
CSA E0 312: Secure Computation September 09, 2015

[Lecture 9-10]

Instructor: Arpita Patra Submitted by: Pratik Sarkar

1 Summary

In this lecture we will introduce the concept of Public Key Samplability and use it alongwith
CPA security to build the Oblivious Transfer protocol. Then we prove the receiver end and
sender end security using key samplability and CPA security by applying them to hybrid
models. At the end of the lecture we discuss about the GMW protocol and give its security
proof.

2 Oblivious Transfer Protocol

We can visualise the OT as a blackbox with two parties, sender S and receiver R. S gives the
inputs m0 and m1. R gives a input bit b and receives the message mb. The OT functions in
such a way that S doesn’t know anything about b and mb whereas R doesn’t know anything
about m1−b. The diagram for a OT is in Fig 1.

In this section we define the concepts of CPA-secure public key encryption scheme and
key samplability and use them to develop a 1-out-of-2 OT protocol by Even-Goldreich-
Lempel [EGL85] scheme.

2.1 Public Key Encryption

A public key encryption scheme π consists of three probabilistic polynomial time (PPT)
algorithms (Gen, Enc, Dec) where

1. Gen(1n) is the key generation algorithm that takes in input 1n (where n is the security
parameter) and outputs the public key pk and the secret key sk. (pk, sk)← Gen(1n)

2. Enc(m, pk) is the encryption algorithm that takes in input a message m and the
public key pk and outputs the ciphertext c← Encpk(m)

3. Dec(c, sk) is the decryption algorithm that on input a ciphertext c and secret key sk
outputs the message m = Decsk(c).

It is necessary that for every n and every pair of (pk, sk)← Gen(1n) and every message m
from the message space, it holds that Decsk(Encpk(m)) = m.

2.2 CPA security

Let π be a public key encryption scheme (Gen(1n), Enc(m, pk), Dec(c, sk)) and A be the
adversary turing machine claiming to distinguish between the encryption of two messages

[Lecture 9-10] -1

Figure 1: 1-out-of-2 OT

m0 and m1 sampled from {0, 1}n. π is said to be CPA secure if,
|Pr[A(Encpk(m0))]− Pr[A(Encpk(m1))]| ≤ negli(n),
where negli(n) is a negligible function.

π is CPA-secure if for every PPT attacker A taking part in the above experiment, the
probability that A wins the experiment is at most negligibly better than 1

2 .

2.3 Public Key Samplability

Next we introduce the concept of public key samplability in a public key encryption scheme.
It contains 5 PPT algorithms:

1. Gen(1n) is the key generation algorithm that takes in input 1n (where n is the security
parameter) and outputs the public key pk and the secret key sk. (pk, sk)← Gen(1n)

2. Enc(m, pk) is the encryption algorithm that takes in input a message m and the
public key pk and outputs the ciphertext c← Encpk(m)

3. Dec(c, sk) is the decryption algorithm that on input a ciphertext c and secret key sk
outputs the message m = Decsk(c).

[Lecture 9-10] -2

4. oGen(1n) generates a public key (pk) and the corresponding randomness (r) given the
security parameter (n) as input. It doesnt return the secret key corresponding to the
secret key. (pk, r)← oGen(1n)

5. fGen(1n) is the randomness (r′) generator corresponding to the public key pk as
input. r′ ← oGen(pk)

The (pk, r) from oGen() and (pk, r′) from fGen() looks indistinguishable to an ad-
versary. This can be shown using the key samplability experiment described below.

2.3.1 Key Samplability Experiment

There is a π(Gen,Enc,Dec, oGen, fGen) public key encryption scheme satisfying the

public key samplability property PubKksamp
A,π (n) for adversary A. There is an Adver-

sary A who claims to the challenger C that he can break the scheme and distinguish
between two public keys generated from oGen() and fGen(). The experiment pro-
ceeds as follows:

(a) The Challenger C randomly chooses a bit b and based on that he runs either the
(Gen, fGen) algorithm or the oGen algorithm.
Suppose for example,
for b=0, (pk, sk)← Gen(1n), r ← fGen(pk), and returns (pk, r)
for b=1, (pk, r)← oGen(1n)
He then sends (pk, r) to the adversary A.

(b) Now the adversary knows that the challenger will always run the (Gen, fGen)
for b = 0 and oGen for b = 1. So seeing (pk, r) he will guess the value of b as b′,
inorder to distinguish whether the (pk, r) pair came from (Gen, fGen) or oGen.
He sends the value of b′ to the challenger.

(c) If(b == b′) then the adversary wins else he loses. The adversary wins only when
he can correctly distinguish between the public keys and randomness of the two
algorithms.

π is key-samplable if for every PPT attacker A taking part in the above experi-
ment, the probability that A wins the experiment is at most negligibly better than 1

2 .

Pr[PubKksamp
A,π (n) = 1] ≤ 1

2 + negli(n).

The Elgamal PKE satisfies a trivial sampleable public keys, where the randomness is
the bit representation of the public keys.

2.4 Construction of 1-out-of-2 Oblivious Transfer

The construction of an OT (shown in Fig.2) using a CPA secure and key sampleable
π encryption scheme is as follows:

(a) The receiver R generates a random bit b and generates a (pkb, skb) pair from
Gen algorithm and a (pk1−b, r1−b) from oGen algorithm. He sends (pk0, pk1) to
sender S who has two messages m0,m1.

[Lecture 9-10] -3

(b) The sender encrypts mb′ into cb′ , for b′ = 0 and 1 using the public keys pkb′ and
sends the cipher texts to R.

(c) R decrypts mb using sb and gets the required message.

Figure 2: Construction of OT

By using this construction, the receiver securely receives the message mb without
revealing his b choice to the sender. Also the sender’s m1−b input was hidden from
the receiver. Thus an OT is successfully implemented using the properties of key
samplability and CPA security. Now we show the security at both the sender and
receiver ends for semi-honest adversaries.

2.4.1 Security for the Receiver

We prove the security of this scheme using the real world and ideal world indistin-
guishability. Let us first prove it for against a corrupted sender. The protocol has
been shown in Fig. 3. In the real world, the receiver follows the normal protocol
and the adversary A at S tries to know the value of b chosen by R so that he can
know which message R has chosen. A receives pk0, pk1 and finds randomness rS0 , r

S
1

for the two encryptions and sends the ciphertexts c0, c1 to R. In ideal world A has
the following view:
V iewRealS (m0,m1, b, k) = {m0,m1, pk0, pk1, r

S
0 , r

S
1 }

In the ideal world, there is a simulator SIMs which has the input and output of the
corrupted sender A and it tries to simulate the view of the honest receiver to A. We
run the SIMs and the sender S turing machines to find the ideal world view.

SIMs(1
n,m0,m1):

(a) Run (pk0, sk0)← Gen(1n) and (pk1, sk1)← Gen(1n)

(b) Output (pk0, pk1).

A performs the same protocols in the ideal world as in the real world. In the ideal
world A has the following view: V iewIdealS (m0,m1, b, k) = {m0,m1, pk0, pk1, r

S
0 , r

S
1 }

[Lecture 9-10] -4

Figure 3: Security for Receiver

The public and the secret key pair (pkb, skb) corresponding to the choice bit b is
identically distributed in both cases above as they are both generated by running
the key generation algorithm of the public key encryption scheme. The public keys
pk1−b are also indistinguishable in both ideal world and real world since the OT
has been constructed using π, which is a public key ecryption scheme satisfying key
samplability property. And so public keys generated from (Gen, fGen) and oGen are
indistinguishable. So the p1−b in the real world (generated by oGen) and p1−b in the
ideal world (generated by Gen) are indistinguishable. And hence both the real and
ideal world views are same. Thus it is secure against corrupt sender.

2.4.2 Security for the Sender

The receiver is corrupted by adversary A and the sender is the honest party. We show
the protocol in Fig4. The view of the adversary in the real world is:
V iewRealR (m0,m1, b, k) = {b,mb, pkb, rb, pk1−b, r1−b, c0, c1}
In the ideal world we consider a simulator SIMR who simulates the view of the sender
against the receiver adversary. The adversary follows the normal receiver end protocol.
The simulator has the inputs (b,mb) and it does the following:
SIMR(k,mb, b):

(a) cb ← Encpkb(mb)

[Lecture 9-10] -5

(b) c1−b ← Encpk1−b
(0n)

(c) Send cb, c1−b to receiver

The view of the receiver in the ideal world is:
V iewIdealR (m0,m1, b, k) = {b,mb, pkb, rb, pk1−b, r1−b, cb, c1−b} Only the c1−b is different
for the receiver of the ideal and the real world. We cannot apply CPA security here
directly, because c1−b is encrypted using the public key generated by oGen algorithm
and not a Gen algorithm.

Figure 4: Security for Sender

So we need 2 hybrid views to prove the security of this scheme. We show the hybrid
models in the Fig5 The first hybrid model does the follwoing:
V iewHY BRID1

R (k,m0,m1, b):

(a) (pkb, skb)← Gen(1n)

(b) (pk1−b, sk1−b)← Gen(1n)

(c) r1−b ← fGen(pk1−b)

(d) cb ← Encpkb(mb)

(e) c1−b ← Encpk1−b
(m1−b)

V iewHybrid1R (m0,m1, b, k) = {b,mb, pkb, rb, pk1−b, r1−b, cb, c1−b}

[Lecture 9-10] -6

The V iewHY BRID1
R and V iewRealR are identical as the only difference is the (pk1−b, r1−b)

but they are indistinguishable in both the cases due to key samplability. Now we con-
sider the second hybrid model from the first.

V iewHY BRID2
R (k,m0,m1, b):

(a) (pkb, skb)← Gen(1n)

(b) (pk1−b, sk1−b)← Gen(1n)

(c) r1−b ← fGen(pk1−b)

(d) cb ← Encpkb(mb)

(e) c1−b ← Encpk1−b
(0k)

V iewHybrid2R (m0,m1, b, k) = {b,mb, pkb, rb, pk1−b, r1−b, cb, c1−b} The V iewHY BRID1
R and

V iewHY BRID2
R are same because they differ only in c1−b, but they are indistinguishable

due to CPA security. Now we show the ideal world view:

V iewIdealR (k,m0,m1, b):

(a) (pkb, skb)← Gen(1n)

(b) (pk1−b, sk1−b)← oGen(1n)

(c) cb ← Encpkb(mb)

(d) c1−b ← Encpk1−b
(0k)

V iewIdealR (m0,m1, b, k) = {b,mb, pkb, rb, pk1−b, r1−b, cb, c1−b}Again both the V iewHY BRID2
R

and V iewIdealR are same as they differ in only (pk1−b, r1−b), which cannot be distin-
guished due to key samplability property. Thus the V iewRealR and V iewIdealR are
indistinguishable.

3 GMW(Goldreich-Micali,Wigderson) protocol: Approach
to semi-honest two party computation

The GMW protocol is used by n parties to securely compute a function provided there
is an honest majority. For n parties we require a (n,n) - secret sharing for semi-honest
adversaries. The adversaries cannot leak anything if there are less than n shares available
to them.

In this lecture we consider a 2-out-of-2 secret sharing scheme for 2 parties. This protocol
is applied for boolean circuits and the interactive computations are done using OTs. Each
party holds a secret share. Each ith party holds shares (xi, yi). There are 3 types of
operations which are done in the boolean computations- XOR, NOT and AND. We show
that the parties can locally compute the shares for XOR and NOT operations but not for
AND:

1. XOR : No communications are required for an XOR gate - each party can construct
the shares of the output using their existing shares of the inputs.
Suppose the parties need to compute z = x⊕ y then each party can locally compute
zi = xi ⊕ yi.

[Lecture 9-10] -7

Figure 5: Security proof via Hybrid Arguments

2. NOT : Each party can flip the bit of the share, whose secret value needs to be flipped.
Suppose the parties need to find z = x′ (where x′ is the complement of x) then each
party can locally compute zi = x′i.

3. AND: For AND gate computation interaction is required between the parties via 2
1-out-of-2 OTs.
Suppose the parties need to compute z = x.y = (x0 + x1).(y0 + y1) = (x0.y0 + x0.y1 +
y0.x1 + x1.y1).
x0.y0 and x1.y1 can be computed locally by the 1st and 2nd party respectively without
any interaction. x0.y1 and y0.x1 has to be computed via OTs.
The AND computation has been shown in the Fig 6. For the first OT, P0 is at the
sender end and P1 is at the receiver end.

(a) P1 gives y1 as input to the OT from the receiver end

(b) P0 selects a random value r0

(c) P0 gives r0 and r0⊕x0 as input to the OT from the sender end such that P1 will
receive r0 for bit choice 0 and r0 ⊕ x0 for bit choice 1

(d) P1 receives r0 ⊕ x0.y1 as output

Now P0 is at the receiver end and P1 at the sender end and they do the following:

(a) P0 gives y0 as input to the OT from the receiver end

[Lecture 9-10] -8

(b) P1 selects a random value r1

(c) P1 gives r1 and r1⊕x1 as input to the OT from the sender end such that P0 will
receive r1 for bit choice 0 and r1 ⊕ x1 for bit choice 1

(d) P0 receives r1 ⊕ x1.y0 as output

P0 has (x0.y0 ⊕ r0 ⊕ (r1 ⊕ y0.x1)) and P2 has ((r0 ⊕ x0.y1)⊕ r1 ⊕ x1.y1). They share
these values among themselves and sum them up to obtain x.y.
x0.y0 ⊕ r0 ⊕ (r1 ⊕ y0.x1)⊕ (r0 ⊕ x0.y1)⊕ r1 ⊕ x1.y1) = x.y = z

This scheme can be extended to multiparty where each secret must be (n, n) Shamir
secret shared. The AND gate computations has to be done for each pair of parties
using 2 OTs. We will see the n party scenario in the next lecture.

Figure 6: GMW protocol - AND Gate Evaluations

3.1 Security Proof of 2 party computations

The GMW protocol involves interaction between the parties only in case of AND gate
evaluation. The other two gates can be computed locally. In the security proof we
will consider the case where P1 is the adversary A on the receiver side for the 1st OT
in the AND gate evaluation only. It is same for P0 too. The 2 OTs in 1 AND gate
evaluation are similar so we consider only 1 for security analysis.
During the AND gate evaluation, the real world view of P1 in the first OT (as seen
in Fig 6) is: V iewReal1 = (r0 ⊕ x0y1, x1, y1, r1, x.y)

In the ideal world we have two simulators - the OT simulator (SIMo) and the simulator
(SIMh) which simulates the view of P0. The scenario is depicted in the Fig 7 The
interactions between A and SIMh happen through the SIMo as they are using the

[Lecture 9-10] -9

OT for interaction. SIMh has the inputs and outputs of A. A sends y1 as his choice
bit to SIMo. The SIMo receives it and forwards it to the SIMh. The SIMh already
knows the choice bit of A and the output he should get from the OT. So he provides
two inputs my1 and m1−y1 such that:
my1 = r0 ⊕ x0y1 and m1−y1 = r′, where r′ is some random number. A receives
r0 ⊕ x0y1 as my1 from the SIMo. Now at the end of the two OTs, SIMh can just
share a number r′′ with A. r′′ is defined such that when A XORs it with its inputs
then he receives the correct output.
r′′ = (r0 ⊕ x0y1)⊕ r1 ⊕ x1y1
V iewIdeal1 = (r0 ⊕ x0y1, x1, y1, r1, x.y)
In real world A cannot know the values of shares of P0 from the x.y only. So A cannot
distinguish between the ideal and real world. This happens only if the OT is secure.
If the OT is insecure then A will know m1−y1 (from the OT interactions) and from
there he can distinguish between the two worlds, as he can compute the shares of the
honest parties and reconstruct the actual values of x and y. Thus in the presence of
a secure OT, the GMW protocol is secure.

Figure 7: GMW protocol - AND Gate Evaluations

[Lecture 9-10] -10

References

[1] Jonathan Katz https://www.cs.umd.edu/ jkatz/gradcrypto2/f13/lecture3.pdf Lecture
notes.

[2] Arpita Patra http://drona.csa.iisc.ernet.in/ arpita/SecureComputation15.html Lecture
notes.

[3] Oded Goldreich, Silvio Micali, Avi Wigderson, How to Play any Mental Game or A
Completeness Theorem for Protocols with Honest Majority. STOC 1987: 218-229

[Lecture 9-10] -11

	title
	Oblivious Transfer Protocol
	Public Key Encryption
	CPA security
	Public Key Samplability
	Key Samplability Experiment

	Construction of 1-out-of-2 Oblivious Transfer
	Security for the Receiver
	Security for the Sender

	GMW(Goldreich-Micali,Wigderson) protocol: Approach to semi-honest two party computation
	Security Proof of 2 party computations

