
E0 215 : Homework 1

Deadline : 30th August, 2022, 2pm

Instructions

• Please write your answers using LATEX. Handwritten answers will not be accepted.

• You are forbidden from consulting the internet. You are strongly encouraged to work on the problems
on your own.

• You may discuss these problems with others. However, you must write your own solutions and list
your collaborators for each problem. Otherwise, it will be considered as plagiarism.

• Academic dishonesty/plagiarism will be dealt with severe punishment. Cases of academic dishon-
esty/plagiarism will be reported to the appropriate authorities.

• Late submissions are accepted only with prior approval (on or before the day of posting of HW) or
medical certificate.

1. Anomaly for Paging: In class, we mentioned that an anomaly can happen for some paging algo-
rithms, where on some input sequences the algorithm may perform better (i.e., incur less number of
page faults) when it has a smaller fast memory. Show that LRU (Least-Recently-Used) does not
incur this anomaly but FIFO (First-In-First-Out) does incur the anomaly.

2. Marking and Conservative Algorithms: An algorithm ALG is conservative if on any consecutive
input subsequence containing k or fewer distinct page references, ALG incurs k or fewer page faults.
Show that FIFO is not a marking algorithm but it is a conservative algorithm.
Now consider the algorithm Flush-When-Full (FWF): Whenever there is a page fault and there is
no space left in the cache, evict all pages currently in the cache. Show that FWF is not a conservative
algorithm. However, it is a marking algorithm.

3. Mark: Prove that the algorithm Mark is Hk-competitive against an oblivious adversary when N ,
the total number of pages in the slow memory, is k + 1.
Show that, however, in general Mark is not Hk-competitive (Hint: construct an example for k =
2, N = 4).

4. pathcow:
I) Consider the following algorithm for path-cow problem. The cow starts at the origin, moves x = 1
unit to the right. If the target is not found, the cow comes back to the origin and goes x = 1 unit to
the left. If the target is not found, the cow comes back to the origin and repeats this procedure with
x = 2, 4, . . . , 2i, . . . until the target is found.

a) Assume the cow finds the hole at distance u from the origin on its left. Assume the largest power
of 2 which is smaller than u is 2k. What is the total distance moved by the cow?

b) Where does the adversary place the hole in order to harm the algorithm?

c) What is the competitive ratio of this algorithm?

1



II) In part I we assumed the algorithm is deterministic and the first move is to the right. Consider
the same algorithm in which the first move is randomly selected to be to the right or left (each with a
probability of 1/2). What is the competitive ratio of this randomized algorithm?
III) Assume instead of a path, we have a binary tree with each edge having a length of 1. Originally,
the cow is located at the root. First, she moves to the left child; if the target is not found, she goes
back to the root and then moves to the right child. If the target is still not found, she returns to the
root and goes to visit all nodes of depth 2 on the left (i.e., at distance 2 from the root on the left).
After checking these nodes, the cow returns to the root and repeats the same for nodes of depth 2 in
the right side of the root. This procedure is repeated until at some point the target is found. Assume
the cow uses depth first strategy to check nodes of depth i. In a nutshell, the algorithm works by
working in rounds, where at round i it visits all vertices of depth i.
What is the competitive ratio of this algorithm? To answer, assume the target is at depth k and write
the competitive ratio in terms of k. As before, you have to indicate where the adversary places the
target and deduce the competitive ratio accordingly.

5. online bidding: We saw in the class that a simple doubling approach gives the best competitive
ratio that a deterministic online bidding algorithm can achieve. That ratio was 4. In this problem, we
examine the power of advice (some extra information) and randomization for this problem; basically we
want to show that advice can be stronger than randomization. Consider two deterministic algorithms
Alg1 and Alg2 , where Alg1 guesses are 1, 4, 16, . . . 4i and Alg2 guesses are 2, 8, 32, . . . , 2 · 4i.

a) Consider an algorithm that flips a fair coin at the beginning and randomly chooses betweenAlg1
and Alg2 , and uses the guesses of the selected algorithm. What is the competitive ratio of this
randomized algorithm?

b) Assume an algorithm that receives 1 bit of advice as follows. For each instance of the problem
the advice bit indicates the algorithm which has smaller cost between Alg1 and Alg2 . What is
the competitive ratio of the algorithm with 1 bit of advice?

2


