Introduction to Secure Computation

Ronald Cramer

Dept. of Comp. Sc., ETH Zurich.

E-mail: cramer@inf.ethz.ch
URL: http://www.inf.ethz.ch/personal/cramer

Abstract. The objective of this paper' is to give an elementary in-
troduction to fundamental concepts, techniques and results of Secure
Computation.

Topics covered include classical results for general secure computation
by Yao, Goldreich & Micali & Wigderson, Kilian, Ben-Or & Goldwasser
& Wigderson, and Chaum & Crépeau & Damgaard.

We also introduce such concepts as oblivious transfer, security against
malicious attacks and verifiable secret sharing, and for some of these
important primitives we discuss realization.

This paper is organized as follows.

Part I deals with oblivious transfer and secure (general) two-party com-
putation.

Part II discusses secure general multi-party computation and verifiable
secret sharing.

Part IIT addresses information theoretic security and presents detailed
but elementary explanations of some recent results in Verifiable Secret
Sharing and Multi-Party Computation.

The importance of theory and general techniques often lies in the fact
that the true nature of security is uncovered and that this henceforth en-
ables to explore what is “possible at all”. This then motivates the search
for concrete and often specialized realizations that are more efficient.
Nevertheless, many principles developed as part of the general theory
are fundamental to the design of practical solutions as well.

! This paper is based on a lecture given by the author at the 1998 Aarhus Summer-
school in Cryptography and Data Security. It first appeared in [28]. The current
paper is a revision (January 2000): changes throughout Part III to enhance clarity
and to correct errors, Appendix A has been added, and some additional references
are given.

Table of Contents

I Secure Two-Party Computation
1 Oblivious Transfer and Match-Making oot 3
1.1 Historical Notest e e 4
2 Variations and Other Applications of OT 4
2.1 OT of Strings oo vt 4
2.2 Oblivious Common String Verification 5
2.3 A Reductiono e 6
3 Constructions of OT-Protocols......... i .. 8
3.1 Necessity of Assumptions......... ..ot iinnnnen .. 8
3.2 Rabin-OT ... e 9
3.3 OTbased on RSA e 11
4 General Secure Two-Party Computation 12
4.1 Addition-Gatesottt e 13
4.2 Negation-Gates i i 13
4.3 Multiplication-Gatest e 13
4.4 Complexity of the Protocol 14
4.5 Security DISCUSSION ... vvitin it e e 15
B Example . ..o e 15
6 Dealing with Malicious Attacks o i i, 16
6.1 Notion of Security of Basic OT i iin... 17
6.2 A General Solution in the Cryptographic Scenario 17
7 A Generic Solution ... i i e 20
7.1 Commitment based on OT i, 21
7.2 Committed Oblivious Transfer (COT) 21
8 Other Work o e 21
II General Secure Multi-Party Computation
9 Introduction. e e 25
10 Secret Sharing with Semi-Honest Participants 25
10.1 Lagrange Interpolationo, 25
10.2 Shamir’s Scheme i e 26
11 Verifiable Secret Sharingo i i 27
11.1 Definition of Malicious Adversaryo cviinon.. 28
11.2 Definition of VS . .. 28
11.3 VSS Schemie . ..o e 28
11.4 Other Work . ..o e e e 30
12 GMW: Achieving Robustness....... i, 30
13 Other Work . ..ot e e e 31

III Information Theoretic Security

14 Introductiont e 35
14.1 Model o e 35
14.2 Results of CCD and BGW i 36
14.3 Remark on Broadcasto i 36
14.4 Outline of this Part i 36

15 Semi-Honest Caseovuiit i i e e e 36
15.1 Computing on Shared Secrets oo i, 36
15.2 Protocol for Semi-Honest Participants......................... 38
15.3 Optimality of the Bound o oLt 39

16 Verifiable Secret Sharing o i 39
16.1 Linear Algebraic View on Shamir’s Secret Sharing 39
16.2 Towards VSS ..o e e e 42
16.3 Pairwise Checking Protocol and VSS........ oot 43

17 General Protocol Secure against Malicious Attacks 45
17.1 Homomorphic Distributed Commitments 45
17.2 Maintaining the Invariant o i i, 46
17.3 Linear Secret Sharing Schemeso i it 46
17.4 The Commitment Multiplication Protocol 49
17.5 EXEensionsttt et ettt 51

18 Other Work . ..o e e e 52

19 Acknowledgements ... 53

20 Appendix A: MSP’s with Multiplication 57

Part 1

Secure Two-Party
Computation

1 Oblivious Transfer and Match-Making

Suppose there are two politicians who want to find out whether they both agree
on a certain matter. For instance, they may be discussing a controversial law that
has been proposed. Clearly, they could decide just to announce to each other
their opinion, and both of them could determine whether there is agreement.
But this has a drawback that careful politicians may wish to avoid. If only one
of them supports that controversial law, he may lose face.

In other words, what they need is a method allowing two players to figure
out if they both agree but in such a way that if they don’t, then any player that
has rejected the matter has no clue about the other player’s opinion. Moreover,
they may want to be able to carry out the method over a distance.

Technically, we can model the situation as follows. There are two players, A
and B, and each of them has a secret bit. Say that A4 has the bit @ and B has
the bit b.

They want to compute a - b (which corresponds to the logical AND of @ and
b, and hence it is 1 if and only if @ = b = 1) so that

— Correctness: none of the players is led to accept a false result.

— Fairness: each learns the result a - b.

— Privacy: each learns nothing more than what is implied by the result and
the own input.

Indeed, if A for example holds @ = 0, then a - b = 0, regardless of the value
of b. Therefore, B’s choice b remains unknown to A in this case.

We construct a solution to this “Match-Making” problem based on an impor-
tant primitive Oblivious Transfer (OT) (more precisely: “chosen one-out-of-two
oblivious transfer”). An OT is a protocol between two players, a sender S and
a receiver R, that achieves the following. S has two secret input bits, bg and by,
and R has a secret selection bit s. At the end of the protocol, which may consist
of a number of exchanges of information between S and R, R obtains the bit b,
but without having obtained any information about the other bit by_; (sender
security). On the other hand, S does not get any information about the selection
bit s (receiver security).

We use OT(bg, b1,5) = by to denote the output of an OT protocol as a
function of the inputs. Tt is useful to observe that b; is actually equal to (1 @
$)bo@® sby, where the operations are the usual multiplication and addition of bits.

Sender Receiver
In: bo, by € {0,1} In: s € {0,1}

S—R: OT(bo, bl, 8)

Out: b,

Although at this point it is not clear whether OT-protocols exist and if so,
how to construct them, we can already solve the Match-Making problem by
assuming an OT-protocol!

This is how. If A and B now execute the OT-protocol with A acting as the
sender and B as the receiver, using bp = 0 and b; = a, and s = b as their
respective inputs, we see that B gets the value ab as output. In other words,
OT(0,a,b) = (b® 1)0 ® ba = ab. Finally, B simply reveals ab to A, so that both
learn the result. And indeed, if ¥ = 0, then ab = 0 no matter what a is and player
B learns nothing more about a by the properties of OT. If @ = 0, then from the
fact that the OT-protocol doesn’t leak information about b and the fact that in
this case B returns 0 to A in the final step no matter what b is, A doesn’t learn
nothing more about b as a result of the complete protocol.

Note that with respect to correctness and fairness, we have to assume that B
indeed sends the correct value ab to A. Furthermore, we must assume here that
both players take their actual choices as input to the protocol. But in any case,
we can say that the protocol is secure for both parties if they are semi-honest.
This means that both follow the rules of the game, but may try to learn as much
as possible about the other player’s input. We must also assume that no crash-
failures occur, i.e. both players remain operational throughout the protocol and
don’t fail.

1.1 Historical Notes

Oblivious Transfer was originally introduced by M. O. Rabin [76], in a slightly
different way. Namely, in his definition, the sender has just one bit b, and at the
end of the protocol the receiver gets the bit b with probability 1/2. Otherwise
the receiver gets “?”, and doesn’t receive the bit. The sender cannot tell what
happened.

Even, Goldreich and Lempel [43] later defined OT as we use it here, except
that they require the selection bit to be random. Tt turned out that Wiesner [80]
had earlier devised a similar definition in unpublished work.

The definition used here has appeared in many works on OT.

Soon after the invention of OT by Rabin, M. Blum [16] has conceived coin-
flipping over the phone and certified electronic email as applications of OT.

2 Variations and Other Applications of OT

The Match-Making protocol is in fact just a toy example. Oblivious Transfer is
an important primitive with many powerful applications, as we shall see.

2.1 OT of Strings

Suppose that instead of bits by and by, the sender in OT has two strings zq, 21 €
{0,1}". Can we perform an OT where the sender receives the string zq if his
selection bit s is 0 and the string z1 otherwise? Note that “bitwise” OT of the n

pairs of bits zi, % of z¢ and =z, is clearly not an option, since a cheater can for
instance learn bits of both strings, which contradicts the requirements of string
OT (whose definition is the obvious extension of the definition of OT of bits).

A general approach to this problem of oblivious transfer of strings is due to
Brassard, Crépeau and Santha and appears in [17]. They define zig-zag functions.
Consider a function A : {0,1}" — {0,1}", and for an arbitrary subset J of
{1,...,m} and arbitrary y € {0,1}™, let ys denote y = (y1,...,Ym) restricted
to the |J| bits y; with 7 € J.

A function h is a zig-zag if for any I C {1,...,m}, there isa J € {I,I¢} such
that for any « € {0,1}" and for a uniformly random chosen h-pre-image y of z,
ys gives no information about h(y) = =.

In other words, for any fixed subset of the m bits of y, it holds that either
this subset of the bits or the remaining bits give no information about hA(y) = z,
and which of the two cases actually hold, does not depend on x or y.

Given such a function h, this is how one can perform chosen one-out-of-two
oblivious transfer of n-bit strings z¢ and x,. First the sender selects random yq
and y; such that h(yo) = zo and h(y1) = x1. Say that the receiver wishes to get
the string x,. Then they execute for i = 1...n the protocol OT(ys, yi,s). As a
result, the receiver gets all bits of y,, applies h to it and gets ;. Clearly, the
sender has no information about s.

Let’s see why it is true that at least one of the strings zg, 1 remains as
unknown to the receiver as before the protocol. It is clear, by inspection of the
protocol and the properties of OT, that even if the receiver deviates from the
steps above there is some I C {1,...,m} such that he receives at best yo ; and
y1,1e- Let J, with J =T or J = I, be as in the definition of a zig-zag function.
Then the receiver obtains at best yo s and y; jo and he has no information
about h(yo) = zo, or obtains yo - and yq,7 and he has no information about
h(y1) = =1, since J only depends on h and T.

Constructions of zig-zag functions can be based on linear codes. It is easy to
see that it is sufficient to construct a binary matrix with n rows such that for
any subset I of the columns it holds that I or I° has maximal rank n. Finding
preimages can be done efficiently using basic linear algebra. Here is a small
example with n = 2 and m = 3: the first column has entries 1 and 0, the second
1 and 1, and the third 0 and 1. Examples for larger values of n can be found for
instance using recursion in combination with Vandermonde matrices, working
over extension fields [17].

2.2 Oblivious Common String Verification

We describe a nice application of oblivious string transfer due to Fagin, Naor
and Winkler [44]. There are two players A and B, and each of them holds some
secret n-bit string. Their goal is to obliviously verify whether those strings are
equal: as a result both of them should learn whether the strings are equal, but
nothing more than that. Obviously, a secure protocol for this task can be used
as a means of identification in a number of scenarios.

This is how the FNW protocol works. A has # = (21,...,2,) € {0,1}" and
B has y = (y1,..-,4n) € {0,1}" as private input. For ¢ = 1...n, A selects
random k-bit strings 7; 0 and r; 1, and B selects random k-bit strings s; 0 and
5i,1. The parameter k is a security parameter. In the following, if v and v are
n-bit strings, then u 4+ v denotes the n-bit string whose i-th bit is equal to the
sum (modulo 2) of the i-th bit of v and the #-th bit of v, i=1...n.

Consider the bit strings o = Y iz, 8= D Piys, & = D 7ig, and § =
Y siy. If 2 = y, then clearly o + o’ = 3+ 3. Otherwise, these values are
different with probability 1/2* (so in order for the error to be small, & must be
large).

Note that A and B can obtain the strings «, resp. 8 by one-out-of-two string
OT. The values o’ and 3’ can be computed by A, and B respectively from their
own random choices and their input strings. This is the complete protocol.

A B
In: z € {0,1}" In: y € {0,1}"
Fori=1...n, Fori=1...n,

75,0, 7i,1 € {0, 1}* : random. 5,0, 8i,1 € {0, 1}* : random.

A—B:Fori=1...n,0T(r50,7i1, %)

B— A:Fori=1...n,0T(s;0,si1,2)

a = Z?:l OT(Si707ii717 xl) 6 = Z?ﬁl OT(ri,Oa Ti,1, yz)
o = Zizl Tz, B = Zi:l Si,y;
a+ao
—_
B+
%
Out: a+a' =3+ Out:atao =344

Note that if one of the parties is honest, and the other party has some y; that
differs from z;, then the latter receives a completely random string in the final
exchange. There exists a variety of other solutions to this particular problem.
See [40] for a more efficient solution based on OT. Both [44] and [40] additionally
survey completely different approaches not based on OT.

2.3 A Reduction
Crépeau [36] has shown that the OT as defined by Rabin (Rabin-OT, see Sec-

tion 1.1) and chosen one-out-of-two OT are the same in the sense that one can
be simulated from the other in a blackbox fashion, vice versa.

Given chosen one-out-of-two OT as a subroutine, Rabin-OT can be simulated
as follows. The sender in Rabin-OT has a bit b to be obliviously transferred. First,

the sender selects bits bg and by at random such that bg@®b; = b, and the receiver
selects a random selection bit s. After they have executed OT(bo,b1,s), the
sender selects a random bit ¢ and sends (¢, ;) to the receiver. With probability
1/2, t is different from s and hence the receiver obtains both bits by and by and
computes b = by @ by. Also with probability 1/2, the receiver gets the bit he
already had, leaving him in the dark about the other bit by the properties of
chosen one-out-of-two OT and hence about b. The sender doesn’t know what
happened, since he doesn’t learn s.

The interesting case is to simulate chosen one-out-of-two OT from Rabin-OT.
So let the sender have input bits by and by, and let the receiver have a selection
bit s. Furthermore, Rabin-OT is at their disposal as a subroutine.

The sender chooses k random bits d1,...,d;, where k is asecurity parameter.
This value should be chosen large enough so that some error probability (to
become clear later on) is small enough to be acceptable.

Next, using Rabin-OT, the sender transmits these bits one by one to the
receiver, who is expected to receive roughly half of them. It is important to note
that with probability 1 — 1/2%, at least one of the bits is not received, and with
the same probability some bit is received.

Let T C {1,...,k} denote the collection of j such that §; has been received.
Likewise, I° refers to the bits that have not arrived. Having selection bit s, the
receiver writes Iy = I and I;_; = I°, and sends the ordered pair (Io, I1) to the
sender. The sender now knows that the receiver obtained the bits corresponding
to Iy or Iy, but both events are equally likely from his point of view by the
properties of Rabin-OT. Next, the sender adds all bits §;,7 € Iy to by and the
bits d;,7 € Iy to by, and sends the resulting two bits to the receiver. Since the
latter knows all bits §;,7 € I,, he can recover the bit b, as required. It’s clear
that the sender has no clue about s.

Finally, consider a cheating receiver, who might define the sets Iy, I differ-
ently, and perhaps learn more. However, if Iy and Iy cover the full set {1,...,k},
then with probability 1 — 1/2* at least one of the sets, say Iy, contains an index
referring to a bit not received, which is hence completely unknown. In this case,
the receiver doesn’t learn bg.

Sender Receiver

In: bo, by € {0,1} In: s € {0,1}
d1y...,0k € {0,1} : random

S — R:Rabin-OT(dy), ..., Rabin-OT(dy)

received: d;,j € 1

set I, =1,
Li_,=1°
107[1
%
LUl ={1,...,k}
z0 = (Dier, i) ® bo
21 = (Dier,6i) ® by
204 21
-
Out:

bs = (Bier.0:;) ® 25

3 Constructions of OT-Protocols

For OT protocols to exist, we must make assumptions about the world in which
the players operate, for instance related to the communication channel connect-
ing the players, or their computational abilities.

However, besides its elegance and usefulness in protocol design, it is interest-
ing to note that OT can be implemented under a wide variety of different such
assumptions.

Among these, the difficulty of factoring large random composite integers,
the Diffie-Hellman problem (related to the difficulty of computing discrete log-
arithms), and abstract, general assumptions such as the existence of trapdoor
one-way permutations (which can be implemented under the RSA assumption)
[69]. But physical assumptions suffice as well, such as the OT based on noisy
communication channels of Crépeau and Kilian [39].

3.1 Necessity of Assumptions

Why doesn’t OT exist unconditionally? Indeed suppose that a protocol for OT
exists, making no assumptions on the computational abilities of the players, the
communication channel or whatever.

Then there are programs used by sender and receiver to compute the ex-
changed messages, that given random strings and the input bits would operate
deterministically. Moreover, we may assume that the players communicate over

a perfect channel, and that the players have infinite computing power. Say that
the protocol achieves perfect correctness and always halts.

This leads to a contradiction as shown by the following (informal) argument,
even if we assume that the players are semi-honest.

Given OT, there exists a protocol with similar characteristics for two play-
ers A and B to obliviously evaluate the AND of their input bits a and b (see
Section 1). We show that such a protocol does not exist.

Let 7 denote the sequence of messages exchanged in a completed execution
of the protocol (T is called transcript). Write x4 € {0,1}* and g € {0,1}* for
the respective random strings used by 4 and B in the computation.

Say that @ = 0. We argue that a semi-honest A having ¢ = 0 as input
can always figure out the value of B’s input b, thus contradicting the security
conditions.

If b = 0, then there exists a random string «/, € {0,1}* such that 7 is
consistent with A having input @ = 1 instead of ¢ = 0. This follows from the
fact that B, having b = 0 as input, has no information about A’s input. Clearly,
fixing the transcript 7 and an arbitrary 2’4, and setting a = 1, A can effectively
decide whether the transcript is consistent with 2/, and a = 1. Since we do not
assume limits on the computational power of the players, A eventually finds such
string 2.

In case that b = 1, it is clearly impossible that 7 is consistent with @ = 1 and
some 2’4, since in this case flipping A’s input from 0 to 1, changes the logical
AND of the inputs: since we assumed perfect correctness, 7 cannot be consistent
with two pairs of inputs (a, b) whose respective logical AND is different.

Therefore, A decides that b = 0 if there exists #/, such that 7 is consistent
with 2/, and a = 1, and decides that b = 1 if no such 2/, exists.

Similar arguments apply to the OR-function. Based on information-theory,
one can find a more general argumentation.

3.2 Rabin-OT

We present a version of the original Rabin-OT [76]. Let n be the product of two
distinct, large random primes p and ¢. By the assumption that factoring large
random composite integers is infeasible 2, it is hard to retrieve p and ¢ given just
n.

However, it’s easy to generate such n with known factorization. Testing pri-
mality can be done efficiently 3, and by the Prime Number Theorem, the fraction
of primes smaller than K is roughly 1/1n K for large K. Therefore, one can just
select a random large integer and test it for primality. After some tries one finds
a random integer that one knows is prime. Multiplying two such primes gives n.

2 though certainly not impossible.

% i.e., certainly in practice. There is also a theoretical result by Adleman and Huang,
extending a result by Goldwasser and Kilian, saying that primality can be tested in
probabilistic polynomial time, with a negligible probability that no decision is made.

Rabin-OT is based on the number-theoretic fact that given two square roots
z and z of a square y modulo n, that do not differ by a sign, one can efficiently
compute p and ¢ from those roots and n. Indeed, from z? = 22 mod n we get
(z 4+ z)(x — z) = 0 mod n. And since # Z +2z mod n, n doesn’t divide (x + 2)
and doesn’t divide (x — z), yet it divides (x + z)(# — z). This is only possible
if p divides exactly one of the two terms, and ¢ divides the other. We now just
compute the greatest common divisor of n and (z — z) and the greatest common
divisor of n and (z + z), to get both factors p and ¢. Note that greatest common
divisor can be efficiently computed using for instance Euclid’s algorithm.

Each square y modulo n has four distinct square roots. Indeed, modulo each
of the factors p and ¢, there are two square roots. Combining them with the
Chinese Remainder Theorem, we get 4 distinct roots modulo n.

From the difficulty of factoring, and the analysis above, we conclude that
that squaring modulo n is a one-way function, i.e. given just n and a random
square y modulo n, it is infeasible to find a square root of y. Indeed, if this were
not so, then one would select a random z, compute y as the square modulo n of
z and compute a square root z of y given just y and n. With probability 1/2,
z/z mod n is a non-trivial root of 1, and one can factor n efficiently.

On the other hand, if one knows p and ¢, computing a root of a square is
efficient. It’s easy to explain in the case that p and ¢ are both 3 mod 4. Let y be
a square modulo p, and write 22 = y mod p. Define 2 = y**+1/4 mod p. Then
22 = yetD/2 = zp+1 = 22 = y mod n. Same story for computing square roots
modulo ¢. So if one has a square modulo n and one knows p and ¢ (both of them
3 mod 4), one projects the problem modulo n on the factors p and ¢, computes
square roots, and lifts it back with the Chinese Remainder Theorem. If p and ¢,
are not both 3 mod 4, it’s more complicated. We say that squaring modulo n is
a trapdoor one-way function.

Without giving further details, we state that it is possible to encode a bit b
as an integer modulo n using a public function ENCODE(b, n), such that it is
hard to retrieve b given just ENCODE(b, n) and n, but easy given the trapdoor
for n as well, i.e. its factorization.

The protocol works as follows. The sender encodes the bit b that is to be sent
by computing ENCODE(b, n). After receiving n and ENCODE(b, n) from the
sender, the receiver selects a random x modulo n and sends its square y mod-
ulo n to the sender. Note y perfectly hides which out of the four possible roots
the receiver has chosen. The sender, knowing p and ¢, can efficiently compute
a random square root z of y and returns it to the receiver. With probability
1/2, z does not differ by a sign from z, and the receiver can factor n, and ef-
ficiently retrieve b from ENCODE(b, n). Otherwise, also with probability 1/2,
z = £ mod n, and the receiver doesn’t get the factorization of n, and hence
doesn’t get closer to learning b.

10

Sender Receiver

In: b€ {0,1}
n, ENCODE(b, n)

r € Z, : random
y = z? modn

Y
z: random s.t.
22 =ymodn
z
If 2 £ +=,
factor n, get b
Out: b
FElse Out: ?

It is assumed that both players are semi-honest. For sender security we have
to assume that the receiver is computationally bounded. The security of the
receiver is unconditional.

3.3 OT based on RSA

We give an example for chosen one-out-of-two OT based on RSA [77], the well-
known public-key encryption scheme which R. Rivest, A. Shamir and L. Adleman
introduced in 1978. We assume that both players are semi-honest. The sender
selects two large random distinct primes p and ¢, and computes n = pg, the
modulus. Next, the sender selects an integer exzponent e such that e is relatively
prime to (p—1)(¢—1). Let the integer d satisfy de = 1 mod (p — 1)(¢ — 1) (given
p, ¢ and e such d is easy to compute). Now we have (z°)¢ = (29)® = x mod n
for all 2. The sender keeps d secret, and sends n,e (public key) to the receiver.

It has been proved by Alexi, Chor, Goldreich and Schnorr [1] that if a plain-
text x is chosen at random, guessing the least significant bit of z, given just the
ciphertext y = z° mod n, n and e, significantly better than at random, is as hard
as finding all bits of z. This is called a hard-core bit for the RSA function. Note
that this result does not follow directly from the usual RSA-security assumption.
That assumption only states that it is infeasible to recover all bits of x from y.
In the protocol to follow, the sender in OT exploits the existence of hard-core
bits to “mask” his bits by and b.

The receiver, having selection bit s, chooses a random plain text m mod n
and computes the cipher text ¢; = m® mod n. Let r; denote the least-significant
bit of the plain-text m.

The receiver selects the ciphertext ¢1_; as a random integer modulo n and
communicates the pair of ciphertexts (cq, ¢1) to the sender. The sender, knowing
the secret RSA-key, computes for each of those ciphertexts their respective least-
significant bits rg and r;. Now the sender masks the bits by and by by setting

11

by = bo @ 7o and b} = by ® r1, and sending them to the receiver. The receiver
recovers by by computing b, @ r;. The bit b;_; remains concealed, since he
cannot guess r1_; with high enough probability. Note that the selection bit s is
unconditionally hidden from the sender, and that we have to assume that the
receiver is semi-honest in order to guarantee sender security.

This is essentially the OT protocol of Goldreich, Micali and Wigderson [59],
which not only works for RSA but any other trapdoor one-way permutation as
well (though in general, more care has to be taken to define a hard-core bit).

4 General Secure Two-Party Computation

It is a natural question to ask which functions other than AND or string equality
can be obliviously evaluated. It is the answer to this question that demonstrates
the power of oblivious transfer: all functions f with finite domain and finite image
can be obliviously evaluated. This is due to A. Yao [81], who based his result on
the assumption that factoring integers is intractable. The protocol below shows
the stronger result saying that the existence of OT is sufficient for this task. This
is due to O. Goldreich and R. Vainish [60].

For simplicity, think of a function f : {0,1}"4 x {0,1}"5 — {0, 1}, where n4
and np denote the number of input bits player A and B hold.

The function f is assumed to be efficiently computable (polynomial time on
a Turing-machine) and both players have agreed on a Boolean circuit computing
f (so in particular they both know f):

— a directed acyclic graph with

— n4 + npg input nodes, and one output node.

— The remaining vertices are labelled as binary negation, and two-input binary
addition and multiplication gates. Note that these operations correspond to
binary NOT, XOR and AND. The outputs of internal gates can be led to an
arbitrary number of other gates (arbitrary fan-out).

— The topology of the graph dictates the flow of the values on which the com-
putations are performed. More precisely, the circuit computes f in the sense
that if one assigns the bits of any input strings a, b to the input nodes, and
inductively propagates the values resulting from the computations performed
on them (according to the logic of the gates), then the output node will be
set to f(a,b).

It is well known that all computable functions f can be computed by Boolean
circuits and that a Boolean circuit computing f can be constructed with a num-
ber of nodes (gates) polynomial in the number of inputs (i.e. n4 + np in this
case) if f is efficiently computable.

The problem of oblivious function evaluation of f is as follows. Player A has
input a € {0, 1}"4, and player B has input b € {0, 1}"5. For fixed input a, b, and
a fixed circuit computing f, the computation graph is the graph representing the
circuit but with the flow of the values written on the edges. For a given gate in
the computation graph, we speak of the actual inputs and the actual output.

12

We try to devise a protocol for A and B to execute such that both learn
f(a,b), but none of them learns more than what is implied by f(a,b) and the
own input. In the following we assume that neither player crashes, and that both
of them are semi-honest.

The protocol consists of three stages.

Input Sharing. For each of the ny4 bits a; of his input string a, 4 selects two
bits s; 4 and s; p at random such that s; 4 ® s; p = @; and sends s; g to
B. Player B does the same to the np inputs bits b; of his input string b,
resulting in #; 4 and ¢; p. This is an additive secret sharing of the inputs, and
the s and ¢ values above are called shares.

Computation. The computation proceeds inductively and in a gate by gate
manner, possibly handling many gates in parallel. The players maintain the
following invariant. The actual inputs to the current gate are additively
shared. After processing of the current gate, there are uniformly random
shares ug (held by A4) and up (held by B) such that us @& up equals the
actual output of the current gate and such that neither player has increased
knowledge about the actual output.

Output Reconstruction: Each player reveals his share in the output bit of
the computation. The sum of these shares equals the output bit f(a,b).

It remains to be shown how this invariant is maintained for each of the three
types of gates.

4.1 Addition-Gates

Let 2o, 21 denote the actual input bits, and let x = xo @ x1 denote the actual
output bit. Then A holds z¢ 4 and 1 4, and B holds o p and z; p such that
z0,4 ® xo,B = o and z1,4 © T1,B = T1.

Player A computes x4 = xo,4 ® ®1,4 as his share in the actual output bit z
of the current gate. For B there is a similar program, resulting in a share zp.
We have x =24 ® xp.

4.2 Negation-Gates

These are simply handled by designating one player, say A, who just flips his
share in the actual input bit, and takes the result as his share in the actual
output bit. B just takes his share in the actual input bit as his share in the
actual output bit.

4.3 Multiplication-Gates

A more interesting case is multiplication. Again, let zg, z; denote the actual
input bits. Then A holds zg 4 and 21,4, and B holds 29 g and z; g such that
z0,4 ® xo,B = o and z1,4 © T1,B = T1.

Before we proceed, let’s take a look at OT once more. Suppose that player
A has some bit a and that player B has some bit 3. How can they arrive at the

13

situation where they hold random additive shares in « - 8 but neither of them
has gained information about o - 3 7

Let p be a secret random bit chosen by player A. If A and B now execute the
OT-protocol with A acting as the sender and B as the receiver, using by = p and
b1 = a @® p, and s = 3 as their respective inputs, we see that B gets the value
af® p as output. In other words, OT(p,a®p, 8) = (B 1)p® B(ad® p) = B p.
A then just takes p as his share, and B takes a3 @® p as his share. We only need
to argue that A and B do not gain knowledge about each other’s inputs as a
result. Clearly, the security of OT implies that A doesn’t gain knowledge about
3, since it is B’s selection bit. Again by the security of OT, B learns only one of
p and p @ a, and since p was chosen at random by A, this doesn’t increase B’s
knowledge about «.

Sender A Receiver B

p € {0,1} random
In: o € {0,1} In: 8 € {0,1}

A= B:0T(p,adp,)

Out: p Out: af G p
Now we return to handling the multiplication gates. Note that
r=xogr1 = (l‘o,A ©® l‘o,B)(l‘l,A ©® l‘l,B) =

£0,A%1,4 P £0,4%1,B D T1,4%0,B P To,BT1,B-

Two executions of OT with, say, A as the sender are sufficient to get to the
random additive shares of z. A selects random bits pgy and pg.

1. A — B: OT(po1, po1 B 0,4, Z1,B) = pPo1 & L0,4%1,B.
2. A — B: OT(p10, p1o ® *1,4, Zo,B) = p1o D T1,420,B-

A takes as his share in x the bit 24 = o 4%1,4 ® po1 ® p1o, and B takes
TR = %0,Bx1,B P %0,4%1,B P T1,4%0,B P po1 B pio as his share.

4.4 Complexity of the Protocol

By inspection, an upperbound on the communication costs of executing the
protocol is O(]C|) OT’s and O(|C|) bits (the latter is from the initial input
sharing), where |C| denotes the number of gates in the circuit computing the
function f. Handling many gates in parallel, the round complexity is upper
bounded by the depth of the circuit C i.e. the length of the longest path in the
graph of C.

14

4.5 Security Discussion

In order that the above oblivious circuit evaluation protocol satisfies the required
correctness and privacy properties we have to assume that both players are semi-
honest, i.e. they follow the protocol and behave exactly as required, but each of
them separately may try to deduce from the information available to them as
a result of the protocol execution as much as possible about the other player’s
inputs.

It is easy to see that if one of the players is malicious and deviates from the
protocol, he can make the other player accept a false result, while he in fact
knows the correct one. With an adequate definition of what it means for OT to
be secure against malicious attacks, the protocol above would be private though.
For fairness, we have to assume that neither player crashes before termination
of the protocol.

The intuition behind the analysis of privacy is that the invariant maintained
guarantees that at each point in the execution of the protocol, the players hold
random additive shares in the actual outputs so far and that the respective shares
of each player does not increase knowledge about the actual output so far. It
is only at the end of the protocol where they have random additive shares in
the actual output that are exchanged, enabling the reconstruction of the actual
output.

Therefore, another way to look at the protocol is by saying that, conceptually
speaking, it simulates a trusted host: a third party who is and can be trusted by
both players. Given such a third party, both players secretly send their inputs to
the host, who returns the function value to both players. This is called an ideal
protocol.

In an actual proof, one has to show that each player on his own, given just
his input and the result of the computation, is able to generate efficiently a
simulation of the protocol that is indistinguishable from the ideal protocol.

Later we present protocols for the same task, that are secure against much
stronger adversaries than semi-honest ones in a much broader context, and in
fact, the security principles outlined above are the basis for defining security

there as well (Beaver [4], Micali/Rogaway [70], Goldreich [62], Canetti [21]).

5 Example

As an illustration, let’s return to the problem of Oblivious Common String Veri-
fication. We show that the general protocol provides a solution for this problem.
There are good reasons to prefer the solution of Fagin, Naor and Winkler, mainly
because an appropriate OT withstanding attacks by malicious rather than semi-
honest players renders the complete FNW solution secure against this kind of
attack.

But if we may assume the players are semi-honest, the following protocol is
just as good. Two players A and B each hold some secret n-bit string. Write
2= (x1,...,2,) and y = (y1,...,Yyn) for their respective strings.

15

Write f(21, .oy Zny Y1y-- -y Yn) = (£1DY1 D) -+ (£ Dyn D1). Tt follows that
f(z,y) =1 if and only if z = y.

From this formula for f we can easily derive a Boolean circuit: there are n
pairs of input bits (#;,y;). For each such pair, the bits in it are first led through
a binary addition gate, after which the result is passed through a negation gate.
Now there are n intermediate results, which only have to be led through an
n-input binary multiplication gate. To be consistent with our description, we
first write the n-input binary multiplication gate as a tree of depth logn with
two-input binary multiplication gates only, and lead the intermediate results into
it.

By the method from Section 4 A and B can now obliviously verify whether
or not they have the same string. Note that 2n oblivious transfers and 2logn
rounds of communication suffice.

6 Dealing with Malicious Attacks

Unfortunately, most protocols presented so far only work if the players are semi-
honest. We first indicate the failures that occur in the examples we have given,
if one of the players is cheating and deviates from the protocol, i.e. carries out
a malicious attack. The rest of this section deals with methods to enhance the
security of OT-protocols, achieving security even in the presence of a malicious
attacker. We stress that we still assume that the players do not crash before the
end of the protocol, to ensure fairness.

As an example of a failure, although Rabin-OT is secure for the sender if the
receiver is semi-honest and factoring large integers is hard, it is not clear that a
receiver deviating from the steps required in the protocol couldn’t “extract” the
factorization from the sender, even without being able to factor large numbers
efficiently in general. It might be true that there exists a single number modulo n
such that a square root of it reveals the factorization of n. Given such a number
it would be easy for the receiver to get the factorization of the sender’s modulus,
since the sender returns a square-root of any number modulo n that the receiver
sends. Hence, the receiver would always get the bit b. On the other hand, if the
sender would choose the modulus n as the product of three primes for instance,
he can influence the probability with which the receiver gets the bit b.

Fischer, Micali and Rackoff [48] presented the first realization of OT secure
against malicious attacks, i.e. it provides security for sender and receiver even if
one of them deviates arbitrarily from the protocol.

It is easy to see that the scheme based on RSA we presented is totally insecure
against malicious attacks by the receiver: nothing prevents the receiver from
computing the ciphertext ¢;_s in the same fashion as ¢, in which case the
receiver retrieves both by and by at the end of the OT.

16

6.1 Notion of Security of Basic OT

We assume that at most one of the players carries out a malicious attack. These
are the minimum (and for some applications sufficient) requirements we have to
make in order for OT resisting malicious attacks to make sense.

1. Tf the sender is honest (so the bits by and by are well-defined) throughout
the protocol, “no matter” how the receiver plays (note that if the receiver is
corrupt, the selection bit s may not even be well-defined in general), at least
one of the bits by, b1 remains “completely” unknown to him. *

2. If the receiver is honest throughout the protocol, “no matter” how the sender
plays, the selection bit s remains “completely” unknown to the sender. More-
over, the receiver always gets some bit, or else just aborts and the sender is

deemed corrupt.

Under this definition, the string-equality protocol of [44] as presented in
Section 2.2 is secure against a malicious attack by one of the players, for instance.
Beaver [9,10] has a simulation based definition of secure OT.

6.2 A General Solution in the Cryptographic Scenario

Goldreich, Micali and Wigderson [59] have a general defense against malicious
attacks that works in principle for any OT based on intractability assumptions.
We give an informal overview. It involves three other important primitives: com-
mitment schemes, mutually random coins and general zero knowledge techniques.
Interestingly, all these primitives (including OT) can be realized under the as-
sumption that trapdoor one-way permutations exist.

Trapdoor One-Way Permutations. We assume that both players are re-
stricted to probabilistic polynomial time computations, so that none of the play-
ers is computationally powerful enough to invert one-way permutations without
knowing a trapdoor. More precisely, this means that if a trapdoor one-way per-
mutation is selected at random by one party, then the other party, having ac-
cess to the description of the forward function only, cannot efficiently invert a
randomly chosen element from its range. The party knowing the trapdoor can
efficiently invert the function. Why is it that one party does have the trap-
door while the other doesn’t? This is by the existence of a special probabilistic
polynomial time algorithm called ¢rapdoor permutation generator. On input of a
random bit string, the generator outputs a “random” one-way permutation and
a corresponding trapdoor. RSA (see Section 3.3) is an example of a trapdoor
one-way permutation.

* Actually, one must require that there is a bit s so that if b, is given to the receiver,

he still has no information about b;_. This is to exclude the possibility that the
receiver for instance learns by @ b;

17

Commitments. Conceptually, there is an analog between vaults and commit-
ment schemes. Player A has some secret piece of information, and places the piece
in a vault, locks it and memorizes the opening combination. He then passes the
vault on to player B, to whom the secret information is hidden until he gets the
secret opening information to open the vault. But in the mean time, player A
cannot change the information stored in the vault, since it is no longer in his
possession. Thus, the commitment is binding. At some later moment, player A
can simply send the key of the vault to player B, who can then open it and read
the information.

Cryptographic, non-physical realizations of commitment schemes, can for
instance be based on RSA. Player A generates a key-pair ((n, e), (p, ¢)) for RSA,
and sends the public-key to player B. To commit to a bit b, A generates a
random plaintext m, and computes the corresponding ciphertext c¢. Write p for
its least significant bit. He sets d = b @ p and sends (e,d) as the commitment
to B. To open the commitment, A sends m and the bit b to B, who verifies
that m is the plaintext corresponding to ¢ and that d is equal to the sum of
its least significant bit and b. The hiding property follows from the fact that
the least significant bit is a hard-core bit (see Section 3.3). The commitment is
binding since RSA is a permutation (if the public exponent e is a prime larger
than the modulus n, for instance, B can efficiently verify that the public key
defines a permutation without any further proofs from A, since then we have
ged((p—1)(¢ — 1),e) = 1 for sure and primality can be efficiently tested). Note
that the binding property is unconditional and that the hiding property holds if
B is polynomially bounded. In fact, it can be shown that one-way permutations
are sufficient for commitments.

This seemingly innocent primitive has far reaching applications in cryptogra-
phy. For instance, it is sufficient to implement general zero knowledge interactive
proofs [58,61], a method that allows one to prove “anything provable” in zero
knowledge, i.e. to convince a sceptical judge of the veracity of an assertion with-
out giving anymore information away than the fact that the assertion is true. °

Mutually Random Coins. Another application of commitments is mutually
random coins. Here players A and B want to establish a bit (or a string) that
is random if one of them is honest. A simple protocol goes as follows. A selects
a random bit b4 and sends to player B a commitment to it. Player B selects
a random bit bg and sends it to A, who opens the commitment. The bit b is

defined as b = b4 @ bp.

OT Secure against Malicious Attacks. Returning to the problem of defend-
ing against malicious attacks in OT, we now show how we can defend against
these attacks by the techniques of [59].

5 There is a vast literature dealing with general zero knowledge and commitment

techniques, with many different flavours, styles and security and efficiency properties,
but we do not discuss these any further here.

18

The key observation is that, for instance in the RSA based example of OT, if
one of the players is honest the security of the other player is guaranteed. That’s
not what we want, since actually we want that a player’s security is guaranteed
if he is honest, no matter what the other player does. Nevertheless, in some sense
this fact is the basis for achieving it: based on the primitives outlined above, an
honest player can force the other player to be honest as well or else the protocol
simply halts with no advantage for the corrupt player.

This has become an important design principle throughout the field of cryp-
tography: often it is possible to start from a cryptographic protocol that is se-
cure if its participants are semi-honest and to transform it into a protocol secure
against malicious adversaries, by forcing each player to prove that he behaved
as a semi-honest participant.

We start looking into the details. First of all, it’s useful if the randomness
used by each player is mutually random. However, it is in the interest of both
players not to reveal their randomly chosen bits, for obvious security reasons. Say
that each player needs at most [random bits. Then they execute the protocol
for achieving a mutually random bit [times in parallel where the receiver is
the committing party, and [times in parallel where the sender is the committing
party. However, they do not open any of the commitments used. Note that in the
first case this implies that the receiver knows the resulting mutually random bits
whereas the sender does not. So the receiver can use these bits later on whenever
they are required, and in fact we will explain how the sender can verify that the
receiver used them, in a way that is secure for the receiver. The second case is
of course similar, with the roles reversed.

Let’s first look at the sender’s security and let’s look at the RSA-example
from Section 3.3. The sender wants to make sure that the receiver gets at most
one of the bits bg, b1. It is sufficient if the receiver can convince the sender of
the veracity of the following assertion about the ciphertexts cg, ¢1. One of them
is equal to some particular string of mutually random bits, and one of them is
equal to the RSA-function applied to some other particular string of mutually
random bits (in this case we refer to those mutually random bits that the receiver
knows, but the sender doesn’t). To protect the receiver in case he is honest, the
means by which the receiver convinces the verifier of this assertion must be
zero-knowledge.

Roughly speaking, it is now fairly easy though tedious for the sender and
receiver to efficiently derive by themselves from what is known to both of them,
a description of a function F' and a function-value y such that the assertion
about the ciphertexts cg, ¢y is equivalent to saying that there exists an z with
F(z) = y. Furthermore, if the receiver followed the protocol, he can actually
efficiently determine such z.

The zero knowledge techniques from [58] are designed for exactly this tech-
nical situation! So in principle, the security of the sender can be guaranteed.

As to the receiver’s security, his selection bit is protected by the fact that
the proof of the assertion is zero knowledge.

19

Therefore, under fairly general intractability assumptions, OT that is secure
against malicious attacks can be realized. However, it is very costly to resort
to the powerful techniques underlying the defense. In concrete situations with
specific implementations of OT, there may exist a more efficient way to enhance
the security.

Oblivious Function Evaluation and Malicious Attacks. So, are we done
and can we now use the OT with enhanced security directly in the general
protocol from Section 4 and obtain general oblivious function evaluation secure
against malicious attacks by one of the players?

No! There are many more things to be fixed first. For instance, in each current
gate, the inputs used must be the same as the outputs of some earlier gates.
Here a solution is to have both players always commit to their inputs at each
current gate and have them prove to each other in zero knowledge that these
commitments commit to the same values as the outputs of the gates that are
supposed to deliver the inputs to the current gate. In particular, both players
commit to their initial inputs.

Furthermore, using similar techniques as in the case of OT with strengthened
security above, it is not so difficult anymore to handle the full set of instructions
from Section 4 securely at all gates.

We return later to the techniques of GMW [59].

7 A Generic Solution

Another fundamental result is by Kilian [67], who shows constructively that OT
is necessary and sufficient for general oblivious function evaluation, even if one
of the players is malicious. From the previous section it should have become clear
that this is by no means obvious.

Given OT as a black-box ® and given a function to be obliviously evaluated
and a circuit for it, there is a generic transformation that results in a set of
protocols for the players to execute. It is immaterial how the OT works exactly:
at those points in the protocols where OT is required, only calls are made to a
black-box for doing OT. In the other direction, note that OT can be viewed as
a oblivious evaluation of the function f(bg, b1,) = (s & 1)bg P sby.

Another contribution of [67] concerns the round-complexity of general secure
function evaluation, which is shown to be constant with polynomial size message
complexity if the function can be computed by a polynomial size formula (i.e.
the fan-out of the gates in the circuit is 1).

We do not overview a proof of Kilian’s result, but only introduce some of its
fundamental parts.

6 It is beyond the scope of the present paper to discuss the exact security definition
required for this result.

20

7.1 Commitment based on OT

Kilian shows how a commitment scheme (which he attributes to Crépeau) can
be simulated from OT as follows. Let b be the bit that player A wants to commit
to. A and B agree on a security parameter k.

1. Fori=1...k, A selects a pair of random bits (r?,r}) such that b = r® G r}.

2. For i = 1...k, B selects a random bit s;.

3. For i = 1...k, with A being the sender and B the receiver, they execute
OT(r?, v}, s;)

4. B takes the bits received, together with his own random choices, as A’s

commitment.

5. To open the commitment, A reveals the bit b and, for i = 1...n, the ordered
pairs (r?,r}). Player B accepts the opening if and only if this information is
consistent.

Player A’s cheating probability is at most 1/2”: if A were able to open the
commitment in two different ways, he would have to guess all of B’s random bits,
so the binding property is satisfied. The hiding property follows immediately
from the definition of OT.

7.2 Committed Oblivious Transfer (COT)
COT is as OT, except that

1. Initially, the sender is committed to his input bits bg, b1, and the receiver is
committed to his selection bit s.
2. At the end of the protocol, the receiver is committed to the received bit b;.

An alternative proof of Kilian’s result can be found in [38], who introduce COT
and show that it is sufficient for secure function evaluation tolerating a malicious
attacker, and that COT can be simulated from OT (they don’t treat the con-
stant round issue though). The latter construction involves so-called envelope
techniques and error correcting codes.

8 Other Work

Some suggestions for further reading about defining OT secure against malicious
attacks and constructions of secure OT: Beaver addresses the pitfalls in attempts
to define OT secure against malicious attacks and presents solutions and con-
structions [7,9]. In [10], he gives a precise definition of OT so that when used in
a multi-party computation protocol the protocol as a whole is secure against a
malicious adaptive attacker.

The above references and Crépean [37] (besides those references we already
mentioned) contain a host of other interesting references.

21

22

Part 11

General Secure Multi-Party
Computation

9 Introduction

The protocols from Sections 4 and 6.2 have an obvious extension from two players
to n players guaranteeing correctness and privacy. This is done by using n-out-
of-n additive sharing of bits and executions of OT between every pair of players.
In this case, privacy of a single player is guaranteed even if the n—1 other players
pool their complete views on the protocol. The extension to n > 2 players of the
protocol from Section 6.2 is even secure against malicious attacks.

However, the fairness condition is only fulfilled by making a strong assump-
tion on the behaviour of the players, since one party can leave the protocol
knowing the result of the computation whereas the other remain ignorant about
it, or simply disrupt it in an early stage.

An important contribution of Goldreich, Micali and Wigderson [59], is that
they explain how privacy can be traded for fairness. In fact, they achieve the
stronger property of robustness: it is not only infeasible for corrupted parties
to walk away prematurely with the result of the computation and leaving the
remaining players ignorant about it, they can’t disrupt the computation at all: if
the corrupt players leave the computation, the remaining ones will still be able
to complete the computation.

More precisely, they show that even if at most a minority of the players
perform a coordinated malicious attack, then correctness, privacy and robustness
can be guaranteed.

Apart from GMW-techniques we discussed in Section 6.2, they employ what
is called verifiable secret sharing, which was first introduced by B. Chor, S.
Goldwasser, S. Micali and B. Awerbuch [27].

Before sketching the full protocol of GMW, we introduce secret sharing and
verifiable secret sharing in the next sections.

10 Secret Sharing with Semi-Honest Participants

In a secret sharing scheme there is a dealer and a number of agents. The dealer
holds some secret string s, and sends shares of s privately to each of the agents.
These shares are computed in such a way that only certain specific subsets of
the agents can reconstruct the secret s by pooling their shares, while others have
no information about it.

Secret sharing was invented independently by A. Shamir [79] and B. Blakley
[15] in 1979. Their solutions allow the dealer to consider any number n of agents
and any threshold t < n, such that from any subset of size at least ¢ of the
shares the secret s can be reconstructed uniquely and efficiently, whereas sets
containing less than ¢ shares contain no information at all about s.

We explain Shamir’s scheme which is based on Lagrange-interpolation over
finite fields. We assume that all parties involved are semi-honest.

10.1 Lagrange Interpolation
We use the following version of Lagrange Interpolation. Let K be a (finite) field.

25

Let V' be a finite set of indices, and write |V| = [. Suppose we are given
a collection of [points (p;,q;), i € V, in the plane K2, where the p;’s are all
different. Then there is a unique polynomial f(X) € K[X] of degree smaller
than [, that passes through these [points, i.e. f(p;) = ¢; forall i € V.

First we discuss existence. For each i € V define the polynomial

(X —pj)
(pi —pj)

)= I

JEVA{i}

Observe that each fy,; has degree exactly { — 1 and that fy,;(p;) = 1 whereas
Foilpi) = 0 j # 1.

But then it follows immediately that the following polynomial f does the
trick (Lagrange interpolation formula).

FX) =g fri(X).

i€V

Note that f(X) has degree at most ! — 1. Indeed, it can be strictly smaller than
[—1.

As to uniqueness, note that if there were a polynomial f/(X) € K[X] of
degree smaller than [that agrees with f on all [points, then the polynomial
f— [€ K[X] has [zeroes while its degree is smaller than I. So f — f’ must
be identical to the zero-polynomial, since it’s well known that any polynomial
¢ € K[X] has at most degree(g) zeroes unless it’s the zero-polynomial.

10.2 Shamir’s Scheme

To set up Shamir’s secret sharing scheme, let K be a finite field with |K| > n,
where n is the number of agents. Let Py,..., P, be distinct, non-zero elements
of K, and let these values serve as “names” for the n agents. Let 1 < ¢ < n be
the threshold. The secret-space in which the dealer codes the secret s is K. For
each s € K, define IT(t, s) as the set of all polynomials f(X) € K[X] such that
degree(f) <t and f(0) = s.

One can efficiently sample a random member from IT(t,s) by setting the
lowest-order coefficient to s and taking random elements from K for the remain-
ing t — 1 coefficients. 7

The field K, the threshold ¢, the names Py, ..., P, and the protocol below are
known to all players. We assume that for each agent, there is a separate private
communication channel with the dealer (for instance one based on public key
encryption).

— Distribution Phase: The dealer has a secret s € K, and selects a random
polynomial f(X) € II(t,s) and sends s; = f(P;) as share in s privately to
player P, i =1...n.

" Note that this does not necessarily mean that one generates a polynomial of degree
exactly t — 1, since 0 € K is also in the play.

26

— Reconstruction Phase: From collection of > ¢ shares, the corresponding play-
ers pool their shares and jointly reconstruct f(X) and compute f(0) = s.

By Lagrange interpolation it is clear that reconstruction works as desired.
Indeed, if we are given the points (P;,s;), i € V for some set V C {1,...,n}
and |V| > t, then the unique polynomial of degree smaller than |V| that passes
through these points, is of course f(X).

Note that it is sufficient to compute f(0) = s, and that it is not necessary to
reconstruct the full polynomial f(X).

If we define the constants

Av,i = fv,i(0),

then
s=f(0)=> s v
1€V
In other words, the secret is equal to a linear combination over the shares, where
the coefficients depends on the set V with |V] > ¢.

As to privacy, consider an arbitrary subset V of the agents of size ¢ — 1.
Write V.= {P{,..., P[_;} C{P1,..., P,}, and write s},...,s,_; for the shares
f(Pll)aaf(Pt/—l) of V.

Observe that for each s’ € K, the ¢ points (0,s"), (P{,s),...,(P{_1,8i_1)
uniquely determine a polynomial f/(X) € II(t,s") that passes through all of
them.

So from the joint view of the players in V, each secret is equally likely (take
into account that the dealer chose f at random, given s) and hence the shares
held by V' give no information about the real secret s.

Note that since the joint view of any set of size t — 1 gives no information
about the secret, the view of a smaller subset doesn’t give information about
the secret either. This follows from the fact that a smaller subset holds even less
information.

11 Verifiable Secret Sharing

In the presence of participants carrying out malicious attacks, there are two
threats in Shamir’s scheme.

— The dealer may send inconsistent shares, i.e. not all of them are simultane-
ously on some polynomial of degree smaller than ¢.

— At reconstruction, players may contribute false shares so that § # s is re-
constructed or nothing at all.

Note that if the malicious players coordinate well, the honest players cannot

in general distinguish between “good shares” and “bad shares”. Therefore, the

honest players may not even be able to figure out who the malicious players are.
In this section we explain methods to remedy this situation.

27

11.1 Definition of Malicious Adversary

Before we define verifiable secret sharing (VSS) to remedy these threats, we make
the model more precise and introduce some terminology. Consider a dealer and
n agents. A malicious adversary is allowed to corrupt the dealer and any single
subset of the n agents of size smaller than ¢. All other players are honest. Later
during the execution of a protocol ® the adversary is allowed to alter and control
the behaviour of the corrupted players at his will, and even have them behave
in a coordinated fashion. In particular the adversary can make some corrupted
players crash. For simplicity, we assume that the adversary makes the choice
of which subset to corrupt before anything happened, i.e. before the start of a
protocol.

11.2 Definition of VSS

The following informal definition is based on a formal definition of VSS from

[55].

1. If the dealer is honest, then the distribution of a secret s always succeeds,
and the corrupted players gain no information about s as a result of the
distribution phase. At reconstruction, the honest players recover s. These
properties hold regardless of the behaviour of the corrupted players.

2. If the dealer is corrupt, then the following holds. Either the dealer is deemed
corrupt by the honest players, and all of them abort the distribution phase. °
Else, the distribution phase is accepted by the honest players and some value
s is uniquely fixed by the information held by the honest players as a result
of the distribution phase. In the reconstruction phase, the honest players
recover this value s. These properties hold regardless of the behaviour of the
corrupted players.

Note the absence of a secrecy condition in the corrupt dealer case: if the set of
corrupted players includes the dealer, the adversary controlling them knows the
secret. Therefore, it is only required that in this case the protocol is robust. The
honest dealer case of course corresponds to what one would naturally require.

11.3 VSS Scheme

Here is a sketch of a generic construction of VSS based on a combination of
Shamir’s secret sharing scheme, commitments and zero-knowledge interactive
proofs. Let the threshold ¢ for Shamir’s scheme satisfy ¢ — 1 < n/2.

8 In many multi-party computation protocols, the dealer will in fact at the same time
also be one of the agents. In this case, there are in total n players involved, and
the condition on the adversary is equivalent to saying that he is allowed to corrupt
any single subset of size less than t of the n players, without distinguishing between
dealer and agents.

® Another possibility is that the honest players take some default set of shares.

28

Commitments We assume that we have a commitment scheme for committing
to log | K| bits, for instance obtained as a parallel version of the commitments
from Section 6.2 based on RSA or trapdoor one-way permutations.

From a high level, a commitment protocol based on such primitives works
as follows. There is a public, efficiently computable function “commit” whose
description follows from the primitive chosen, and it takes as input a random m-
bit string (for some m that will be clear from the primitive) and some log | K|-bit
string.

To commit to a log | K
computes C' = commit(z, p). Finally, one publishes C' as a commitment.

To open, one publishes # and p. The opening is verified by checking that
commit(z, p) = C'. We call the string p the opening information of the commit-
ment to z.

-bit string z, one chooses a random m-bit string p and

Broadcast We now also assume that a primitive called broadeast is at the
disposal of the participants. This is a mechanism by means of which any of
the participants can make sure that a message he has for all players is received
unaltered by the honest players, despite the possible presence of malicious adver-
saries. Furthermore, we assume that recipients can establish who is the originator
of the message. This mechanism may be realized by physical means or may be
simulated by a protocol among the players. It suffices to know that it can be
realized using digital signatures for instance.

VSS Protocol Here is an informal overview of a VSS protocol due to [59], which
is also a nice illustration of the power of zero knowledge techniques and com-
mitments. We assume that all players are restricted to probabilistic polynomial
time computations.

— Distribution Phase: The dealer has secret s € K, and computes shares

S1y...58, of s as in Shamir’s scheme. For ¢ = 1...n, he computes a com-
mitment C; to s;. After he has broadcast the commitments to all players,
he proves in zero knowledge to all players Py,..., P, that the commitments

contain shares consistent with some secret. If this proof is accepted, he sends
s; and the opening information for C; privately to P;, i =1...n.

— Reconstruction Phase: As in Shamir’s scheme, except that each player P;
not only broadcasts his share s;, but also the opening information for Cj.
For reconstruction of the secret s, the honest players only take those shares
whose corresponding commitment is opened successfully.

We briefly analyze this protocol. Regarding the zero knowledge proof of con-
sistency, we assume that it proceeds in such a way that consistency holds if and
only if the proof is accepted by all honest players (except with negligible error
of course).

There is a number of ways to achieve this, for instance by having each player
separately and publicly (using the broadcast primitive) act as a verifier in a

29

zero knowledge proof by the dealer, while all others verify whether the proof is
accepting. Only if the dealer at some point returns a proof that is not accepting,
the honest players accuse the dealer and abort. Note that if consistency does not
hold, then with high probability the proof when verified by an honest player will
fail.

The actual consistency statement that the dealer has to prove, could take the
following form: there exist s,ai,...,a;-1 € K, p1,...,pp € {0,1}™ such that
fori=1...n, C; = commit(s + Zlfjft_lang, Pi)-

Such statements can be proved in zero knowledge by the methods of [58], for
instance. 19

If the dealer is honest, the distribution phase definitely succeeds. Privacy
follows from the hiding property of the commitments (the corrupted players are
polynomially bounded and hence cannot read the contents of commitments), the
privacy of Shamir’s scheme, and the zero knowledge property of the proofs.

Looking at the reconstruction phase, and assuming that the distribution
phase was successful, we note that in the case of corrupt shares, the commitments
cannot be successfully opened since this would contradict the binding property.
Therefore, false shares are always found out and can henceforth be ignored by
the honest players. In summary, the only malicious action the corrupt players
can undertake is to refuse to participate in the reconstruction phase. But since
there are at most ¢ — 1 corrupt players and since we assumed that the threshold
t in Shamir’s scheme satisfies t — 1 < n/2, there are always ¢ honest players !
to reconstruct the secret s.

11.4 Other Work

Particularly efficient VSS based on specific intractability assumptions (discrete
logarithms) are presented in [46] and [72]. See also [29]. Tn a later section we
discuss information theoretic VSS.

12 GMW: Achieving Robustness

With VSS in hand, the GMW protocol first has each player VSS each of his
inputs before the n-player extension of protocol from Section 6.2 is executed
(see Section 9). At the end of the protocol, each player applies VSS again, this
time to the (additive) shares in the result of the computation. This requires
additional zero knowledge proofs (in the same style as before) showing that
these additive shares are indeed shared with VSS.

If one of the players fails in this phase (or earlier) he is kicked out of the
computation, and the remaining players back up to the beginning, reconstruct
the failed player’s input, and do the protocol over again, this time simulating

10 A particularly efficient general zero knowledge protocol is given in [33]
' This argument can also be used to show that t — 1 < n/2 is optimal, i.e. it is not
only sufficient but also necessary.

30

the failed player openly. Note that up to t — 1 corrupted parties are tolerated in
this way. With a similar argument as in the case of VSS, this can be shown to
be optimal. There are more efficient variants, see [62] for a full description and
analysis of the GMW-result.

The analysis [62] of the actual > GMW-protocol is very complex and has to
deal with many subtleties that have been suppressed in our informal overview.

13 Other Work

Chaum, Damgaard and van de Graaf [23] present protocols where one of the
players’ input is unconditionally protected. Kilian, Micali, and Ostrovsky [68]
show how oblivious transfers can be used in zero knowledge protocols. Galil,
Haber and Yung [53] achieve greater efficiency with their computation proto-
cols. Recently, Gennaro, Rabin and Rabin [57] presented particularly efficient
protocols for the cryptographic model (see also [29]).

12 We have made a number of simplifications for ease of exposition. For instance, we
have neglected input independence.: in reality one must make sure that the corrupted
parties choose their inputs to the computation independently from the inputs of the
honest parties. This can be achieved by having all players commit to their inputs
and having them give a zero knowledge proof of knowledge showing they can open
these commitments.

31

32

Part 111

Information Theoretic
Security

14 Introduction

In 1987, two independent papers by M. Ben-Or, S. Goldwasser and A. Wigderson
[13], and D. Chaum, C. Crépeau and I. Damgaard [24] achieved a new break-
through in the theory of general multi-party computations.

They demonstrated the existence of information theoretically secure general
multi-party computation protocols.

The price to be paid is a smaller tolerance with respect to the number of
maliciously behaving players. Whereas [59] tolerates any malicious minority un-
der the assumption that the players are computationally bounded, the protocols
of [13] and [24] tolerate any malicious subset of size less than a third of the
total number of players, with no assumptions on the computational power of the
adversary. However, both papers argue that this is essentially the best one can
achieve.

A common feature of both papers is the use of Shamir’s secret sharing scheme,
and the general paradigm of compiling a protocol secure against semi-honest
players into one secure against malicious players by forcing all players to prove
that they behave as semi-honest ones. However, [13] relies on techniques from the
theory of error correcting codes, while [24] is based on distributed commitments
and zero-knowledge. The result from [13] achieves perfect correctness, while [24]
has a negligibly small error probability. '3

14.1 Model
We make the model of BGW [13] and CCD [24] a bit more precise.
Communication:

— The n players are arranged in a complete (synchronous) network.
— Untappable private channels between each pair of players are available.

Adversary:

— The adversary is allowed to corrupt any single subset of size k of the players
before the start of the protocol.

— Exercising complete control over the corrupted players, the adversary is al-
lowed to force the corrupted players into coordinated malicious attack on
the protocol.

Function:
— Any efficiently computable function ¢ with n inputs.

13 An interesting side-contribution of [24], seemingly often overlooked, is that it employs
general zero knowledge techniques and information theoretically secure commitments

in a distributed setting, showing that general zero knowledge makes sense (in a
distributed setting) even if for instance NP = P.

35

14.2 Results of CCD and BGW

There is a correct, private, robust polynomial time protocol evaluating ¢ iff
the adversary corrupts at most k < n/3 players. In the semi-honest case this is
k < n/2. These bounds are optimal.

14.3 Remark on Broadcast

For security against malicious attacks, both results require the availability of a
broadcast channel [69]. Tt is clearly not an option to use digital signatures in
this case, since this does not fit with context of information theoretically secure
protocols.

However, broadcast among n players can be efficiently simulated even in the
presence of at most ¢t — 1 < n/3 malicious players (see for instance [47,54]). This
bound is optimal.

14.4 Outline of this Part

Instead of explaining the techniques of [24] and [13], we will sketch proofs of their

results based on recent developments in the theory of multi-party computation

due to Gennaro, Rabin and Rabin [57] and Cramer, Damgard and Maurer [29].
We first treat the semi-honest case.

15 Semi-Honest Case

We show how n players can securely compute on shared secrets. More concretely,
n players have shares in two secrets (according to Shamir’s secret sharing scheme)
and they wish to compute from these, random shares in the sum or the product
of these secrets.

We first treat these two cases. Later we show how this allows the n players
to compute an arbitrary function on shared secrets.

15.1 Computing on Shared Secrets

Constants, Addition Suppose there are n players holding shares of two secrets
s and s’, both resulting from Shamir’s secret sharing scheme, with parameters
n and t. It is easy to see that shares for the sum s 4 s’ are obtained when
each player simply adds his shares of s and s’. Moreover, if the players later
reconstruct s+ s’ from these new shares, no new information about s, s’ is given
away beyond what can be deduced from their sum s + s’.

14 Given a broadcast channel for free, a malicious minority can also be tolerated by the
result of T. Rabin and M. Ben-Or [75, 74] at the expense of a negligble correctness
error.

36

If the dealer used polynomials f and ¢ to compute the shares of s and s’
respectively, the new shares “look” as if the dealer had used the polynomial
(f + g) to compute shares of s + s'.

Similarly, for any constant ¢ known to all players, they compute shares for
¢ - s (respectively, ¢ 4+ s) by multiplying (respectively, adding) each share by e.

Multiplication We explain a method introduced by R. Gennaro, T. Rabin and
M. Rabin [57]. Suppose there are n players holding shares of two secrets s and
s’, both resulting from Shamir’s secret sharing scheme, with parameters n and
t.

The goal of the players is to jointly compute on their shares such that as a
result they hold shares in the product s - s’, also resulting from Shamir’s secret
sharing scheme with parameters n and ¢. Moreover, they require that these
shares for s - s’ are randomly generated, as if the (honest) dealer had not only
distributed shares for s and s’, but independently for s - s’ as well.

If we consider the joint view of any set of t—1 players, we can observe that this
randomness condition has the following effect. If s- s is later reconstructed from
the n shares of s-s’, the shares revealed together with the complete information
held by the ¢ — 1 players, do not give information beyond ss’ and what can be
inferred from it.

Unlike the case of addition, this is not trivial to solve. The first protocols for
this task appeared in [24] and [13], but the solution of [57] we explain here is
elegant and simple.

Let f and ¢ denote the polynomials used by the dealer. Let n denote the
number of players (agents) and ¢ the threshold. We assume that t — 1 < n/2.

We have: f(0) = s and ¢(0) = s’ and both polynomials are of degree less
than ¢t. For i = 1...n, write s; = f(P;) and s, = g(P;) for player P;’s shares in
secrets s and s’, respectively.

We are interested in s-s’. Observe that the polynomial f-g satisfies (f-¢)(0) =
s+ s and that it has degree at most 2t — 2 < n. Furthermore, for i = 1...n,
(f-9)(P;) = s; - si, which is a value that player P; can compute on his own.

Therefore, by Lagrange interpolation and by our assumption ¢t — 1 < n/2, the
players at least hold enough information to define f - ¢ uniquely.

Now comes the interesting point. First, there exists a fixed linear combi-
nation, whose coefficients r1,...,7, € K only depend on the P;’s, over the
“product-shares” s; - s} that yields s - ¢’. This is easy to see. By the Lagrange
interpolation formula we have

1<5<n,j i —Pj ’
(F-90) =Y (HH —.¢.pr. _Pj))

1<i<n

So the values between brackets are the coefficients rq, ..., r,, and all of these
can be computed from public information. A simple but important fact for the
analysis to follow is that at least ¢ of these values are non-zero. For suppose
without loss of generality that », = ... = r, = 0. Then we have, for instance,

37

(f-1)(0) =s =3 cict_y7i(si - 1), where 1 denotes the polynomial 1 € K[X].
This would mean that players Pi,..., P,_; can break Shamir’s secret sharing
scheme, a contradiction.

Of course the players don’t want to keep these product-shares s;s; as their
shares in s - s'; first of all it changes the threshold, and second, these product-
shares are by no means random shares of the secret s-s’. In fact, reconstruction
could reveal more than just s-s’ in the sense that it could also reveal information
about s, s’ individually.

Therefore, they first re-share their product-shares: each player P; acts as a
dealer and distributes shares of his secret s; - s} to all players (P; included for
completeness), using the same parameters n and ¢ and resulting in share u;; for
player P;, j = 1...n. Write h; for the polynomial used by F;.

Consider the polynomial

hX)= > ri-hi(X).

1<i<n

This has degree < t, and h(0) = > i, 7i - hi(0) =3 cicnTi - Sis; =58,
Therefore, when each player P; now computes T

v = E TiUjq,

1<j<n

P; has a share v; in s -’ resulting from the polynomial h(X') of degree less than
t.

As to privacy, it is sufficient to note that from the point of view of any
coalition of the players of size ¢+ — 1 or smaller, the polynomial h contains at
least one h; contributed by a player outside the coalition, since at least ¢ of the
T1y..., Py are NON-zero.

15.2 Protocol for Semi-Honest Participants

Based on the techniques for computing on shared secrets, we now present a
general multi-party computation protocol (essentially due to [57]) secure if a
semi-honest adversary has access to the complete information of at most ¢ — 1
players, where t — 1 < n/2.

We assume that the function they wish to jointly compute is given as an
arithmetic circuit over a finite field K with |K| > n. Arithmetic circuits are
similar to Boolean circuits (see Section 4), except that the computations take
place over K instead of GF(2). This is no restriction: if we fix an arbitrary
K, then any function that is efficiently computable is also computable by a
polynomial size arithmetic circuit over K. These are the types of gates we require:
two-input addition- and multiplication gates, and one-input gates for addition
or multiplication with a constant.

As in Section 4, the computation proceeds in a gate-by-gate manner, main-
taining the invariant that at each point the players have random shares in the
current intermediate results.

38

When they have processed the final output gate, all players broadcast their
shares in the result, and reconstruct it.

Input Distribution Phase
Using Shamir’s Secret Sharing Scheme, each player provides shares of his
input to all players.
Computation Phase
If the current gate is addition, or addition/multiplication of a constant, they
follow the steps from the first part of Section 15.1. If the current gate is
multiplication, they follow the steps from the second part Section 15.1.
Reconstruction Phase
Each player broadcasts his share in the output, and all reconstruct the result.

15.3 Optimality of the Bound

Suppose there exists an integer n > 1 and a general n-party computation proto-
col secure if more than a strict minority of the players conspire (semi-honestly),
i.e. the number of tolerable conspirators would be at least n/2. This would
immediately imply a protocol for two players to evaluate for instance the AND-
function obliviously (each of the players would simulate a different half of the n
players). By the same arguments as in Section 3.1, this is impossible and hence
the t — 1 < n/2 bound is optimal.

16 Verifiable Secret Sharing

We first show how to turn Shamir’s secret sharing scheme into a Verifiable Secret
Sharing Scheme. Based on this, we construct distributed homomorphic commit-
ments. Finally, we explain how to defend against malicious attacks in general
multi-party computations.

These results are taken from Cramer, Damgaard and Maurer [29].

16.1 Linear Algebraic View on Shamir’s Secret Sharing

We adopt a linear algebraic view on Shamir’s secret sharing scheme, that some
may find less intuitive than the explanation based on polynomial interpolation
(though technically speaking it is definitely as elementary).

Our reasons for doing so are two-fold.

First, it opens the way to a verifiable secret sharing scheme that avoids the
bi-variate polynomials and error correcting codes of [13].

Second, Brickell [18] points out how this linear algebraic view leads to a nat-
ural extension to a wider class of secret sharing schemes that are not necessarily
of the threshold type. This has later been generalized to all possible so-called

39

monotone access structures ® Karchmer and Wigderson [66] based on a linear
algebraic computational device called monotone span program.

Cramer, Damgard and Maurer [29] extend these results of Karchmer and
Wigderson, by introducing a method to transform monotone span program based
secret sharing schemes (Shamir’s scheme is a particular instance) into verifiable
secret sharing schemes. The enhancement is purely linear algebraic in nature and
admits no analogous view based on polynomials. In fact, in the monotone span
program model of [66], which deals with arbitrary monotone access structures
and not just threshold ones, it is in general not possible to speak about poly-
nomials. Therefore, one reaches further if one concentrates on the quintessential
algebraic properties, instead of on the very specific language of polynomials.

We will not present the general VSS result of [29] here, but rather the
threshold-case which has some nice extras over the general construction, that
are mentioned but not detailed in [29]. The presentation is self-contained and
doesn’t require knowledge of [66].

Let K be a finite field, let M be a matrix with n rows and ¢ columns, and
with entries from K. We say that M is an (n,t)-Vandermonde matrix (over K)
if there are aq,...,a, € K, all distinct and non-zero, such that the i-th row
of M is of the form (1,qa;,...,at™") for i = 1...n. Note that this implies that
|K| > n.

For an arbitrary matrix M over K with n rows labelled 1...n, and for an
arbitrary non-empty subset A of {1,...,n}, let M4 denote the matrix obtained
by keeping only those rows ¢ with i € A. If A = {i}, we write M;. Similarly, for
a vector s € K™, s4 denotes those coordinates s; of s with ¢ € A.

Let Mg denote the transpose of M, and let ImMg denote the K-linear
span of the rows of M 4. We use Ker M4 to denote all linear combinations of the
columns of M4 leading to 0, the kernel of M 4.

Tt is well-known that any square (i.e. number of rows is equal to number of
columns) Vandermonde matrix has a non-zero determinant. If M is an (n,t)-
Vandermonde matrix over K and A C {1,...,n}, then we conclude that the
rank of M4 is maximal (i.e. is equal to ¢, or equivalently, ImM 1 = K') if and
only if |A| > t.

But more is true. Let € denote the column vector (1,0,...,0) € K*. If |A| < ¢,
then € ¢ TmM 7, i.e. there is no A € K14l such that M\ = e.

This can be seen as follows. Suppose without loss of generality that |A] = ¢—1
and that there is such A. Consider the square matrix N4 obtained from M4 by
deleting the first column (that consists of ¢ — 1 1’s). This matrix is “almost” a
square Vandermonde matrix: it can be seen as a square Vandermonde matrix
multiplied by a matrix that has zeroes everywhere, except that its diagonal
consists of non-zero elements (in fact, a;’s with ¢ € A). Tt follows that N4 has a

!5 This generalization has first been achieved by Ito, Nishizeki and Saito [65] and later
by Benaloh and Leichter [11]. Both these results are based on elementary monotone
formula complexity of the access structure ([65] is more restricted since it requires
DNF formulae). However, the model of [66] is much more powerful in terms of effi-
ciency. See also [14].

40

non-zero determinant. But then M1 X = € implies NTX = 0 and X # 0. This is
impossible since N4 is a square matrix with non-zero determinant.
Therefore we can say

e € ImM7 if and only if |A| > t.

We need some more basic linear algebra. For vectors x,y € K?, define the
standard in-product (finite field case) as (x,y) = zoyo+. ..+ 2xt—1y—1. We write
x Ly when (x,y) = 0 and x is said to be orthogonal to y, and vice-versa. For a
K-linear subspace V of K*, V1 denotes the collection of elements of K* that are
orthogonal to all of V' (the orthogonal complement), which is again a K-linear
subspace.

For all subspaces V of K we have V = (VJ‘)J‘. This is an elementary fact
that can be proved in a number of ways. Here we exploit the fact that K is finite.

Say dim(V) = #', and choose any basis for V. Now x € V< if and only if
(x,f) = 0 for all vectors f in the chosen basis. So if we arrange those basis
vectors as the rows of a matrix M (it follows that V = ImM7), we have V+ =
(ImM7T)+ = Ker M. The latter equality simply follows by inspection.

By Gaussian Elimination (“sweeping”) on the rows of M, we can bring it of
course into a form where the first ¢ columns constitute the identity matrix.

The rows of this new M are still a basis for V, and therefore the relationships
above still hold. We count the number of x such that Mx = 0, i.e. we count
|KerM|. From M’s form, it follows that for each selection of the last ¢ — ¢’
coordinates of x, there is a unique selection of its first ¢ coordinates such that
Mx = 0. Hence, |V+| = |[KerM| = |K t=t' Therefore, by applying this fact once
more, |(V)L] = |K|". Since V C (V1)L from the definition, it now follows that
V=(vhHt

By application of this fact, it now follows that ImMg = (KerM)1, and we
can conclude that

e ¢ ImM7 if and only if there exists k € K’ such that M sk = 0 and x; = 1.

Another simple identity is that (x, MTy) = (Max,y) for all x,y of adequate
dimensions.
Now we can present and analyze Shamir’s scheme in an alternative fashion.
Let there be n players, and let ¢ be the threshold. Over a finite field K, let
M be an (n,t)-Vandermonde matrix.

Distribution Phase: Let s € K be the secret. The dealer chooses a vector b € K*
by setting its first coordinate by to s, and selecting random elements from
K for the remaining coordinates. To player ¢ he privately sends s; = M;b as
share in s, for i =1...n.

Reconstruction Phase: Let A C {1,...,n} with |A| > ¢. From their joint in-
formation, the players in A efficiently compute by elementary linear alge-
bra A € K4l such that MIX = €. Write Mb = s. Then s = (b, €) =
(b, MTX) = (Msb,X) = (sa, X), which they can compute efficiently.

41

It should be clear that reconstruction works as desired. Regarding privacy,
let |A] = ¢ — 1, and consider the joint information held by the players in A,
i.e. sy = Myb. Let § € K be arbitrary, and let k be such that M4k = 0 and
k1 = 1. Then M4(b+ (§—s)k) = sa and the first coordinate of the argument is
equal to §. This means that, from the point of view of the players in A, s4 can
be consistent with the secret s.

The number of b € K* with by = 5 is clearly equal to [Ker(My4)| (which is
independent of §), and the players in A have no information about s (take into
account that all coordinates of b except possibly the first have been chosen at
random).

16.2 Towards VSS

Let t — 1 < n/3. A fact that is also exploited in [13] is that a complete set of
shares s with at most ¢ — 1 arbitrary errors still defines the secret s uniquely.

Indeed, if this were not the case, then there would exist error vectors 81,85 €
K" with Hamming-weight at most ¢ — 1, and vectors by, by € K™ with distinct
first coordinates by and by, such that

81 = 83,

where s; = §; + Mb;, i =1,2.

However, there are at least n—2(¢—1) > t coordinates that are simultaneously
zero in both error vectors. Hence, at least ¢ coordinates of §; = s5 are equal to
the corresponding coordinates in Mby and Mb;. This means that Mb; and
Mb, agree in at least ¢ coordinates, and hence we must have b; = bs. Note that
the linearity of the secret sharing scheme is immaterial in this argumentation.

From the above we conclude that in principle and assuming that the dealer
is honest, setting ¢ — 1 < n/3 guarantees robustness against players handing in
false shares. However, efficiency is a problem (even when assuming an honest
dealer): how to decode a “disturbed” set of shares § and recover the secret. Tn
[13], efficient standard error correction techniques are applied to a version of
Shamir’s scheme obtained by first passing to an extension field of K.

We first explain how this can be avoided (for the moment we still assume an
honest dealer).

Consider the following variant of Shamir’s scheme.

Distribution Phase: Let s € K be the secret. The dealer chooses a random
symmetric matrix B € K%!, subject to the condition that it has s in its
upper left corner. For ¢ = 1...n, the dealer sends privately to player i the
(row-)vector s; = M; R as share in s. Write b for the first column of R, then
the first coordinate of s; is equal to M;b. This value is called player i’s actual
share in s.

Reconstruction Phase: For ¢ = 1...n, each player ¢ broadcasts his share s;.
Consider the matrix C' with n rows and n columns, whose entry in the i-th
row and j-th column is 1 if and only if M; s = §]MZT Throw away all rows

42

of C' that have ¢t or more zeroes. There will be at least ¢ rows left. For each
of the rows i left, take the first coordinate of the corresponding s; as the
actual share of player i. These at least ¢ actual shares determine uniquely
the secret s, according to Shamir’s secret sharing scheme as before.

We first argue that the secret s is indeed efficiently reconstructed, assuming
an honest dealer and at most ¢ — 1 arbitrarily corrupt players. First note that
for all i, (M; R)T = RM! by symmetry of R. Hence, for all i, j we have

T _ . T
Mjsi = S]MZ' .

From this we conclude that each player j holds a share Msz»T in player i’s
actual share of s. Consider the case that a player ¢ broadcasts a vector s; that
differs from his share s; in the first coordinate (and possibly elsewhere as well),
then for at most ¢ —1 of the real s;’s we have M; sT = S; M, since obviously, two
complete sets of shares in Shamir’s scheme (with parameters n,¢) for different
secrets can agree on at most ¢ — 1 of the shares. But we also have to take into
account that not only player i may be cheating, he may also coordinate with
t — 2 other cheaters. Hence, an upperbound on the number of consistencies in
this case is (t—1) 4+ (¢ — 1) = 2t — 2. Therefore, there are at least ¢ inconsistencies
in this case.

On the other hand, if player ¢ is honest then no matter how the corrupt
players lie and cheat, they are going to cause at most ¢ — 1 inconsistencies in the
i-th row of the consistency matrix C. Therefore, the procedure yields at least ¢
good actual shares, sufficient for reconstructing s. Note that in the analysis we
have only used the fact that the total information sg received by the set of the
honest players B is of the form sg = Mp R for some symmetric R.

As to privacy we note the following. For vectors v = (v1,...,v) € K' and
w = (wi,...,w;) € K' the standard tensor product (matrix form)v @ w is
defined as a matrix with ¢ rows and ¢ columns such that the j-th column is equal
to v;w. Note that v ® v is a symmetric matrix. Privacy is argued in a similar
way as in the case of the linear algebraic explanation of Shamir’s scheme. Let
|A] < ¢—1, and let k satisfy Max = 0 and 1 = 1. Then k ® Kk is symmetric,
has 1 in its upper left corner and satisfies M4(k ® k) = 0. This is then used to
show that for each possible secret, the number of symmetric matrices with that
secret in its upper left corner and consistent with the joint information of A, is
the same.

16.3 Pairwise Checking Protocol and VSS

We now drop the assumption that the dealer is honest, and build a “pair-wise
checking protocol”, where each pair of players exchange checking information,
around the scheme above to obtain VSS. The pair-wise checking as such is quite
similar to methods from e.g. [13] and [47].

Let B denote the set of honest players, and let Sg be the total information
received by B in the distribution phase. By the analysis of the honest dealer case
above, we are done if Sg = Mg R for some symmetric matrix R.

43

Suppose that some “pair-wise checking protocol” performed right after the
dealer distributed the shares (as in the scheme above) would guarantee that

MpSE = SpME.

We show that this is sufficient to conclude the existence of such R. Since certainly
|B| > t, we know that the span of the rows of Mp is all of K*. Hence there exists
a matrix Ng such that MgNB is equal to the identity matrix I; with ¢ rows and
t columns. Hence we have

Mp(SENB) = Sb,

and we can take

R = SENg.

Note that this R is indeed symmetric, since from MBS% = SBMg it follows
that
N5 (MpSE)Np = NE (Sp ME)Np,

which implies that
I'SENg = NESpIL,

and hence
SENp = NESp = (SENg)T.

The following pairwise-checking protocol is appended to the distribution
phase.

1. Each player i sends to each player j the value M; sI'. Player j checks that this
is equal to s; MT (pairwise consistency check). In case of an inconsistency,
player j broadcasts a complaint about the value received from player i.

2. In response to complaints, the dealer must broadcast the correct value M; sT
for all complaints of players j about the values received from players 1.

3. If any player j finds that the information broadcast by the dealer is still in-
consistent, it is clear to player j that the dealer is corrupt, and he broadcasts
a request that the dealer makes public all the information sent to player j.
This counts as claiming that the dealer is corrupt. These accusing players
remain passive until a decision is made in the final step.

4. The dealer must again broadcast all the requested information, and again
this may result in some players accusing the dealer of being corrupt. This
can repeat until the information broadcast by the dealer contradicts itself,
or he has been accused by at least ¢ players. Or else, no new complaints
occur and the number of accusations is at most ¢ — 1. The decision whether
or not to accept the distribution phase is now taken as follows. In the first
two cases, the dealer is deemed corrupt and is disqualified. In the last case,
the distribution phase is accepted by the honest players. Accusing players
accept the information broadcast for them as their shares.

We analyze the protocol. First, we look at the honest dealer case. The corrupt
players do not get more information than in the protocol above that assumes an

44

honest dealer (note that no honest player will request the honest dealer to make
public the information sent to him by the dealer, because if the honest player
complains about some player, the honest dealer will always send the correct
value).

Furthermore, the corrupt players can cause at most ¢ — 1 accusations, and
hence the distribution phase is always accepted by the honest players if the
dealer is honest.

Next, let’s drop the assumption that the dealer is honest and let’s assume that
the distribution phase was accepted by the honest players. Then it is immediate
that each honest player has a share that is consistent with the shares of all
other honest players. Suppose that this is not the case. There must be at least
one honest player that did not accuse the dealer (since there are at most ¢t — 1
accusations and at most ¢ — 1 corrupted players, and 2f — 2 < n since t — 1 <
n/3). Clearly, the shares held by the set of non-accusing honest players (which
is non-empty by the above) must be pair-wise consistent. All other shares of
honest players are broadcast, so if there were any inconsistency, a non-accusing
honest player would have accused the dealer, which is in contradiction with our
assumptions.

17 General Protocol Secure against Malicious Attacks

Consider the protocol for the semi-honest case. We would like to enhance it so
that the following invariant is maintained. At each point in the (once again)
gate-by-gate multi-party computation, the current intermediate results (i.e. the
values at the current gate as propagated through the circuit from the actual
inputs) are secret shared (as in the semi-honest case) and moreover, each player
is committed to his shares.

17.1 Homomorphic Distributed Commitments

Distributed commitments have similar binding and hiding properties as the com-
mitments from Section 6.2, except that this time these properties hold uncon-
ditionally, i.e. regardless of the computing power of an adversary. Of course,
this will be so only with respect to the adversary we have defined earlier, that
corrupts less than n/3 of the players before the start of the protocol.

Based on VSS, this is how it works. If player j wants to commit to s € K,
the n players execute the distribution phase of VSS, where player j acts as the
dealer and takes s as the secret. To open the commitment, the n players execute
the reconstruction phase of VSS.

One can immediately see that given two distributed commitments to values s
and s’ respectively, a commitment to s+s’ is non-interactively created by having
all players locally take the sum of the information they hold (i.e. the VSS-shares
in s and §).

Similarly, they can take a commitment and non-interactively multiply or add
in a known constant.

45

It is in this sense that we say that the commitments are homomorphic. To
create a distributed commitment to ss’, is more involved and is explained later
on.

17.2 Maintaining the Invariant

Now think of the commitments from above as abstract, black-box homomorphic
commitments, and forget for the moment how we actually constructed them.
Consider a player that is committed to some secret s. We would like to force
that player to share s correctly (according to Shamir’s scheme) among all players
such that each of the players is committed to his share.

To this end, the player acts as the dealer in Shamir’s scheme, chooses random
elements py,..., pr—1 and commits to them.

Then, by the homomorphic properties of the commitments and the fact that
the shares in Shamir’s scheme are linear combinations (with fixed public coeffi-
cients!) of the secret and the p;’s, the players can compute new commitments to
these n shares by just doing local computations.

This guarantees that the dealer is committed to consistent shares, i.e. the
shares results from a correct (not necessarily random, but this is no problem)
execution of the distribution phase of the secret sharing scheme.

The only thing left to be done for each share is to open the corresponding
commitment privately towards the recipient of that share, so that he actually
learns the correct share.

In our particular case here, commitment is a VSS. Therefore, the latter open-
ing consists of jointly executing the reconstruction phase of VSS, by sending all
data from the VSS (=commitment) of a share privately to the owner of that
share. Note that this always works, by the properties of our VSS, and regardless
of whether the dealer cooperates or not.

We call this procedure Commitment Sharing Protocol (CSP)

In the Input Distribution Phase of the general protocol, all players will secret
share their inputs to the computation in the way we have just described (CSP).

In the Computation Phase, if the current gate is addition, or multiplication
by a constant, the procedure is trivial by the homomorphic properties of com-
mitments and Shamir’s secret sharing scheme. The only real difficulty left is
handling multiplication gates, which we will study separately.

In the Qutput Reconstruction Phase, the commitments to the shares in the
final result of the computation are opened. Each player collects enough correct
shares to reconstruct the result (output) of the computation.

17.3 Linear Secret Sharing Schemes

We now set out to handle the multiplication gates. But first it is convenient to
further explore our linear algebraic view.

Shamir’s secret sharing scheme is a linear scheme in the sense that each share
is a linear combination (with fixed, public constants) of the secret and random
choices made by the dealer.

46

It is possible to take this point of view as the starting point for a class of
secret sharing schemes [18,14, 66]: general linear secret sharing schemes.

There are n players, and there is a public matrix M with d rows and e
columns, in which each row is assigned to one of the players. Abstractly speaking,
each of the d rows of M is labeled with exactly one element from {1,...,n}, and
we allow that some (or all) labels occur more than once. Write 1 for the function
that associates a row with a player. For A C {1,...,n}, let M4 denote those
rows of M that are labeled with an element from the set A. If A = {i}, we write
M;.

To compute shares of a secret, the dealer chooses a vector b at random
subject to the condition that the secret is in the first coordinate of the vector,
and for ¢ = 1...n sends the vector

S; = MZb

as share in s privately to player 1.

In Shamir’s scheme this matrix corresponds of course to the Vandermonde
matrix, and each player is associated with exactly one row.

Recall from the linear algebra proof of Shamir’s scheme that exactly those
subsets of the players can reconstruct the secret, whose matrix (i.e. the submatrix
that contains the rows associated with the subset) has € in its K-linear span of
the rows. Other subsets have no information about the secret.

It can be shown by similar arguments as the ones used in the linear algebra
proof of Shamir’s scheme, that in the general linear scheme as defined above,
exactly those subsets A can reconstruct the secret for which € is in the K-linear
span of the rows of M 4. Other subsets have no information.

Now in general, the subsets that can reconstruct are not exactly all subsets
of a certain cardinality. One can show that for any monotone access structure
I, i.e. a collection of subsets of the n players with the property that if A is a
member of I' than any set containing A is in I' as well, there is a linear secret
sharing scheme such that the subsets that can reconstruct the secret are exactly
the members of I'. Again, other subsets have no information.

Let € denote the vector (1,0,...,0) € K°. Tt is not hard to show that the
subsets A that can reconstruct the secret are exactly those for which e € TmM 7.
The players in such a set A jointly recover a secret s by computing

(s4,A) = (Mab,A) = (b, MTX) = (b, €) = s,

where Mg)\ — ¢, and s4 are the shares held by A, i.e. s4 = M4b.

The quadruple M = (K, M, €, v) is called monotone span program [66]. This
powerful device is said to compute an access structure I' (or equivalently, a
monotone Boolean function) if and only if it is the case that € € ImM7 exactly
when A is a member of I'.

We will also call the sets in this correponding access structure the sets “ac-
cepted” by M. A set that is not accepted, is called “rejected”.

So each linear secret sharing scheme can be viewed as derived from a mono-
tone span program computing its access structure.

47

We now return to the multiplication protocol. Let M be a (n,t)-Vandermonde
matrix over K with ¢t — 1 < n/2. For vectors s, s’ € K", define their star-product

! / / e
sks = (s189,...,8,8,) € K".

For vectors x,y € K, define their tensor product (this time a vector instead of
a matrix)

2
X®y: ($1y17'"7$1yt7"'7$ty17"'7$tyt) El‘t .

For a matrix M, let Mg denote M except that each row v of M is replaced by
VRV,

Another way to view the principle underlying the multiplication protocol
from Section 15.1 for Shamir’s scheme is by saying that there exists a fixed
vector r € K", which we call recombination vector, such that for all b, b’ € K,
with respective first coordinates s, s’ € K, we have

(r,s*s') = 55,
where s = Mb and s’ = Mb/.

Call this the multiplication-property of the secret sharing scheme. The exis-
tence of the vector r follows for instance from the analysis in Section 15.1, as
well as a method for efficiently computing it. From the analysis it also follows
that Shamir’s scheme has the multiplication property if and only if t — 1 < n/2.

In the case of defense against malicious attacks in the multiplication protocol
for Shamir’s scheme and for reasons to become clear shortly, we need additionally
that for all B C {1,...,n} with 16 |B| > n —t + 1 there exists a fixed vector r
(depending on B) such that

(r,sp * sg) = 55,

where sp = Mpb and sl; = Mpb’ are arbitrary.

Call this the strong multiplication-property of the secret sharing scheme, and
call v the recombination vector for the set B.

Note that if the strong multiplication-property is satisfied, then certainly also
the multiplication-property is satisfied: just take B = {1,...,n}.

We can also say that strong multiplication is satisfied exactly when for each
B with at least n —t 4+ 1 elements, Mp has multiplication.

If we now set t — 1 < n/3, then we see that for all B with n —¢ + 1 elements,
Mp is an (n —t+ 1,t)-Vandermonde matrix (“t out-of n —¢+ 17) and also that
t—1< (n—t+1)/2. If B has even more elements, this clearly holds as well.
Therefore, strong multiplication is satisfied by the way we set the parameter ¢.

It will be helpful to further extend the linear algebraic view. Note that the
definition of the multiplication-property makes no reference to Shamir’s secret
sharing or threshold access structures. We could require this property of a general
linear secret sharing scheme. In fact, this is exactly the definition of monotone

16 these sets of course correspond to the potentially honest sets rather than the poten-
tially corrupt sets of size at most t — 1

48

span programs with multiplication from [29]. For strong multiplication, the only
change in the definition we make is to say that the property holds for all sets B
that are the complement of a set that is rejected by the monotone span program
(i.e. complements of sets that are not in the access structure).

It is proved 7 in [29] that M = (K, M, €,1) is a monotone span program
with multiplication if and only if

E®EEIH1M(§.

Any vector r with e ® € = M(gr is a recombination vector.

As to strong multiplication, let M p be the monotone span program obtained
by throwing away the rows corresponding to the complement B of a rejected set.
Then it follows immediately that M has strong multiplication if and only if for
all such B, M p has multiplication.

We are now ready to state the properties we use in the explanation of defense
against malicious attacks to follow. Now let M be a monotone span program
with multiplication. We can now consider the linear secret sharing scheme based
on Mg = (K, Mg,e® €,v) and conclude that the set {1,...,n} is accepted
by Mg. Hence, if the n players receive a complete set of shares Mgc, they can
recover the secret, which is ¢’s first coordinate. This follows from the observations
about the connection between general linear secret sharing and monotone span
programs above.

If M has strong multiplication, this is true for each subset B whose comple-
ment is rejected by M. This fact and the following technicality (which is proved
directly from the definitions) are useful in what follows.

For any monotone span program M, and for all b and b’, we have

s+xs’ = Mg(bab’),

where s = Mb and s’ = Mb’.

17.4 The Commitment Multiplication Protocol

The situation is as follows. There are two values s and s’, and each of the n
players is committed to his shares in s and s’.

We’d like to have a protocol by means of which the same can be enforced on
ss’.

Of course the protocol from Section 15.1 comes in handy, but we will have
to enhance it.

Let M = (K, M, €,1) be the monotone span program underlying Shamir’s
secret sharing scheme with ¢t — 1 < n/3.

Consider player i right before he re-shares s;s} in Section 15.1, where s; and
s; are his shares in s and s, respectively. In the current context we may assume
that he is already committed to s; and s, separately.

17 This follows from the definition and the uniqueness of algebraic normal form.

49

It is sufficient for our purposes here if player i could create a commitment

to s;s; and convince the rest of the players that this is indeed a commitment to
i 8}
Indeed, suppose we had such a method, then for re-sharing we would do as
in Section 15.1 and additionally have each player ¢ commit to his local product
s;s;, prove that the resulting commitment contains indeed s;s}, and subsequently
apply the Commitment Sharing Protocol (CSP) to it.

After each player i has done so, they can compute a CSP of ss’ using the
linearity of the CSP and using the recombination vector r.

Therefore, it is only left to show how player ¢ can prove that a given com-
mitment contains the product of the contents of two other given commitments.

We assume that t — 1 < n/3. Let M be an (n,t)-Vandermonde matrix. Then
M = (K, M, e,) is with strong multiplication and ¢ just associates the j-th
row of M with the j-th player, j =1...,n.

Player i is committed to s; and s}. The then protocols starts by executing
the CSP twice, once with s; being the secret, and finally and independently with
s} being the secret.

This results in (committed) shares

(U1,...,up) =u= Mb,

in the secret s;, where (for j = 1...n) player j holds u;, and (committed)
shares

(W) ... uy)=u' = Mb/,

in the secret s}, where (for j = 1...n) player j holds uj.

Player i proceeds by committing to s;s!, and to each of the ¢? coordinates
of b ® b’. Finally, CSP is executed with these choices made by player 7, but
this time on the linear secret sharing scheme defined by Mg, instead of M. This

results in (committed) shares (with respect to Mg!)

v=(v1,...,0,) = Mg(b@b’),

in the secret s;s;, where (for j = 1...n) player j holds v;.
Note that if player i indeed committed to the correct value s;s; (and not to
some value & # s;s) and indeed committed to the coordinates of b ® b’, then

(wruy ooy upul) = (viy. vy vp),
sinceuxu’ = Mg(b®b').
Now assume that it is perhaps the case that player i did not commit to s;s;.
In any case, there is a vector ¢ such that

(v1,...,vn) = Mge,

by the properties of CSP. Here, ¢ is the actual (committed) value that is sup-
posed to be equal to s;s;.

50

We now assume that ¢q # s;s}, and prove that this leads to an inconsistency
with the information held by at least one honest player, and that he can prove
that there is an inconsistency.

Write u * u' = w. Consider the set B, defined as the complement of the set
of players that the adversary actually corrupted (i.e. B consists of the honest
players). Note that |B| > n — ¢+ 1. Since uxu’ = Mg(b ® b’) and since M
has strong multiplication, B is accepted by Mg and the set of shares wg for B
defines s;s; uniquely. Likewise, vg defines a secret (i.e. ¢’s first coordinate ¢1)
uniquely.

Therefore, if ¢4 # s;s;, there must be a j € B such that player j holds
different shares for ¢y and s;s!: if not, the reconstruction procedure for B (in the
secret sharing scheme derived from Mg) applied to wp and vp would yield the
same secrets.

Therefore, if player ¢ did not commit to s;s; there is at least one honest
player j that will notice an inconsistency and is going to complain. Upon that
complaint, the commitments to u; u"y and v; are opened so that all honest players
conclude that player 7 is corrupt.

On the other hand, if player ¢ is honest, then there are at most ¢ — 1 such
complaints from the corrupted players, and each of them will not convince any
honest player, since opening the commitments will show that the complaining
player is corrupt rather than player i. Moreover, the information that becomes
available in the course of handling these complaints, does not yield any new
information (from the point of view of the corrupted players) about s;s;.

17.5 Extensions

The protocol above ¥ and its analysis are a special case of [29]. In fact, the basic
framework behind it also works for any adversary that can be captured ' by a
monotone span program with (strong) multiplication.

However alot of things have to be settled first. The VSS protocol we described
is an optimization for the threshold case of the general VSS scheme from [29].
That scheme is based on arbitrary monotone span programs and we cannot in
general assume as in the threshold case here, that the matrix corresponding
to the honest players has maximal rank (this is essential in the analysis of the
threshold VSS). However, one can show that the protocol, although in general not
a VS8, is still a distributed commitment scheme. Based on these commitments,
one can indeed construct VSS based on arbitrary monotone span programs.

'8 We have not tried to optimize its efficiency, and we have been not very explicit about
how to handle situations where players are found out to be corrupt. In any case, it
is always possible to back-up to the beginning, and recover the inputs of corrupted
players, after which the protocol is done over again with the corrupted players openly
being simulated. There are other options which we do not discuss here.

19 Loosely speaking, this requires a monotone span program with (strong) multiplica-

tion that rejects the sets in the adversary structure: a pre-determined collection of

subsets of the players, out of which the actual adversary may pick an element and

corrupt all the players in it.

51

Moreover, [29] provides a theory of monotone span programs with (strong)
multiplication that shows that exactly those general (not necessarily threshold)
adversaries are captured for which [64] demonstrates that secure computation
tolerating them is possible at all. Therefore, the theory is complete.

Upper bounds on the complexity of monotone span programs with (strong)
multiplication are given as well, that show significant improvements over previous
approaches (similarly for VSS, but not requiring multiplication properties).

Tt is proved [29,30] that for all relevant monotone functions f (i.e. Q2-
functions), if a monotone span program of size m is given that computes such
a function f, then there exists a monotone span program with multiplication
that computes f as well and has size O(m). Note that the novelty is in the last
part of the claim. The proof is included in Appendix A. This implies (see [29,
32]), in a well-defined sense, that linear secret sharing is “sufficient” for general
secure multi-party computation, where both existence and efficiency are taken
into account.?°,

A remark about broadcast is in place. In case of general adverarsaries, in-
formation theoretically secure broadcasts protocols defending against threshold
adversaries are in general not sufficient. Therefore, [29] uses the result of [49].

Also, the techniques extend to the model of [75], where broadcast is assumed
(and cannot be simulated information theoretically) and an exponentially small
error is tolerated (see also [32]). This is non-trivial, and we omit any of the
details.

18 Other Work

We provide some suggestions for further reading (besides those references already
given). This list is by no means complete and selection has been quite ad-hoc
(This holds as well for the results covered in detail in this paper, with the
exception of the classical results).

Adaptive adversaries, i.e. adversaries who do not necessarily select their vic-
itms before the start of the protocol but rather adaptively as the protocol is
proceeding, are dealt with in [8] [20].

In [2] it is shown how general multi-party computations can be performed
with polynomial complexity and a constant number of rounds of interaction, pro-
vided that the function to be evaluated is given as a polynomial size arithmetic
formula (instead of circuit). Efficiency considerations (also using pre-processing)
are discussed in [5, 6].

This issue of a corrupt majority is studied in [3].

Secure multi-party computation in an asynchronous communication model
is addressed in [12].

20 Tn [31] it is shown that there is no efficient, construction of general multi-party com-
putation protocols from “black-box secret sharing”. Hence, “structure”, such as lin-
earity, is a requirement. On the other hand, it is demonstrated in [31] that VSS
protocols can be efficiently constructed from a black-box secret sharing scheme

52

Loosely speaking, a proactively secure protocol is one secure against an at-
tacker who in principle can corrupt an arbitrary number of players in the life-time
of a system, except that in each time-frame less than, say, half of the players are
corrupted and a majority is honest [71,50].

For lots of references and detailed explanations of some fundamental results,
see for instance [51] and [19].

Regarding multi-party computation protocols for electronic cash or electronic
voting, see for instance [22], [26], [35] and [34].

Threshold cryptography, i.e. efficient and secure distributed computation for
specific functions was introduced in [42]. See for instance, [41], [56] and [73] for
distributed RSA-protocols.

A solution for the problem of non-interactive computation on encrypted data
in the two-party scenarion is given in [78].

19 Acknowledgements

Donald Beaver, Claude Crépeau, Ivan Damgard, Serge Fehr, Matthias Fitzi,
Martin Hirt, Ueli Maurer, Sasa Radomirovié, Berry Schoenmakers are kindly
acknowledged for discussions, answering questions, giving comments or remarks.
Finally, also thanks to the students of the ETH Advanced Cryptographic Pro-
tocols Course (1999) for providing comments on parts of the manuscript.

References

1. W. Alexi, B. Chor, O. Goldreich and C.P. Schnorr: RSA and Rabin functions:
Certain parts are as hard as the whole, STAM Journal on Computing, 17(2):194-
209, April 1988.

2. J. Bar-Tlan and D. Beaver: Non-cryptographic fault-tolerant computing in constant
number of rounds of interaction. In Proceedings of the Fighth Annual ACM Sympo-
sium on Principles of Distributed Computing, pages 201-209, Edmonton, Alberta,
Canada, 14-16 August 1989.

3. D. Beaver and S. Goldwasser: Multiparty computation with faulty majority (ex-
tended announcement), In 30th Annual Symposium on Foundations of Computer
Science, pages 468-473, Research Triangle Park, North Carolina, 30 October-1
November 1989. IEEE

4. D. Beaver: Foundations of Secure Interactive Computing, Proceedings of Crypto
91, Springer Verlag LNCS, vol. 576, pp. 420-432, Springer-Verlag, 1992.

5. D. Beaver: Secure Multiparty Protocols and Zero- Knowledge Proof Systems Toler-
ating a Faulty Minority, J. Cryptology 4:2 (1991), 75-122.

6. D. Beaver: Ffficient Multiparty Protocols Using Circuit Randomization, Proceed-
ings of Crypto 91, Springer-Verlag LNCS, 1992, 420-432.

7. D. Beaver: How to break a “secure” oblivious transfer protocol., Furocrypt 92,
volume 658 of Lecture Notes in Computer Science, pages 285-296. Springer-Verlag,
24-28 May 1992.

8. D. Beaver and S. Haber: Cryptographic protocols provably secure against dynamic
adversaries, volume 658 of Lecture Notes in Computer Science, pages 307-323,

Springer-Verlag, 24-28 May 1992.

53

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

D. Beaver: Fquivocable Oblivious Transfer, Proceedings of Eurocrypt ’96, Springer—
Verlag LNCS 1070, 1996, 119-130.

D. Beaver: Adaptively Secure Oblivious Transfer, to appear in the Proceedings of
Asiacrypt ’98.

J. Benaloh, J. Leichter: Generalized Secret Sharing and Monotone Functions, Proc.
of Crypto ’88, Springer Verlag LNCS series, pp. 25-35.

M. Ben-Or, R. Canetti, O. Goldreich: Asynchronous Secure Computations, Proc.
ACM STOC 93, pp. 52-61.

M. Ben-Or, S. Goldwasser, A. Wigderson: Completeness theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation, Proc. ACM STOC ’88, pp.
1-10.

M. Bertilsson, I. Ingemarsson: A Construction of Practical Secret Sharing Schemes
using Linear Block Codes, Proc. AUSCRYPT ’92, LNCS 718 (1993), 67-79.

G. R. Blakley: Safequarding Cryptographic Keys, Proceedings of AFIPS 1979 Na-
tional Computer Conference, vol. 48, N.Y., 1979, pp. 313-317.

M. Blum: Three Applications of the Oblivious Transfer, Technical report, Dept.
EECS, University of California, Berkeley, CA, 1981.

G. Brassard, C. Crépeau and M. Santha: Oblivious Transfers and Intersecting
Codes, TEEE Transaction on Information Theory , special issue on coding and
complexity, Volume 42, Number 6, pp. 1769-1780, November 1996.

E. F. Brickell: Some Ideal Secret Sharing Schemes, J. Combin. Maths. & Combin.
Comp. 9 (1989), pp. 105-113.

R. Canetti: Studies in Secure Multiparty Computation and Applications, Ph. D.
thesis, Weizmann Institute of Science, 1995.

R. Canetti, U. Feige, O. Goldreich, M. Naor: Adaptively Secure Multi-Party Com-
putation, Proc. ACM STOC ’96, pp. 639-648.

R. Canetti: Security and Composition of Multiparty Cryptographic Protocols, draft,
presented at the 1998 Weizmann Workshop on Cryptography, Weizmann Institute
of Science, Rehovot, Israel, June 1998.

D. Chaum: Achieving Electronic Privacy, Scientific American, August 1992.

D. Chaum, I. Damgard and J. vd Graaf: Multi-Party Computations Ensuring Se-
crecy of Each Party’s Input and Correctness of the Qutput, Proceedings of Cryp-
t0’87 volume 293 of Lecture Notes in Computer Science, pages 87-119, 16-20,
Springer-Verlag, 1988.

D. Chaum, C. Crépeau, . Damgard: Multi- Party Unconditionally Secure Protocols,
Proc. of ACM STOC 88, pp. 11-19.

D. Chaum: Transaction Systems to make Big Brother Obsolete, Communications
of the ACM, vol. 28, no. 10, October 1985, pp. 1030-1044.

D. Chaum: Untraceable Flectroic Mail, Return Addresses, and Digital Pseudonyms,
Communications of the ACM, vol. 24, no. 2, 1985, pp. 84-88.

B. Chor, S. Goldwasser, S. Micali, B. Awerbuch: Verifiable Secret Sharing and
Achieving Simultaneity in the Presence of Faults, Proc. IEEE FOCS 85, pp. 383—
395.

R. Cramer: Introduction to Secure Computation, Lectures on Data Security— Mod-
ern Cryptology in Theory and Practice, Ivan Damgaard (Ed.), Springer LNCS,
vol. 1561, Spring 1999, pp. 16-62.

R. Cramer, 1. Damgard and U. Maurer: General and Efficient Secure Multi- Party
Computation from any Linear Secret Sharing Scheme, February 1999. To appear
in the Proceedings of EUROCRYPT ’00, Brugge, Belgium, May 2000, Springer
Verlag LNCS. This version includes [30]. Earlier version (BRICS Report Series

54

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

RS-97-28, “Span Programs and Secure Multi-Party Computation”) presented at
the 1998 Weizmann Workshop on Cryptography, Weizmann Institute of Science,
Rehovot, Israel, June 1998, is obsolete.

R. Cramer, 1. Damgard and U. Maurer: Enforcing the Multiplication Property for
Monotone Span Programs, with only Constant Qverhead, January 1999.

R. Cramer, I. Damgard and S. Dziembowski: On the Complexity of Verifiable Secret
Sharing and Multi-Party Computation, to appear in the Proceedings of the 32nd
Annual ACM Symposium on Theory of Computing (STOC ’00), Portland, Oregon,
May 2000.

R. Cramer, I. Damgard, S. Dziembowski, M. Hirt and T. Rabin: Efficient Multi-
Party Computations with Dishonest Minority, Proceedings of Eurocrypt ’99,
Springer Verlag LNCS, vol. 1592, pp.311-326, May ’99.

R. Cramer, I. Damgard: Zero Knowledge for Finite Field Arithmetic or: Can Zero
Knowledge be for Free?, Proc. of CRYPTO’98, Springer Verlag LNCS series, vol.
1462, pp. 424-441, 1998.

R. Cramer, R. Gennaro and B. Schoenmakers : A Secure and Optimally Ffficient
Multi- Authority Flection Scheme, Proceedings of EUROCRYPT ’97, Konstanz,
Germany, Springer Verlag LNCS, vol. 1233, pp. 103-118, May 1997. Journal ver-
sion: Eur. Trans. Telecom, Vol. 8 No. 5, Sept./Oct. 1997.

R. Cramer, M. Franklin, B. Schoenmakers, M. Yung: Secure Secret Ballot Flection
Schemes with Linear Work, Proceedings of EUROCRYPT ’96, Zaragoza, Spain,
Springer Verlag LNCS, vol. 1070, pp. 72-83, May 1996.

C. Crépeau: Equivalence between two flavours of oblivious transfers (abstract), Pro-
ceedings of Crypto ’87 , volume 293 of Lecture Notes in Computer Science , pages
350-354. Springer-Verlag, 1988.

C. Crépeau: Correct and Private Reductions among Oblivious Transfers PhD the-
sis, Department of Flec. Eng. and Computer Science, Massachusetts Institute of
Technology, 1990.

C. Crépeau, J.vd.Graaf and A. Tapp: Committed Oblivious Transfer and Private
Multiparty Computation, proc. of Crypto 95, Springer Verlag LNCS series.

C. Crépeau and J. Kilian: Achieving oblivious transfer using weakened security
assumptions, In 29th Symp. on Found. of Computer Sci. , pages 42-52. IEEE,
1988.

C. Crépeau and L. Salvail: Oblivious Verification of Common String, CWI Quar-
terly (Special Issue on Cryptography), 8 (2), June 1995.

A. De Santis, Y. Frankel, Y. Desmedt and M. Yung: How to Share a Function
Securely, Proceedings of 26th Annual ACM STOC, pp. 522-522, 1994.

Y. Desmedt: Threshold Cryptography, Furopean Transactions in Telecommunica-
tion, 5 (1994), 449-457.

S. Even, O. Goldreich and A. Lempel: A Randomized Protocol for Signing Con-
tracts, Communications of the ACM, vol. 28, 1985, pp. 637-647.

R. Fagin, M. Naor and P. Winkler: Comparing Common Secret Information without
Leaking it, Communications of the ACM, vol 39, May 1996, pp. 77-85.

S. Fehr: Efficient Construction of Dual MSP, Manuscript, January 1999.

P. Feldman: A practical scheme for non-interactive verifiable secret sharing, Pro-
ceedings of 28th Annual Symposium on Foundations of Computer Science, pages
427-437, Los Angeles, California, 12-14 October 1987. IEEE.

P. Feldman, S. Micali: An Optimal Probabilistic Protocol for Synchronous Byzan-
tine Agreement, SIAM J. Comp. Vol. 26, No. 4, pp. 873-933, August 1997.

55

48

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

M. Fischer, S. Micali and C. Rackoff: A Secure Protocol for Oblivious Transfer (ez-
tended abstract), presented at Eurocrypt ’84. First published in Journal of Cryp-
tology, 9(3):191-195, Summer 1996.

M. Fitzi and U. Maurer: FEfficient Byzantine Agreement Secure Against General
Adversaries, Proceedings of 12th International Symposium on Distributed Com-
puting (DISC "98).

Y. Frankel, P. Gemmell, P. MacKenzie, M. Yung: Optimal-resilience proactive
public-key cryptosystems, Proceedings of 38th Annual Symposium IEEE FOCS
pages 384-393, 1997.

M. Franklin: Complezity and Security of Distributed Protocols, Ph.D. thesis,
Columbia University, New York, 1992.

A. Gal: Combinatorial Methods in Boolean Function Complezity, Ph.D.-thesis, Uni-
versity of Chicago, 1995.

7. Galil, S. Haber and M. Yung: Cryptographic computation: Secure fault-tolerant
protocols and the public-key model, Proceedings of Crypto 87, volume 293 of Lec-
ture Notes in Computer Science, pages 135-155, 16-20 August 1987. Springer-
Verlag, 1988.

J.A. Garay and Y. Moses: Fully polynomial Byzantine agreement for n 5 3t pro-
cessors in t + 1 rounds, STAM Journal on Computing, 27(1):247-290, February
1998.

R. Gennaro: Theory and Practice of Verifiable Secret Sharing, Ph.D.-thesis, MIT,
1995.

R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin: Robust and efficient sharing
of RSA functions, Proceedings of CRYPTO 96, volume 1109 of Lecture Notes in
Computer Science, pages 157-172, 18-22, 1996.

R. Gennaro, M. Rabin, T. Rabin, Simplified VSS and Fast-Track Multiparty
Computations with Applications to Threshold Cryptography, Proceedings of ACM
PODC’98.

O. Goldreich, S. Micali and A. Wigderson: Proofs that Yield Nothing but the Va-
lidity of the Assertion, and a Methodology of Cryptographic Protocol Design, Pro-
ceedings IEEE FOCS’86, pp. 174-187.

O. Goldreich, S. Micali and A. Wigderson: How to Play Any Mental Game or a
Completeness Theorem for Protocols with Honest Majority, Proc. of ACM STOC
87, pp. 218-229.

O. Goldreich and R. Vainish: How to Solve any Protocol Problem: An Efficiency
Improvement, Proceedings of Crypto’87, volume 293 of Lecture Notes in Computer
Science, pages 73-86, 16-20 August 1987.

O. Goldreich: Modern Cryptography, Probabilistic Proofs and Pseudorandomness,
ISBN 3-540-64766-X, Springer-Verlag, Algorithms and Combinatorics, Vol. 17,
1998.

O. Goldreich: Secure Multi- Party Computation (working draft), Weizman Institute
of Science, Rehovot, Israel, June 1998. Avaliable through the author’s homepage
http://theory.lcs.mit.edu/ oded/.

S. Goldwasser, S. Micali and C. Rackoff: The Knowledge Complexity of Interactive
Proof Systems, Proceedings of ACM STOC’85, pp. 291-304.

M. Hirt, U. Maurer: Complete Characterization of Adversaries Tolerable in General
Multiparty Computations, Proc. ACM PODC’97, pp. 25-34.

M. Tto, A. Saito and T. Nishizeki: Secret Sharing Scheme Realizing General Access
Structures, Proceedings IEEE Globecom 87, pp. 99-102, 1987.

56

66. M. Karchmer, A. Wigderson: On Span Programs, Proc. of Structure in Complexity,
1993.

67. J. Kilian: Founding Cryptography on Oblivious Transfer, ACM STOC ’88, pp. 20—
31.

68. J. Kilian, S. Micali and R. Ostrovsky: Minimum resource zero-knowledge proofs
(extended abstract), Proceedings of 30th Annual IEEE Symposium on Foundations
of Computer Science, pages 474-479, November 1989, IEEE.

69. L. Lamport, R.E. Shostak and M.C. Pease: The Byzantine generals problem, ACM
Transactions on Programming Languages and Systems, 4(3):382-401, July 1982.

70. S. Micali and P. Rogaway:Secure Computation, Manuscript, Preliminary version
in Proceedings of Crypto 91.

71. R. Ostrovsky and M. Yung: How to withstand mobile virus attacks, Proceedings
of the Tenth Annual ACM Symposium on Principles of Distributed Computing,
pages 51-59, 1991

72. T.P. Pedersen: Non-Interactive and Information- Theoretic Secure Verifiable Secret
Sharing, Proc. CRYPTO ’91, Springer Verlag LNCS, vol. 576, pp. 129-140.

73. T. Rabin: A Simplified Approach to Threshold and Proactive RSA, Proceedings of
Crypto 98, Springer Verlag LNCS, vol. 1462, pp. 89-104, 1998.

74. T. Rabin: Robust Sharing of Secrets when the Dealer is Honest or Cheating, J.
ACM, 41(6):1089-1109, November 1994.

75. T. Rabin, M. Ben-Or: Verifiable Secret Sharing and Multiparty Protocols with Hon-
est majority, Proc. ACM STOC ’89, pp. 73-85.

76. M. Rabin: How to Exchange Secrets by Oblivious Transfer, Technical Memo TR-81,
Aiken Computation Laboratory, Harvard University, 1981.

77. R. Rivest, A. Shamir and L. Adleman: A Method for Obtaining Digital Signatures
and Public Key Cryptosystems, Communications of ACM, 21 (1978), pp. 120-126.

78. T. Sander, A. Young and M. Yung: Non-Interactive Crypto Computing for NC1,
Proceedings of the 40th TEEE Foundations of Computer Science (FOCS 99), 1999.

79. A. Shamir: How to Share a Secret, Communications of the ACM 22 (1979) 612-613.

80. S. Wiesner: Conjugate Coding, SIGACT News, vol. 15, no. 1, 1983, pp. 78-88;
Manuscript written circa 1970, unpublished until it appeared in SIGACT News.

81. A. Yao: Protocols for Secure Computation, Proc. IEEE FOCS ’82, pp. 160-164.

20 Appendix A: MSP’s with Multiplication

We include the following theorem and its proof from Cramer & Damgaard &
Maurer [29, 30], as an extension of the material presented in Section 17.3.

Let I' be an monotone access structure on {1,...,n}, and assume that it is
Q? (i.e. for all A,B ¢ I', we have A U B is properly contained in {1,...,n}),
and let M be a monotone span program of size m, that computes I'. Then there
exists a monotone span program with multiplication (see Section 17.3) of size
O(m) that computes I' as well. 2!

Monotone span programs [66] (MSP’s) are the basis for linear secret sharing
schemes (L.SSS): each of the shares in a secret is equal to a fixed linear combina-
tion of the secret and random (field-) elements chosen by the dealer. The MSP
underlying an LSSS is a linear algebraic device [66] that “computes” the access

2! Moreover, it can be efficiently constructed from the original monotone span program.

57

structure of the LSSS. On the other hand, each MSP gives rise to an LSSS.
Hence, one can identify an L.SSS with its underlying MSP (see Section 17.3).

In [29,32] it is shown that given just an LSSS with Q2-access structure I,
there exist a general multi-party computation protocol that is secure with respect
to I' and that has efficiency polynomial in the complexity of the LSSS. The
theorem stated above is essential in the proof.

One can define the algebraic complexity of a monotone access structure as the
complexity of the “smallest” MSP computing it. There is a tight and obvious
relationship between the algebraic complexity of a monotone access structure
and the “most efficient” LSSS for that access structure.

By their very nature, LSSS support secure distributed computation of sums
of shared secrets: each player locally adds the shares he holds in the secrets
involved.

However, it is far from clear how to securely compute the product of two
shared secrets based on a given LSSS: in general, secure multiplication appears
to be an inherently non-linear phenomenon. Of course, these elementary arith-
metical operations form the basis for general secure multi-party computation of
arbitrary functions (where the security is with respect to the access structure of
the T.SSS).

Here, security is defined with respect to the access structure of the MSP.
This means that even if an adversary picks a single non-qualified set of players
and corrupts them, the protocols will still be secure.

In [29], the problem of multiplying secrets is handled by requiring that the
monotone span program underlying the L.SSS has a special multiplication prop-
erty. It is shown in [29] how to use this property to perform secure multi-party
computation, even in the presence of malicious adversaries.

So given an access structure that is computable by an MSP with multipli-
cation, the question arises how the algebraic complexity of the access structure
in this enhanced model of MSP’s with multiplication compares to its ordinary
MSP complexity. It is certainly not smaller, but in theory it may be much larger
and perhaps even with super-polynomial differences.

Note that as a special case of the general result of [64], security with respect to
a (Q%-access structure is the best one can hope for anyway. Therefore, if an LSSS

supports general multi-party computation, the corresponding access structure
must be Q2.

Theorem 1. (Cramer/Damgaard/Maurer [29, 30]) Let T' be a monotone access
structure computed by an MSP of size d. Then there exists an MSP with multipli-
cation that computes I' and that has size O(d), provided that I is Q*. Moreover,
the access structure computed by any MSP with multiplication is Q2.

Proof: The last claim in the theorem is easy to prove. Let M = (K, M,) be
an MSP with multiplication. Suppose its access structure I' (on {1,...,n}) is
not Q2.

Then there exist sets A, B ¢ I' such that AU B = {1,...,n}. It is easy to
see (by a simple duality argument from linear algebra, see Section 16.1) that

58

A ¢ I iff there exists k € K¢ such that Max = 0 and its first coordinate &1
is equal to 1.

Let s be any full set of shares in the LSSS corresponding to the MSP, with
secret s. Since it has multiplication we have (r,s * Mk) = s-1 = s. But
s * Mk is zero in coordinates corresponding to A. Therefore, the players in B
can compute s * k and hence s on their own (since k depends only on A). But
this implies B € I' which is a contradiction.

Before proving the first claim in the theorem, we make some observations. Let
Iy and Iy be any access structures, computed by arbitrary respective MSP’s
Mo = (K, Mo,) and My = (K, My,), where Mo and My are d x eg and
d X €1 matrices, respectively, where the mapping ¥ is identical for both MSPs,
and where the target vector is (1,0,...,0) of length e¢q and ey, respectively.
Let I' = I'o U I'y be the union of the two access structures. Now suppose that
the matrices My and My satisfy

MI M, = F, (1)

where F is e, X e; matrix that is zero everywhere, except in its upper-left corner
where the entry is 1. Below we show that (1) implies that one can construct
an MSP with multiplication (actually a generalization thereof) whose size is of
the same order as that of My and M, and which computes I'.

Consider the following straightforward LSSS for I'. The dealer shares the secret
s € K using LSSSg and LSSSy, given by Mg and My, respectively. That is,
he selects a pair of vectors (bg, by) at random, except that the first entries are
both s: (t,bo) = {t,b1) = s. Then he computes the pair of vectors (sg,s1) =
(Mobo, M1b4), and sends for ¢ = 1,...,n the i-th coordinates of s and s; to
player Py ;. It is clear that a subset A of the players can reconstruct s from
their joint shares if and only if A is qualified with respect to either I'p or I7,
i.e. with respect to I'.

How can we multiply two shared secrets? Assume that s’ € K is a secret with
full set of shares (s(,s}]) = (Mobg, M1b)), where (¢,bg) = (¢,b}) = s’. From
(1) we have

(1,80 xs}) = sd's) =bl MT Mib} =bl Eb) = 55, (2)

where 1 denotes the all-one vector of appropriate length. Note that for each ¢,
the shares in the i-th coordinate of sg and the i-th coordinate of s} are held
by the same player.

In brief, there is a fixed linear combination (here consisting of all 1’s) over
products of shares in s and s’ locally computed by each player, which results
in the product of the secrets. This is sufficient for securely multiplying s and
s’, since each player can re-share these locally computed values, and add the
newly received shares to obtain his share in ss’. This technical idea of securely
multiplying two shared secrets was first presented in the case of threshold secret
sharing (Shamir’s scheme) by Gennaro & Rabin & Rabin [57].

The above description of how two shared values s and s’ can be multiplied
does not match exactly our definition of the multiplication property of an

59

LSSS because the players actually multiply shares of s in LSSSg with shares of
s’ in L.SSS;. However, observe that by an argument symmetric to that leading
to (2), we also have (1,s{ * s1) = ss’, and this symmetry can be exploited to
define an MSP (or LSSS) for I with the multiplication property as defined in
Section 17.3.
We are now ready to prove the first claim in the theorem. Recall the definition
of the dual access structure I'* of I': A € I'* if and only if A ¢ I', where A
denotes {1,...,n}\ A. Let I' be a monotone access structure that is Q? (this is
equivalent to saying that for all A ¢ I' we have A € I'). It follows immediately
from the definition that I' is Q2 if and only if I'* C I
Let M = (K, M,) be an MSP computing the access structure I', with target
vector t = (1,0,...,0). We set Ty = I', and Mgy = M. Tt is now sufficient to
present My with access structure I't = I'* (the dual) so that the pair Mo, M
satisfies equation 1.
In [52] a construction is presented which, given an MSP N = (K, N,v) of
size d with access structure I' (and target vector (1,...,1)), yields a “dual”
MSP N* = (K, N*,) with access structure I'* (and target vector all-one). In
particular, N* has the same number of rows and labeling as V.
The construction is as follows. N* has also d rows and the same labeling as N
and consists of one column for each minimal A € I', namely any reconstruction
vector X for for the set A for the LSSS (satisfying ATN = (1,...,1) and
A5 = 0. The matrix N* has generally exponentially many columns, but it is
easy to see that any linearly independent generating subset of them (at most
d) will do.?? Tt follows from the construction that NTN* is an all-one matrix,
which we call U.
In our case the target vector of M is¢ = (1,0,...,0) instead of (1,...,1), but
we noted earlier that the target vector can be transformed. This is achieved by
adding the first column of M to every other column of M. More formally, let H
be the isomorphism that sends an e-(column) vector to an e-(column) vector
by adding its first coordinate to each other coordinate. Write N = MHT”.
Then the MSP N = (K, N,) is as M except that the target vector is all-one.
Now let A™* = (K, N*,¢) be its dual MSP according to [52]. Finally write
M* = N*(H™YHT. Then M* = (K, M*,) has target vector ¢t and computes
I'*. Observe that MTM* = H-'U(H~Y)T = E, as desired.

O

22 This construction process if used directly is not efficient, but the matrix N* can be
constructed efficiently, without enumerating all columns of the construction [45].

60

