
CSA E0 312: Secure Computation 26th August 2015

[Lecture 6]

Instructor: Arpita Patra Submitted by: Marilyn George

In this lecture, we continue to discuss the properties of the (n, t) Shamir Secret Sharing
and move to the BGW protocol for secure arithmetic circuit evaluation and its proof of its
security. We first show that (n, t) Shamir Secret Sharing satisfies linearity property. That
is, given Shamir sharing of two secrets among a set of n parties, the parties can locally add
their shares to obtain (n, t) Shamir sharing of the sum of the secrets. A similar result for
the operator ‘multiplication by constant’ is also shown. No communication is thus required
to perform linear combination of shared secrets. Only local computation is enough. BGW
protocol will use the linearity properties of (n, t) Shamir sharing.

1 Linearity Properties of (n, t) Shamir Secret Sharing

1.1 Linearity of addition

Given players P1, P2, . . . , Pn, the publicly known points α1, α2, . . . , αn and the Shamir shares
of two secrets, say a and b using polynomials, say fa(x) and fb(x) of degree at most t,
adding the corresponding shares of both would give the shares of the secret a + b, using a
new polynomial fa+b(x) which is same as the sum polynomial fa(x) + fb(x). To prove this,
we consider the following:

fa(x) = a+ a1 · x+ a2 · x2+ ...+ at · xt

fb(x) = b+ b1 · x+ b2 · x2+ ...+ bt · xt

For any party Pi, his shares of fa(x) and fb(x) will consist of fa(αi) and fb(αi) respectively,
as per Shamir Secret Sharing. Now, Pi computes the sum:

fa(αi) + fb(αi) = (a+ b) + (a1 + b1) · αi + (a2 + b2) · α2
i + ..+ (at + bt) · αt

i

The sum is now the value of a polynomial fa+b(x) = (a+b)+(a1+b1)x+ . . . , (at+bt)x
t with

constant term equal to the secret (a+ b) evaluated at αi. Since the coefficients of both the
original polynomials are random, their sums are also random. Additionally the resulting
random polynomial also has degree at most t. This implies that the sum shares define valid
(n, t) Shamir sharing of the secret (a+ b). Hence each party can locally compute the shares
of the sum of the secrets. Finding (n, t) Shamir sharing of sum of two shared secrets is
absolutely communication free.

1.2 Linearity of constant multiplication

In a similar setting, multiplication by a publicly-known constant c is also linear. We consider
the Shamir shared polynomial fa(x) of degree at most t, as in the previous example. Now

[Lecture 6]-1



for any party Pi, his share of fa(x) will be fa(αi). On multiplying the share with the
constant c, Pi gets:

c · fa(αi) = c · a+ c · a1 · αi + c · a2 · α2
i + ...+ c · at · αt

i

which corresponds to the polynomial fca(x) = (c · a) + (c · a1)x, . . . , (c · at)xt (with the
constant term equal to the secret (c · a)) evaluated at αi.

Since the coefficients of fa(x) are random, the products obtained on multiplying with
a fixed constant are also random. Additionally the resulting random polynomial also has
degree at most t. This implies that the c times the shares are valid (n, t) Shamir shares of
the secret (c · a). Hence each party can locally compute the shares of the product of the
secret with a publicly-known constant. Finding (n, t) Shamir sharing of c times a shared
secret is absolutely communication free.

From the above properties we have that the linear combination of shared secrets with
publicly-known constants can be computed locally by the parties, and hence is also com-
munication free. i.e. If r1, r2, ..rn are publicly-known constants and a1, a2, ..an are secret
shared, then the parties can compute the shares of r1 · a1 + r2 · a2 + .. + rn · an by local
computation.

1.3 Non-linearity of multiplication

In the same scenario, however the product of the shares of two secrets do not result in a
valid (n, t) Shamir sharing of the product of the secrets. The product of the shares are

g(αi) = fa(αi) · fb(αi)

for some polynomial g(x). We will have n = 2t + 1 points (corresponding to n ≥ 2t + 1
parties) which will define a polynomial of degree at most 2t. Now consider the product
polynomial p(x) = fa(x) · fb(x). We know that the degree of p(x) is at most 2t, since
both fa(x) and fb(x) are of degree at most t. We also have that p(x) and g(x) coincide
at the n points, α1, α2, . . . , αn. Since these two polynomials of degree at most 2t coincide
at 2t + 1 points, they are the same polynomial, or g(x) = the product polynomial. This
polynomial will have constant term ab. Although the constant term is what we require,
note that the resulting polynomial g(x) is always a reducible polynomial over the field i.e.
it always has non-constant polynomial factors. This implies that the distribution of the
product polynomial g(x) does not induce a random distribution of polynomial of degree at
most 2t over Fp. The reason is the former distribution excludes the irreducible polynomials.
Additionally g(x) has degree at most 2t, and hence the product shares of the parties does
not induce an (n, t) Shamir sharing of the product secret. We now have that multiplication
of two Shamir shared secrets is not free.

We show a specific example where the multiplication of the shares of two Shamir shared
secrets do not produce the shares of the Shamir shared product. Consider n = 3 and t = 1
over field F5, which satisfies the condition p > n.

• Let α1 = 1, α2 = 3, α3 = 4.

• Let a = 3 and fa(x) = 2x + 3. Similarly b = 2 and fb(x) = x + 2. Both these
polynomials have degree at most t = 1.

[Lecture 6]-2



• We assume that P2 is corrupt, and P1, P3 are honest parties. Then the shares for each
player for secret a are: P1 → 0, P2 → 4 and P3 → 1. Similarly for b: P1 → 3, P2 → 0
and P3 → 1

We consider only the adversary’s view at the present situation.

• Consider the share received of a, 4. From this share and the fact that α2 = 3, the
adversary can compute that the possible polynomials chosen of degree at most 1 are:
{4, x + 1, 2x + 3, 3x, 4x + 2}. From this we see that each of the secrets in the field
{0, 1, 2, 3, 4} are equally likely to be the constant term.

• Similarly with the share of b, the possible polynomials are {0, x+2, 2x+4, 3x+1, 4x+
3}. Again all the secrets are equally likely.

Hence, given the (n, t) Shamir shares so far, all the secrets are equally likely by the property
of Shamir sharing. Now we consider that each party multiplies their shares. Then P2’s share
of the product polynomial is 0. He can compute the 25 possible polynomials with degree
at most 2 which could give rise to this share. They are:

0x2 + 0x+ 0 x2 + 0x+ 1 2x2 + 0x+ 2 3x2 + 0x+ 3 4x2 + 0x+ 4

0x2 + 1x+ 2 x2 + 1x+ 3 2x2 + 1x+ 4 3x2 + 1x+ 0 4x2 + 1x+ 1

0x2 + 2x+ 4 x2 + 2x+ 0 2x2 + 2x+ 1 3x2 + 2x+ 2 4x2 + 2x+ 3

0x2 + 3x+ 1 x2 + 3x+ 2 2x2 + 3x+ 3 3x2 + 3x+ 4 4x2 + 3x+ 0

0x2 + 4x+ 3 x2 + 4x+ 4 2x2 + 4x+ 0 3x2 + 4x+ 1 4x2 + 4x+ 2

Now he calculates the polynomials of degree at most 2 which are products of the possible
polynomials that he had for secrets a and b. i.e. Products of one polynomial from {4, x +
1, 2x+ 3, 3x, 4x+ 2} with one from {0, x+ 2, 2x+ 4, 3x+ 1, 4x+ 3}. This list of products
is then:

0x2 + 0x+ 0 x2 + 0x+ 1 2x2 + 0x+ 2 3x2 + 0x+ 3 4x2 + 0x+ 4

0x2 + 1x+ 2 x2 + 1x+ 3 2x2 + 1x+ 4 3x2 + 1x+ 0 −−−−−−
0x2 + 2x+ 4 x2 + 2x+ 0 2x2 + 2x+ 1 −−−−−− 4x2 + 2x+ 3

0x2 + 3x+ 1 x2 + 3x+ 2 −−−−−− 3x2 + 3x+ 4 4x2 + 3x+ 0

0x2 + 4x+ 3 −−−−−− 2x2 + 4x+ 0 3x2 + 4x+ 1 4x2 + 4x+ 2

Due to the absence of 4 polynomials in this list we find that the probability of the secret
being {0, 1, 2, 3, 4} respectively is now { 5

21 ,
4
21 ,

4
21 ,

4
21 ,

4
21}. Then the secrets are no longer

equally likely, and the adversary has gained some additional information by being able to
see just one share. In this manner, using the product polynomial is not truly random and
will leak information to the adversary. Hence, this cannot be used as a valid Shamir secret
sharing.

2 BGW Protocol for Secure Circuit Evaluation

We now move on to BGW protocol for secure arithmetic circuit evaluation with information
theoretic security and with n parties tolerating a semi-honest adversary who may corrupt t

[Lecture 6]-3



out of the n parties. An arithmetic circuit consists of gates, each having two inputs and one
output. For simplicity, we assume ith input to the circuit is the secret input value supplied
by the party Pi. As shown in Figure 1, each gate represents a certain operation, and the
output the circuit is the output of the computation, y.

Figure 1: An example arithmetic circuit with n = 3, t = 1.

• Addition gate: It adds the two inputs and outputs the sum.

• Multiply by constant gate: One of its inputs is a predefined public constant, and the
output is the product of the other input with the known constant.

• Multiplication gate: It multiplies the two inputs and output the product.

The procedure for secure arithmetic circuit evaluation is as follows:

1. Each party Pi (n, t)-secret-shares its input, say xi. This sharing is denoted by the
closed boxes in the diagram.

2. The parties together find (n, t) secret sharing of each intermediate gate output value.
That is, the following invariant is maintained for every gate. If the inputs to the gates
are (n, t)-secret-shared, then the gate is evaluated in a way that the output is remains
(n, t)-secret-shared.

3. When the (n, t) secret sharing of the final gate output value is computed, the parties
together reconstruct the output using the reconstruction phase of Shamir sharing i.e.
by exchanging the shares with each other. This is denoted by the open box, since the
final output is visible to all parties.

[Lecture 6]-4



Specifically, given the secret input values of the parties, our goal is to output the final result
of the computation, y and nothing beyond must be leaked during the computation. As
described above, the computation of the circuit is done in such a way that every circuit
wire is assigned values where the values themselves remain (n, t)-shared. We can assume
any topological ordering for the circuit, and proceed to evaluate the gates in that order.
A topological ordering will ensure that during the evaluation of a gate its input wires are
have been assigned their values. If both the inputs of the gate have already been assigned
or computed, we can perform the required operation and assign the answer to the output of
the gate. We continue till the final output has been computed. Note that all the operations
are performed on the shared secrets. We maintain the invariant that if the inputs of a gate
are (n, t) Shamir shared, the output will also be (n, t) Shamir shared. We have seen in the
previous sections that addition and multiplication by a constant of shared secrets is free
and locally computable by each of the parties. Hence the ‘linear’ gates are non-interactive
due to the linearity of Shamir Sharing. However, the multiplication gates are non-linear
and will require an interactive technique called degree reduction for secure evaluation.

2.1 Secure Multiplication Gate Evaluation

We have n parties P1, P2, .., Pn who have shares of the secrets a and b with respect to the
polynomials fa(x) and fb(x). Then as we have seen before each party can compute shares
of the product polynomial g(x) by multiplying their shares of fa(x) and fb(x). Let each of
these shares be zi = fa(αi) · fb(αi) = g(αi) for the party Pi. This polynomial has constant
term ab, but it is not random or of degree t. Now, we know that any point on a polynomial
of degree 2t can be expressed as a linear combination of 2t + 1 points on the polynomial,
given the public recombination vector. Each Pi shares their zi with all the other parties
according to (n, t) Shamir Sharing. Now, the parties can perform a linear recombination on
these n = 2t+ 1 points of the polynomial to generate an (n, t) Shamir sharing of g(0) = ab
as follows.

g(x) =
n∑

i=1

zi · δi(x), where δi(x) =
∏

j∈[1,...,n],j 6=i

x− j
i− j

ab = g(0) =

n∑
i=1

zi · δi(0) =

n∑
i=1

zi · ri

where (r1, r2, .., rn) is the public recombination vector. Hence, the multiplication protocol is
complete. Note that this protocol is secure because our adversary is semi-honest and cannot
actively interfere with the protocol steps. This technique is called degree reduction because
its starts with the product secret ab shared using a non-random polynomial of degree at
most 2t and generates its (n, t)-sharing using a random polynomial of degree at most t.

2.2 Proof of Security

The circuit output will always be computed correctly since the adversary is semi-honest.
The privacy of the circuit evaluation is intuitive because:

• No inputs of the honest parties are leaked.

[Lecture 6]-5



• No intermediate value is leaked, as the computations are always performed on Shamir-
shared secrets.

We will formalize this notion of security using our Real World / Ideal World paradigm and
constructing a simulator SIM. The adversary’s real world view is as follows:

1. At the outset: Input and random coins.

2. Input-sharing and multiplication gate computation: The adversary sees t
shares of the inputs of the honest parties. Additionally he sees the t shares of the hon-
est parties product-share during the computation of the multiplication gate. He sees t
values distributed uniformly at random in F t

p, irrespective of the values shared, as we
have seen in the previous lecture. Since none of the other gates require interaction,
he learns no information during their computation.

3. Output Reconstruction: He sees the shares of the honest parties corresponding to
the correct circuit output y.

We have to prove that this view of the adversary, denoted by the random variable
{
ViewReal

i }Pi∈C ,
leaks nothing beyond the inputs/outputs of the corrupted parties i.e. ‘the allowed values’
with respect to the ideal world scenario where a Trusted Third Party does all the com-
putation. We construct the Simulator, which behaves as follows during the above three
phases:

1. At the outset: The simulator has the input, output (of the corrupted parties) and
random coins.

2. Input-sharing and multiplication gate computation: Sample t random shares
and give them to the adversary on behalf of the honest parties.

3. Output Reconstruction: The simulator knows the shares of the corrupted parties
and the output y. This gives it a total of t + 1 shares of a polynomial of degree at
most t. It can reconstruct the polynomial, compute the correct shares of t+ 1 honest
parties and send them to the adversary.

This simulator generates the view of the adversary in the ideal world - {ViewIdeal
i }Pi∈C , using

the inputs/outputs of the corrupted parties. We now see that the simulation is perfectly
indistinguishable from the adversary’s view in the real world:

• The honest parties do not interact with the adversary for Step 1, neither does the
simulator.

• In Step 2, the adversary sees t random values from F t
p, as discussed above, in both

cases.

• Given the output and t shares of the corrupted parties, the polynomial and hence
the shares of the honest parties are uniquely determined. Note that the points of
evaluation of the function αis, which are used to compute the shares, are publicly
known.

Since the Steps 1-3 are perfectly indistinguishable in the real and simulated view for a semi-
honest adversary with unbounded power, we have proved that the protocol is information
theoretically secure in semi-honest adversary setting.

[Lecture 6]-6


