
CSA E0 312: Secure Computation September 4, 2015

[Lecture 7-8]

Instructor: Arpita Patra Submitted by: Divya Ravi

1 Introduction

In the previous lecture, we looked at an information-theoretic MPC protocol with honest
majority for secure evaluation of arithmetic circuits. In this lecture we analyze the efficiency
of the protocol and see how it can be improved using the offline-online paradigm. We will
also look at the feasibility of information-theoretic MPC protocols in dishonest majority
setting.

2 Efficiency of the MPC protocol for secure circuit evalua-
tion

We analyze the efficiency of the MPC protocol of secure circuit evaluation in terms of the
communication complexity i.e the number of bits communicated during the execution of
the protocol. Let us look at the complexity of each step of circuit evaluation separately :

1. Input Sharing : Suppose cI is the number of input gates in the circuit. For every
input gate, the party with the secret shares it using LSSS (Linear Shamir-Secret
Sharing) scheme. As we have seen, in this scheme, each of the n parties receives a
share; this incurs a communication complexity of O(n)|Fp| for every input gate, where
|Fp| is the number of bits needed to represent an element of the field Fp over which
the random t-degree polynomial is chosen in the protocol.

2. Evaluation of addition gates : Suppose cA is the number of addition gates in
the circuit. We have seen that evaluation of the addition gate involves only local
computation due to the linear property of Shamir-Sharing. Therefore the complexity
of this step is NIL.

3. Evaluation of the multiplication gate : Suppose cM is the number of multiplica-
tion gates in the circuit. We have seen that for evaluation of multiplication gate, a de-
gree reduction technique is required where each of the n parties shamir-shares a value
on the product polynomial. Since each instance of sharing a value among n parties in-
curs O(n)|Fp| complexity, the total complexity incurred at this step becomes O(n2)|Fp|
for each multiplication gate.

4. Output reconstruction : Suppose cO is the number of output gates in the cir-
cuit. To reconstruct the output, each of the n parties send its value of the share to
every other party. Thus, this incurs a communication complexity of O(n2)|Fp| for each
output gate.

[Lecture 7-8] -1

Thus, the communication complexity for the circuit with cI input gates, cA addition gates,
cM multiplication gates and cO output gates is:

O(cIn+ cMn
2 + cOn

2)|Fp|

Can we optimize this further? In this lecture, we will see how to achieve the goal of
bringing down this complexity to O(cIn + cMn + cOn)|Fp| bits.1Complexity can also be
viewed in terms of the number of rounds of interaction between the parties. In this protocol
of circuit evaluation, the round complexity is O(d) where d is the multiplicative depth of the
circuit. Computation at multiplication gates of the same level of the circuit can be done in
parallel.

3 Offline-Online Paradigm

The ‘offline-online’ paradigm is considered to be synonymous with ‘efficiency’and is ex-
tensively used in most of the recent MPC protocols. A protocol can be viewed as being
divided into two phases - offline phase and the online phase

• Offline Phase : In the offline phase, neither the input nor the function to be evaluated
needs to be specified. Raw data is generated and some precomputations are done so
that the online phase can be made faster. This phase is generally not expected to be
very efficient as it occurs before the actual interaction between the parties.

• Online Phase : The online phase uses the precomputed material created in the
offline phase to evaluate the actual circuit. This is expected to be blazing fast.

The motivation of this offline-online approach is that the online phase is expected to
be made fast by using only inexpensive computation. This is particularly useful in settings
where parties know in advance that some computation has to be performed, and low online
latency is desired. A classical example is the one of an airline company that wants to check
the list of passengers on a flight against a database of blacklisted passengers (and neither
the list of passenger nor the blacklist should be publicly disclosed). Here the final list of
passengers might be ready only few minutes before take-off, while the flight has been sched-
uled way in advance. We will now see how the offline-online approach can be adopted for
secure circuit evaluation. Sharing occurs in the offline phase and the online phase involves
only reconstruction.

Remark : In many secret-sharing protocols, the reconstruction phase is usually fast com-
pared to the sharing phase. For such protocols, this offline-online approach will be partic-
ularly useful since sharing happens in the offline phase.

3.1 Online Phase Complexity

We have seen that input sharing, computation of multiplication and reconstruction of output
are the steps that involve interaction and incur high complexity. Let us see how these steps

1Is it possible to attain complexity of constant order? Yes, in computational setting it has been proven
that it is possible to evaluate any function with poly power in constant time

[Lecture 7-8] -2

can be reduced to reconstructions alone and how precomputed data can be used to make
the online phase faster and more efficient.

3.1.1 Input Sharing using one reconstruction

Suppose in the offline phase, the raw data generated is (n, t) Shamir-sharing of a random,
secret value r. We will see how this can be generated later, let’s focus now on how the
online phase can use this data for input sharing assuming it is available. In the online
phase, suppose the party Pi wishes to initiate (n, t) Shamir-sharing of the actual secret X,
it can be done using single reconstruction as follows -

• Suppose (n, t) Shamir-Sharing of a secret, random value r had been done in the offline
phase and r1, r2 rn are the respective shares of the n parties.

• The party Pi who wishes to share actual secret X will alone reconstruct r, this is the
only reconstruction that is needed. The value r still remains random and secret for
the other parties.

• Now Pi sends (X + r) to each of the parties as shown in figure 1. The secrecy of the
input X is maintained as r is a random, secret value to the other parties and therefore
(X + r) acts as a one-time pad for X.

• Each party Pj can now locally compute (X + r)− rj . Due to the linearity of Shamir-
Sharing, this can be viewed as if each party contains a point on a polynomial of
degree atmost t whose constant term is (X + r − r) which is nothing but the (n, t)
shamir-sharing of X.

Thus input sharing can be reduced to a single reconstruction in the online phase.

3.1.2 Beaver’s circuit-randomization technique for multiplication

We have seen that one of the major bottleneck in the shared evaluation of the circuit is to
evaluate the multiplication gates. Beaver’s technique for multiplication forms the core of
the offline-online paradigm. Beaver’s circuit-randomization technique is commmonly used
in the online phase for the evaluation of multiplication gates. Here, the gates are evaluated
using pre-computed, t-shared random multiplication triples. Consider, for now that we have
an oracle in the offline phase that generates such triples (a, b, c) where a, b are random and
private values independent of the actual inputs to the multiplication gates and c = ab. We
will now see how, given such triples, we can evaluate the multiplication gate in the online
phase using just two reconstructions.

Let x, y be the actual inputs to the multiplication gate. If the product xy can be written
as a linear combination of a, b and c(= ab) where the combiners will be publicly known
and will not leak any information about x and y then (n, t) Shamir-sharing of a, b and c
beforehand will enable each party to easily obtain (n, t) Shamir-sharing of xy. This is done
as follows -

xy = ((x− a) + a)((x− b) + b)

= (α+ a)(β + b)

= ab+ αb+ βa+ αβ

(1)

[Lecture 7-8] -3

Figure 1: Input Sharing in online phase using precomputed sharing of a secret, random
value r

where α = (x− a) and β = (x− b)
Using the above equation, we can now combine sharing of a, b and ab using the combiners

to get sharing of xy as follows -

• Assume that in the offline phase (n, t) Shamir-sharing of a, b and c(= ab) was done.

• Suppose xi, yi are the shares received by party Pi by (n, t) Shamir-sharing of x and y
respectively which are inputs to the multiplication gate.

• Then each party can now locally compute (xi - ai) and (yi - bi) i.e their shares for
(n, t) Shamir sharing of α and β respectively by the linearity property of sharing.

• Now these shares can be used to reconstruct α and β. These are the two reconstruc-
tions needed in the online phase. Once this is done, it will easily enable each party
to use the equation (1) to get the (n, t) Shamir-sharing of xy as shown in figure 2.

An important aspect which should not be missed is the fact that α and β do not reveal
any information about the inputs x and y since a, b remain random secret values. In order to
ensure this, one should not use the same multiplication triple for more than one evaluation.
Thus the oracle in the offline phase should ideally give cM multiplication triples where cM
is the number of multiplication gates in the circuit. Since the triples are independent of the
input, Beaver’s trick is to generate many triples in parallel in the offline phase so that the
efficiency will be amortized in large-sized circuits.2 Thus, evaluation of the multiplication
gate is reduced to two reconstructions in the online phase.

2Note that parallelization is possible in the offline phase since the triples are independent of the actual
input.

[Lecture 7-8] -4

Figure 2: Evaluation of multiplication gate using Beaver’s randomization technique

3.1.3 Reconstruction of output of Shamir-Sharing for semi-honest adversary

We have seen in the previous sections how input sharing and multiplication gate evaluation
can be done with one and two reconstructions respectively. This invokes the requirement
to try to nail the reconstruction step and make it more efficient. Let us see how we can
reduce the complexity of output reconstruction step which is O(n2) according to what we
analyzed previously.

Recall that in the output reconstruction that we have seen, each party sends its share
to every other party, then uses Lagrange’s Interpolation to get the t-degree polynomial
and recover the secret which is the constant term of the polynomial. This incurs O(n2)
communication complexity. There is a simple way to reduce this communication complexity-

• Suppose all the parties send their shares to only one particular party, say P1 for
instance.

• Now P1 can reconstruct the t-degree polynomial and recover the secret X.

• P1 sends the secret X to all other parties.

This will incur a complexity of only O(n) since each of the n parties communicates with
P1 alone. This protocol works correctly as long as we trust that P1 reconstructs and sends
the secret X to all parties correctly as he is supposed to. Since we are in the semi-honest
setting we can make this assumption that P1 will not deviate from the protocol. Thus
output reconstruction in the semi-honest setting can be done with O(n) complexity.

In this section, we have seen how the online phase can be made more efficient - By
reduction of input sharing to one reconstruction, multiplication gate evaluation to two
reconstructions and a way to reconstruct output with O(n) complexity. Therefore

Online-Phase Complexity : O(cIn+ cMn+ cOn)|Fp|

[Lecture 7-8] -5

3.2 Offline Phase Complexity

In the previous section, we assumed that the precomputed material was available in the
online phase. Now lets see how that can be generated. We have seen that for input
sharing and multiplication gate evaluation we need random secret values. Let us look at
a general way to produce (cM + cI) shared, random, secret multiplication triples.3 As the
name multiplication triples suggests, the goal is to generate (a,b, c) which are secret shared
using Linear Shamir-secret sharing where a,b,c are random and secret and c = ab. We can
divide this goal into three tasks as follows :

1. Generation of Secret Sharing : We have seen how to do secret sharing using
Shamir-secret sharing scheme which incurs O(n) complexity.

2. Generation of Secret Sharing where the secret is random and secret : This
is different from the previous task. In the previous task, one party shares the secret
which is known to him and the adversary as well if this party is corrupted. In this
case the secret should not be known to the adversary either. We will look at how this
is done. a, b of the multiplication triple is generated by this task.

3. Generation of sharing of random, secret multiplication triple : Using a and
b generated by task 2, the third component of the triple i.e c is generated by this
task.

We already know how to achieve task 1. Let us look at how task 2 can be achieved.

3.2.1 Generation of Secret Sharing where the secret is random and secret :

Suppose each party Pi picks a random value and uses (n, t) Shamir-sharing of the random
value. If we pick any of these sharings, that may not be equivalent to the secret sharing
of a random, secret value since t out of n parties are corrupted. The sharing selected may
be random since we are in the semi-honest setting and each party would have picked a
random value; but the sharing selected is not really the sharing of a secret value in case
the party is corrupted and thereby the value is known to the adversary. We need the shar-
ing of a random as well as secret value. We can use a randomness extractor for this purpose.

Randomness Extractor :
Randomness extractor is simply an algorithm which takes an input and outputs a random
value. To get a (n, t) sharing of a secret random value from the (n, t) sharing of random
values by n parties, we can apply a randomness extractor on (a1, a2....an) where ai is the
share Pi. Here we can use the simplest randomness extractor which is addition. Since only
t out of n inputs (a1, a2....an) will be known to the adversary, the sum of the (n, t) Shamir-
sharings will be the (n, t) Shamir-sharing of a random secret value and hence our goal has
been achieved. However this is not efficient since we started with (n − t) random secret
value sharings i.e the shares of the honest parties but we extracted just one random value.
We can achieve a more efficient randomness extractor as shall see further.

3For the sake of simplicity, we can assume that the random secret values for input sharing is nothing but
the first component of the triple generated.

[Lecture 7-8] -6

Efficient Randomness Extractor :
We can view the individual shares of the parties i.e a1, a2... an to be n points on a (n− 1)
degree polynomial f(x) such that f(1) = a1, f(2) = a2.....f(n) = an. Among these n points,
(n− t) are randomly chosen and t points may be non-random and known to the adversary.
We make the following claim.

Claim 1 If we consider any (n − t) points on f(x) at points other that x = {1, 2,n},
say f(n+ 1).....f(n+ n− t), then these points will be random.

Proof Without loss of generality say parties 1, 2....t are corrupted and thus a1,.... at are
known to the adversary. We can define a mapping Ma1...at : Fn−t → Fn−t as follows -

• The function takes as input (n− t) values from the domain at random. These values
along with the t values known to the adversary will form a set of n points.

• These n points are used to define a unique polynomial f(x) of degree atmost (n− 1).
In other words f(1) = a1, f(2) = a2.....f(n) = an.

• The output of this function Ma1...at is the value of the polynomial f(x) evaluated at
(n+ 1),(n+ n− t).

We can check that this mapping will be a bijection. This can be inferred from the following
two observations :

1. Suppose the mapping Ma1...at : Fn−t → Fn−t as defined above is not one-one. This
means that there are two different (n− t) tuples in the domain which have the same
output. Let us consider these two tuples. These (n− t) points combined with a fixed
set of t points will form two different sets of n points, and thereby define two different
polynomials of degree atmost (n − 1) say f1(x) and f2(x).4 By our assumption, the
output of both the (n− t) tuples is the same. This means that

f1(n+ 1) = f2(n+ 1);

f1(n+ 2) = f2(n+ 2);

f1(n+ n− t) = f2(n+ n− t)
(2)

We already know that f1 and f2 coincide at the t fixed points {1, 2....t}. If they coincide
on another (n− t) points i.e at {(n+ 1),(n+n− t)} as well, this would imply that
f1 and f2 are two different polynomials of (n− 1) degree which have the same value
at n points. This is a contradiction since two different (n − 1) degree polynomials
cannot coincide at n or more points. Thus our assumption that the mapping is not
one-one is false. Hence, we can conclude that the mapping M is one-one.

2. The onto property of the mapping M also holds. Consider a (n− t) set of values from
the range. Value at the first t points is fixed. These n points will define a unique
polynomial f(x) of degree atmost (n − 1). The preimage will be the value of this
polynomial at {(t + 1)....n}. Since every set of values from the range will have a
preimage, the mapping is onto.

4This is due to the fact that a set of n points uniquely defines a polynomial of degree (n− 1)

[Lecture 7-8] -7

We have proved that the mapping is bijective in nature. Since we have a uniform distribution
on the domain (uniform over Fn−t) we get the same distribution on the range as well. Thus
the claim that the distribution of the value of the polynomial f(x) at (n− t) points will be
random holds true.

Thus we started with (n − t) random values and have obtained (n − t) random values
in the output as well. This is the optimal efficiency since randomness cannot be expanded.
Shamir-sharing of these (n − t) values that is of f(n + 1).....f(2n − t) can be obtained as
usual by Lagrange’s interpolation formula -

f(x) =
∑

i∈{i...n}

aiδi(x)

a(n+ i) = f(n+ i) =
∑

i∈{i...n}

aiδi(n+ i)
(3)

Shamir-sharing of n values took O(n2) complexity but we have obtained (n− t) sharings of
random secret values together. Thus the amortized cost for one sharing of a random secret
value i.e for achieving one instance of task 2 is O(n).

We have seen how to achieve the first two tasks so far. Once a and b are generated
using task 2, the full multiplication triple can be generated by simply using the secure
multiplication protocol to evaluate the third component of the triple i.e c = a.b. This will
incur a communication complexity of O(n2) as we have seen.5 Therefore, we have seen how
to achieve the following efficiency -

Offline Complexity : O(cIn+ cMn
2)|Fp|

Online Complexity : O(cIn+ cMn+ cOn)|Fp|
Total Complexity : O(cIn+ cMn

2 + cOn)|Fp|

3.3 Alternate way to evaluate multiplication using single reconstruction

We have seen how to use precomputed multiplication triples to evaluate multiplication gates
in the circuit. Another type of raw material that can be used is (n, 2t) and (n, t) sharing
of a random value. How can we use this for evaluation of multiplication gate?

• Suppose we have access to an oracle which gives us (n, 2t) and (n, t) sharing of random
values. As shown in the figure 3, suppose xi and yi are the shares corresponding to
the inputs x and y respectively.

• Let Ai denote the (n, 2t) share of party Pi corresponding to the (n, 2t) Shamir sharing
of random value a.

• Let ai denote the (n, t) share of party Pi corresponding to the (n, t) Shamir sharing
of same random value a.

• Each party locally computes (xiyi − Ai). This will correspond to (n, 2t) sharing of
(xy − a) due to the linearity of the sharing.

5It is possible to reduce the complexity of generation of triple sharing to O(n) with statistical security
and with n = 3t + 1.

[Lecture 7-8] -8

• Now a single reconstruction is used to recover (xy−a) from the (n, 2t) shamir sharing.
This is feasible since we have n = 2t+1 parties which suffice to recover the polynomial
of degree 2t corresponding to the (n, 2t) sharing of (xy − a).

• Now, using the linearity property of shamir-sharing each party can locally compute
ai + (xy − a) to obtain (n, t) sharing of xy which is exactly what we need.

Using this approach, the online complexity becomes

Online Complexity :O(cIn+ cMn+ cOn)|Fp|

Figure 3: Evaluation of multiplication using (n,(2t,t)) sharing of secret random value a

Now the question that remains is how to generate this raw data i.e we need (cM + cI)
(n, (2t, t))6 secret sharing of random secret values. An important aspect of secrecy is that
a remains a random secret value throughout the online phase and thus the secrecy of xy is
ensured by relying on this feature. Hence we need an instance of (n, (2t, t)) secret sharing
of a random secret value for each multiplication and input gate. We can achieve this by the
following two tasks.

1. Generation of (n, 2t) and (n, t) Secret sharing : We know how this can be done
using Shamir-secret sharing.

2. Generation of secret sharing where the secret sharing is random and secret
: We have seen how this can be done with an amortized communication complexity
of O(n) in section 3.2.1.

Thus, using (n, (2t, t)) precomputed secret sharing, we get an alternate efficient way to
evaluate multiplication gates with an amortized complexity of O(n).

6(n,(2t,t)) refers to (n, t) and (n, 2t) sharing of the same value

[Lecture 7-8] -9

4 Impossibility of information-theoretic MPC protocol with
n ≤ 2t

Till now we have considered only honest majority setting, i.e where n > 2t. Will the
protocols we have discussed so far for secure evaluation of functions fail if this condition is
not satisfied? Where will we face a problem?

1. Multiplication protocol : In the evaluation of multiplication gates, we recovered
the t-sharing of the product by t-sharing of the input values by making use of the
fact that we know (2t + 1) points on the product polynomial of degree 2t. This was
possible only because we had atleast (n = 2t + 1) parties. These parties could each
compute a point on the product polynomial locally and these (2t+ 1) points sufficed
to define the product polynomial of degree atmost 2t. In dishonest majority setting
where n ≤ 2t this won’t work.

2. Generation of multiplication triple sharing : Generating triple sharing involved
using the multiplication protocol on pair (a, b) which are random, secret values to ob-
tain triple sharing of (a, b, c) where c = ab. As we inferred above, since multiplication
won’t work in dishonest majority setting, we will be unable to generate triple sharing
as well in this manner.

3. (n, (2t, t)) sharing : We have seen how to use precomputed (n, (2t, t)) shares to
evaluate multiplication. In this protocol, we use the (n, 2t) sharing of a random secret
value a and the (n, 2t) sharing of the product xy (where x and y are actual inputs to
the multiplication gate) to reconstruct (xy−a). This was further used to obtain (n, t)
sharing of the product xy. However, the reconstruction of (xy − a) from its (n, 2t)
sharing is possible only if we have atleast (2t+1) shares i.e n = (2t+1) parties. Thus,
this will fail in dishonest majority setting.

From the above observations, it looks like secure evaluation of functions which involve
multiplication cannot be done information-theoretically in dishonest majority setting. Func-
tions involving only linear operations like addition will not pose a problem since they in-
volve only local computation. However, all functions cannot be evaluated information-
theoretically in dishonest majority setting. Let us look at a formal proof of this claim.

Claim 2 Information-theoretic MPC protocols do not exist for all functions if n ≤ 2t.

Proof We adopt the following approach to prove the above claim - We show that there
cannot exist an MPC protocol which can provide information-theoretic security for the
scenario in which (n = 2) and (t = 1), (thereby satisfying n ≤ 2t) and the function of
multiplication of bits. This will suffice to make the claim that there exist functions which
cannot be computed with information-xtheoretic security in case of dishonest majority.

Towards a contradiction, suppose that there exists an information-theoretic perfectly
secure protocol π which enables two parties to evaluate the logical AND of their respective
input bits. Suppose the protocol runs as follows -

• At the start of the protocol, each of the two parties Pi have a private input bit bi and
some private randomness ri.

[Lecture 7-8] -10

• The exchange of messages between the two parties start according to the protocol.
Without loss of generality, say P0 sends the first message m0 followed by P ′1s message
m2 and so on till there is sufficient information for both parties to compute the output.
Let T (b0, b1) denote the transcript of the protocol run with the input of P0 as b0 and
P1 as b1. This is a random variable over the random choice of the parties.

• Both the parties output the logical AND of their respective input bits i.e (b0.b1).

Given a transcript T (b0, b1) we say that it is consistent with input b1 = 1 if there exists
r1 such that running P1 with input b1 = 1 and randomness r1 might result in T being
generated. Now we can make the following inferences -

1. Since the protocol is correct by our assumption, this means that the protocol always
leads to the correct output, i.e the logical AND of the respective input bits of the
parties.

2. Since the protocol is perfectly secure according to our assumption, this means that if
the input bit of a party is 0, he should have no information at all about the other
party’s input bit. This is due to the property of the function of logical AND. Even
in the ideal world, if a party’s input is 1, he can infer the other party’s input based
on the output. But if the party’s input is 0, then the other party’s input bit should
ideally remain private. In other words, if b0 = 0, then T (b0, b1) should leak nothing
about b1.

Consider the following argument - Say a transcript T ′ is generated when the protocol is
run with (b0 = 0, r0).

• By inference 2, if b1 = 0 considering the privacy of P0, we can conclude this transcript
T ′ should be consistent with b0 = 1 as well. This means that there should exist some
randomness r′0 such that the transcript T ′ is consistent with (b0 = 1, r′0).

• If b1 = 1, there cannot exist any randomness r′0, so that T ′ is consistent with (b0 =
1, r′0). Since T ′ had been generated when the protocol was run with b0 = 0, due to the
correctness of the protocol, this transcript should result in output 0. Therefore if the
transcript T ′ is consistent with (b0 = 1, r′0), it would lead to the output 0. However,
this would violate inference 1 i.e the correctness since the correct output in this case
when b0 = 1 and b1 = 1 is 1, not 0.

Using this idea we can design the following algorithm for the adversary to breach the security
of protocol π. We consider that P0 is corrupted, has input b0 = 0 and tries to break the
privacy of input bit of P1 by this approach -

1. The adversary tries all possible randomness7 to find r′0 so that T (b0, b1) is consistent
with (b0 = 1, r′0)

2. If found, output b1 = 0 else output b1 = 1.

7We consider an adversary with unbounded computing power here, so this is possible

[Lecture 7-8] -11

Thus, we have shown a way for the adversary with b0 = 0 to be able to infer the other party’s
input b1. This breaches the security of the protocol and we can therefore conclude that there
does not exist a information-theoretic secure protocol for the function of multiplication of
bits with dishonest majority (n = 2, t = 1;n ≤ 2t). We can infer from this result that
information-theoretic MPC protocols do not exist for all functions if n ≤ 2t.

5 Conclusion

In this lecture we have seen how the offline-online approach of secure evaluation of arithmetic
circuits achieves the following complexity in semi-honest and information-theoretic setting.

Offline Complexity O(ncM + ncI)|Fp|
Online complexity O(cIn+ cMn+ cOn)|Fp|
Total complexity O(cIn+ cMn+ cOn)|Fp|

[Lecture 7-8] -12

We then proved the impossibility of an information-theoretic MPC protocol in dishonest
majority. Recall that we have seen in one of the previous lectures how one instance of OT
can be used for secure multiplication of input bits of two parties (refer figure 4). Since
we know that multiplication of two bits is not possible infomation-theoretically, we can
conclude that OT is impossible to achieve information theoretically. This emphazises the
need to develop computationally secure MPC protocols as they can achieve some additional
properties like constant round complexity, dishonest majority etc which is not possible in
information-theoretic MPC protocols. We will explore this in the upcoming lectures.

Figure 4: Multiplication of two input bits using an instance of OT

References

[1] Arpita Patra. http://drona.csa.iisc.ernet.in/ arpita/SecureComputation15.html .
E0 312 - Secure Computation Course Lecture Slides

[2] Ronald Cramer, Ivan Bjerre Damg̊ard, and Jesper Buus Nielsen.
Secure Multiparty Computation and Secret Sharing - An Information Theoretic Ap-
proach. Cambridge University Press, 2015.

[3] Claudio Orlandi. Is Multiparty Computation Any Good In Practice? ICASSP 2011.

[Lecture 7-8] -13

