Proof of Property 2 of Shamir Sharing

For any secret s from F), if we sample f(z) of degree at most ¢ randomly such that f(0) = s,
and consider the following distribution for any C' that is a subset of F}, \ {0} and of size ¢:

({f(i)}iec)is a uniform distribution in F]f

where F} is the t!h Cartesian power of F,. Note that C is a subset of F, \ {0} since f(0)
is the fixed secret. For a fixed secret s, a set of t coefficients from F;: defines a unique
polynomial of degree at most ¢ and hence a unique element from the above distribution.
Similarly a fixed secret and an element from the above distribution form a set of ¢ 41 values
which uniquely define a polynomial of degree at most ¢t. Hence, we see that the function
fs: Flf — F}f (t coefficients to ¢ points for secret s) defined as above is bijective. For every s,
the distribution is uniform and independent of s since we sample the polynomial randomly.

In the context of Shamir Sharing, C is a group of ¢ parties who are colluding to try and
reconstruct the secret. We now prove that Property 2 holds, and they have ‘no’ information
about the secret. We use the random variables SH to denote the ¢ shares of the parties, S
to denote the secret space and S to denote the random variable for the secret itself. Then
for any secret s1, the following can be proved. The following argument will be true for any
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8168.

Pr[S = s; after secret sharing]
= Pr[S = s1|SH = {f (%) }iec] A posteriori probability, given ¢ shares
_ Pris = s1] - Pr[sH = {f(i) }iccS = 1]

Bayes’ rule
PF[SH = {f()}iec]
Pr[S = 31] . W
= Uniform distribution in F;f for fixed secret
Pr[sH = {f (i) }iec]
Pris = =l g P f conditional probabil
= roperties of conditional probability
> PrisH={f(i)}iec|S = s;] - Pr[s = s;]
s;€S
Pr[S = 81] . ﬁ
= £ Uniform distribution in Fz’f for fixed secret
> ﬁ - Pr[s = 5]
e p
PF[S = Sl] ﬁ
B3 Pl
s;€S
= Pr[S = 5] Denominator sum goes to 1
= Pr[S = s; before secret sharing] A priori probability

Hence we have proved Property 2 of Shamir Sharing.

In the next class, we will see some more properties of Shamir Sharing and the secure
Arithmetic Circuit Evaluation protocol.
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